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The Generating Degree of Cp

Victor Alexandru, Nicolae Popescu and Alexandru Zaharescu

Abstract. The generating degree gdeg(A) of a topological commutative ring A with char A = 0 is
the cardinality of the smallest subset M of A for which the subring Z[M] is dense in A. For a prime
number p, Cp denotes the topological completion of an algebraic closure of the field Qp of p-adic
numbers. We prove that gdeg(Cp) = 1, i.e., there exists t in Cp such that Z[t] is dense in Cp . We also
compute gdeg

(
A(U )

)
where A(U ) is the ring of rigid analytic functions defined on a ball U in Cp .

If U is a closed ball then gdeg
(

A(U )
)
= 2 while if U is an open ball then gdeg

(
A(U )

)
is infinite.

We show more generally that gdeg
(

A(U )
)

is finite for any affinoid U in P1(Cp) and gdeg
(

A(U )
)

is
infinite for any wide open subset U of P1(Cp).

1 Introduction

Let p be a prime number, Qp the field of p-adic numbers, Q̄p a fixed algebraic closure
of Qp and Cp the completion of Q̄p with respect to the unique extension of the p-adic
valuation v on Qp.

Some insight into the structure of closed subfields of Cp is provided by the Galois
theory in Cp as developed by Tate [T], Sen [S] and Ax [A]. In particular, there is a
canonical one-to-one correspondence between the closed subfields E of Cp and the
subfields Qp ⊆ L ⊆ Q̄p via the maps (see [I-Z1, Th. 1]):

E �→ E ∩ Q̄p = L and L �→ L̃ = E,(∗)

where L̃ denotes the topological closure of L in Cp. These maps pave the way for
transfering information from subfields of Q̄p to closed subfields of Cp.

In practice, when working in such a field L the situation is much improved if L/Qp

is finite. For one thing, the elements of L can be expressed in terms of a primitive
element α of L, which moreover can be chosen in convenient ways, e.g. like being a
uniformizer. If however L/Qp is not finite then no such primitive element exists and
in this case one needs to adjoin to Qp infinitely many elements α1, α2, . . . from L to
control the entire field L and so to produce a dense subfield in E.

With these in mind, Iovita and Zaharescu [I-Z1] investigated the possibility of
obtaining something dense in E by adjoining fewer elements from E. They showed
that it is enough to adjoin one element: there exists t in E such that Qp(t) is dense
in E.

In [A-P-Z] Alexandru, Popescu and Zaharescu took this matter one step further,
by showing how one can actually express the elements of E in terms of this t . It is
proven that:
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(i) For any element t in Cp the ring Qp[t] and the field Qp(t) have the same topo-
logical closure. Thus for any closed subfield E of Cp there exists t such that
Qp[t] is dense in E.

(ii) The theory of saturated distinguished chains for elements in Q̄p developed in
[P-Z] naturally extends from Q̄p to Cp. This provides us for any t ∈ Cp with
distinguished sequences of polynomials { fn(X)}n together with an infinite set
of (metric) invariants for t .

(iii) Given any t such that Qp[t] is dense in E and any distinguished sequence of
polynomials associated to t , there is a canonical way to obtain from it a sequence
{Mm(t)}m≥0 of polynomials in t which as elements in Qp[t] form an integral
basis of E over Qp. Thus:

(1) Any z ∈ E can be expressed in a unique way in the form: z =∑
m≥0 cmMm(t) where the cm’s are in Qp and cm → 0 as m→∞, and

(2) The above z belongs to the ring of integers OE if and only if all the coeffi-
cients cm are in Zp.

Some of these results were generalized in [I-Z3] and were applied to the ring B+
dR

defined by J.-M. Fontaine in [Fo]. In particular it is proved that there is an element T
in B+

dR such that Qp[T] is dense in B+
dR. Here one has a canonical projection of B+

dR on
Cp and the image of the above T in Cp will be an element t for which Qp[t] is dense
in Cp. It should be stressed that not all the above results for Cp could be lifted to B+

dR,
one of the main obstructions here being the failure of the Galois correspondence in
B+

dR (for more details, see [I-Z2]).
The concept of generating degree was introduced in [I-Z3] as a convenient way to

formulate various results from [I-Z2] and [I-Z3] (see Section 2 below). These gener-
ating degrees are important on their own. Being unchanged under isomorphisms of
topological rings, they provide us with some natural invariants of these rings.

For two commutative topological rings A ⊂ B, a subset M ⊂ B is said to be a
generating set of B over A if the ring A[M] is dense in B. The generating degree of B/A
is defined to be

gdeg(B/A) := min{|M|,where M is a generating set of B/A}

where |M| denotes the number of elements of M if M is finite and ∞ if M is not
finite.

The generating degree of B over Z if char B = 0, respectively over Fp if char B = p,
will be denoted by gdeg(B) and will be called the absolute generating degree of B.

Some general properties of generating degrees are presented in Section 2. Our
objective is to compute gdeg(Cp). This is achieved in Section 3 following an inves-
tigation on the structure of closed subrings of Cp. We show that gdeg(Cp) = 1 and
that the same holds true for any of its closed subfields:

Theorem 1 For any closed subfield E of Cp there exists t in E such that Z[t] is dense in
E.

By contrast we note that gdeg(OCp ) is infinite, where OCp denotes the ring of inte-
gers in Cp.
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In the last section we consider rings A(U ) of rigid analytic functions defined on
various open sets U of Cp (for the general theory of rigid analytic functions see
[F-P]). We found that if U is an affinoid then gdeg

(
A(U )

)
is finite. The situation

changes dramatically if we replace U by a “wide open set” (in the terminology of
Coleman [Co]). In this case gdeg

(
A(U )

)
is infinite.

For example, if a ∈ Cp and 0 < r ∈ {|z|; z ∈ Cp} then the “closed ball” B[a, r] :=
{z ∈ Cp; |z−a| ≤ r} is an affinoid while the “open ball” B(a, r) := {z ∈ Cp; |z−a| <
r} is a wide open set.

In the following by a closed ball in P1(Cp) we mean either a set of the form B[a, r]
as above or a set of the form P1(Cp) \ B(a, r). Similarly subsets of the form B(a, r) or
P1(Cp) \ B[a, r] will be called open balls. An affinoid in P1(Cp) is a subset U of the
form U = P1(Cp) \

⋃g
j=1 B j where each B j is an open ball in P1(Cp). A subset U as

above, U = P1(Cp) \
⋃g

j=1 B j where the B j ’s are balls and at least one of them is a

closed ball is called a wide open set in P1(Cp). With these notations and terminology
we have the following:

Theorem 2

(i) If U is a wide open set in P1(Cp) then gdeg
(

A(U )
)

is infinite.
(ii) Let U = P1(Cp) \

⋃g
j=1 B j, where the B j ’s are distinct, be an affinoid in P1(Cp).

Then gdeg
(

A(U )
)
≤ g + 1.

(iii) If U is a closed ball in P1(Cp) then gdeg
(

A(U )
)
= 2.

2 Generating Degrees

Recall the definitions from the Introduction:
For two commutative topological rings A ⊂ B, a subset M ⊂ B is said to be a

generating set of B over A if the ring A[M] is dense in B. The generating degree of B/A,
gdeg(B/A) ∈ N ∪∞ is defined to be

gdeg(B/A) := min{|M|, where M is a generating set of B/A}

where |M| denotes the number of elements of M if M is finite and ∞ if M is not
finite.

Thus A is dense in B if and only if gdeg(B/A) = 0.
Define the absolute generating degree gdeg(B) of B by gdeg(B) = gdeg(B/Z) if

char B = 0, respectively gdeg(B) = gdeg(B/Fp) if char B = p.
Some very simple properties of generating degrees are summarized in the follow-

ing

Proposition 3

a) gdeg(B/A) is invariant with respect to isomorphisms of topological rings.
b) If A ⊂ B ⊂ C then gdeg(C/A) ≥ gdeg(C/B).
c) If A ⊂ B ⊂ C then gdeg(C/A) ≤ gdeg(B/A) + gdeg(C/B).
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d) If A ⊂ B and ψ : B→ C is a continuous morphism of rings then for any generating
set M of B over A, ψ(M) will be a generating set of ψ(B) over ψ(A). In particular:
gdeg
(
ψ(B)/ψ(A)

)
≤ gdeg(B/A) and gdeg

(
ψ(B)
)
≤ gdeg(B).

e) If A ⊂ B is a finite separable extension of fields then we have gdeg(B/A) ≤ 1.

Remark It is not true that for any A ⊂ B ⊂ C one has gdeg(C/A) ≥ gdeg(B/A).
For example gdeg(Q p/Qp) =∞ while gdeg(Cp/Qp) = 1.

There is a connection between generating degrees and continuous derivations of
B over A. Let A ⊂ B be two topological commutative rings. A derivation of B over A
is a map D : B→ B which satisfies the usual rules:

D(u + v) = D(u) + D(v), D(uv) = uD(v) + vD(u)

and whose restriction to A is trivial. Assume at this point that B is an integral domain
and denote by F and E the field of fractions of A and B respectively. Then any such D
has a unique extension to a derivation of E over F, given by:

D
(u

v

)
=

vD(u)− uD(v)

v2

and the set D(B/A) of all such derivations becomes a vector space over E. Let us
denote by Dcont (B/A) the subspace of D(B/A) spanned by derivations D : B → B
which are continuous with respect to the topology of B. With these notations, we
have the following:

Proposition 4 dimE Dcont (B/A) ≤ gdeg(B/A).

There is also a connection between the generating degrees and chains of open
prime ideals of B. Recall that the height h(P) of a prime ideal P of a commutative
ring B is defined to be the largest integer n for which there is a chain of prime ideals
in B:

P0 ⊂ P1 ⊂ · · · ⊂ Pn = P.

Then one defines the Krull dimension of B to be

dim B := sup{h(P)}

where P runs over the set of prime ideals in B.
If now B is a topological commutative ring we can define its topological Krull

dimension dim� B by counting only open prime ideals, as follows. Define the topo-
logical height h�(P) of an open prime ideal P of B to be the largest integer n for
which there is a chain

P0 ⊂ P1 ⊂ · · · ⊂ Pn = P

of open prime ideals of B. Then set:

dim� B = sup{h�(P)}

where P runs over the set of open prime ideals in B.
Note that dim� B ≤ dim B and if B is endowed with the discrete topology then

dim� B = dim B. With the above notations we also have the following:
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Proposition 5 For any topological commutative ring B one has:

dim�(B) ≤ gdeg B.

We skip the details of the proofs of the above results and mention only that:
1) In the proof of Proposition 4 the point is that if M is a generating set of B/A

then any continuous derivation D of B is uniquely determined by its restriction to M,
and

2) For the proof of Proposition 5 intersect an arbitrary chain of open prime ideals

P0 ⊂ P1 ⊂ · · · ⊂ Pn

with Z[M] where M is an arbitrary generating set of B to get a chain J0 ⊆ J1 ⊆
· · · ⊆ Jn of open prime ideals in Z[M]. Now the point is that the sets P j \P j−1 being
open and Z[M] being dense in B there will be points from Z[M] in P j − P j−1 thus
J0 ⊂ J1 ⊂ · · · ⊂ Jn, so n is bounded by dim� Z[M] which is bounded by |M|.

Now let us see some examples of generating degrees in Cp and in B+
dR. Galois

theory in Cp shows that for any algebraic extension L of Qp we have (Cp)GL = L̃,
where GL = Gal(Q̄p/L) = Galcont (Cp/L). In other words:

gdeg
(

(Cp)GL/L
)
= 0.

As was mentioned in the introduction the Galois correspondence fails in B+
dR. Thus

in general an algebraic extension L is not dense in (B+
dR)GL , although Q̄p itselt is dense

in B+
dR as was proved in [F-C]. We do have however the following result:

If K := Qur
p ⊆ L ⊆ Q̄p and L is not a deeply ramified extension of K (in the sense

of Coates-Greenberg [C-G]) then

gdeg
(

(B+
dR)GL/L

)
= 0.

It is proved in [I-Z3] that for any algebraic extension L of K one has:

gdeg
(

(B+
dR)GL/L

)
≤ 1.

A characterization of deeply ramified extensions L of K satisfying the equation
gdeg
(

(B+
dR)GL/L

)
= 0 is obtained in [I-Z2]. Concerning generating degrees over Qp

we have the following result:
Let Qp ⊂ L ⊆ Q̄p and let E be the topological closure of L in Cp (respectively in

B+
dR). Then (in both cases) we have:

gdeg(E/Qp) = 1.

Note that, by contrast, one has:

gdeg(OCp/Zp) =∞.
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Indeed, for any finite subset M of Cp the image of Zp[M] in the residue field F̄p of
OCp will be a finite field. Then any element of OCp whose image in F̄p lies outside this
finite field will be at distance 1 from Zp[M], so Zp[M] is not dense in OCp and M is
not a generating set of OCp/Zp.

Let now L be a finite extension of Qp, L �= Qp. It is well known that L has a maxi-
mal unramified subextension, say F, that OF = Zp[u] and OL = OF[π] where u is a
unit in OF whose image in F̄p generates the residue field of L and π is a uniformiser
of OL. Hence {u, π} is a generating set of OL and gdeg(OL) ≤ 2. It is proved in [Se,
Ch. III, Proposition 12] that there is an α in OL such that OL = Zp[α]. Thus in fact
one has:

gdeg(OL/Zp) = 1.

3 Closed Subrings of Cp

By a closed subring of Cp we mean a subring of Cp which is closed with respect to the
topology induced from Cp.

Lemma 6 Let E be a closed subring of C p. Then either E ⊆ OCp or Qp ⊆ E.

Proof Assume E is not contained in OC p . Choose t ∈ E with v(t) < 0. Raise t to
an integer power r ≥ 1 such that v(tr) is an integer −m. Then tr = p−mu, where
m > 0 and u is a unit in OCp . Now raise u to a power k ≥ 1 such that uk is a principal
unit. Hence uk = 1 − x with v(x) > 0. Let y = 1

1−x = 1 + x + · · · + xn + · · · .

Since u = pmtr ∈ E it follows that x = 1 − uk ∈ E and so y ∈ E. Therefore
1
p = tkr p(mk−1) y ∈ E and then clearly Qp ⊆ E.

Theorem 7 Let E be a closed subring of Cp, not contained in OCp . Then E is a field.

We note the following consequence of Theorem 7:

Corollary 8 For any z1, z2, . . . , zn ∈ Cp the ring Qp[z1, z2, . . . , zn] and the field
Qp(z1, z2, . . . , zn) have the same topological closure.

Indeed, the closure of Qp[z1, z2, . . . , zn] is a ring E which is not contained in OCp

thus by Theorem 7 it follows that E is a field so it contains Qp(z1, z2, . . . , zn).

Proof of Theorem 7 Let E be a closed subring of Cp not contained in OCp . From
Lemma 6 we know that Qp ⊆ E. Now let L = E∩Q̄p. Then L is a subring of Q̄p which
contains Qp. It follows immediately that L is a subfield of Q̄p. Then L̃ is a complete
subfield of Cp. It remains to show that L̃ = E. The inclusion L̃ ⊆ E is clear. Assume
now that there is an element z ∈ E such that z /∈ L̃. Since Qp[z] ⊆ E and E is closed
it follows that the topological closure of Qp[z], call it H, is also contained in E. From
[A-P-Z] we know that H is a field. Moreover from the one-to-one correspondence (∗)
we know that we can intersect H with Q̄p and then we can recover it by completion:
H ∩ Q̄p = F say, F̃ = H.
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But F is contained in E ∩ Q̄p = L, thus F̃ ⊆ L̃. We obtained a contradiction since
z belongs to H but not to L̃, and this completes the proof of Theorem 7.

Proof of Theorem 1 Let E be a closed subfield of Cp. Choose t as in [A-P-Z] such
that Qp[t] is dense in E. Now divide t by a large power of p to force it out of OCp :
t
pr = z /∈ OCp . Consider the subring Z[z] of E. The closure H of Z[z] will be a closed
subring of Cp which is not contained in OCp . From Theorem 7 we know that H is a
closed subfield of Cp. It now follows easily that H = E.

4 Proof of Theorem 2

Note first that for any rigid analytic function F : U1 → U2 we get a map F∗ : A(U2)→
A(U1), given by: g �→ g◦F. If U1 and U2 are conformal in the sense that there is a one-
to-one map F : U1 → U2 with F and F−1 rigid analytic, then F∗ : A(U2) → A(U1)
will be an isomorphism of topological rings. In particular if U1 and U2 are conformal
then gdeg

(
A(U1)

)
= gdeg

(
A(U2)

)
. If now U = P1(Cp) \

⋃q
j=1 B j is an affinoid

or a wide open set one can use a linear fractional transformation F : U → P1(Cp),
F(z) = az+b

cz+d with a, b, c, d in Cp, ad − bc �= 0 to send one B j to or away from the
“point at infinity”.

Let’s now prove (i). By making such a linear fractional transformation, we may
assume that

U = B(0, 1) \

g−1⋃
j=1

B j

where B j = B(a j , r j) for 1 ≤ j ≤ s, B j = B[a j , r j] for s < j ≤ g− 1 for some integer
1 ≤ s ≤ g − 1 and some a1, . . . , ag−1 ∈ B(0, 1) and 0 < r1, . . . , rg−1 < 1.

Note that any power series g(z) =
∑∞

n=0 anzn with coefficients an in OCp is con-
vergent on B(0, 1) and so it belongs to A(U ). Moreover, it is easy to see that for such
a function f the norm ‖ f ‖ := {sup | f (z)|; z ∈ U} is given by

‖ f ‖ = sup
n≥0
|an|

As a consequence, two such functions f (z) =
∑∞

n=0 cnzn and g(z) =
∑∞

n=0 anzn

with cn, an ∈ OCp will be at distance ‖ f − g‖ = 1 unless for any n the coefficients cn

and an have the same image in the residue field F̄p of OCp .
Now let M be a generating set of A(U ). We choose for any power series h(X) =∑
n≥o bnXn ∈ F̄p[[X]] a representative g(z) =

∑
n≥0 anzn with an ∈ OCp , where bn is

the image of an in F̄p and then we choose an element f ∈ Z[M] such that ‖ f−g‖ < 1.
Note that for distinct h we have distinct f ’s, therefore the mapping h �→ f gives an
injection F̄p[[X]] ↪→ Z[M].

But F̄p[[X]] is an uncountable set, therefore M can not be countable, much less
finite.

ii) Send the B j ’s away from the point at infinity. Thus U will have the form:

P1(Cp) \

g⋃
j=1

B(a j , r j).
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Then A(U ) consists of functions f of the form (see [F-P]):

f (z) = c0 +

g∑
j=1

∞∑
n=1

c jn(z − a j)
−n

with c0, c jm ∈ Cp, and |c jn|r
−n
j → 0 as n → ∞ for 1 ≤ j ≤ g. Here ‖ f ‖ =

max{|c0|, sup jn |c jn|r
−n
j }. We have:

lim
N→∞

∥∥∥ f − c0 −

g∑
j=1

N∑
n=1

c jn(z − a j)
−n
∥∥∥ = 0.

Thus the ring Cp[ 1
z−a1

, . . . , 1
z−ag

] is dense in A(U ), and thus gdeg
(

A(U )/Cp

)
≤

g. From Theorem 1 and Proposition 3 c) it now follows that gdeg
(

A(U )
)
≤ g + 1.

iii) By making a suitable fractional linear transformation we may assume that
U = B[0, 1]. From (ii) we know that gdeg

(
A(U )

)
≤ 2. Let’s assume that

gdeg
(

A(U )
)
= 1 and let f be a generating element of A(U ). Now for any z0 ∈ U

we have a surjective continuous morphism of topological rings ψ : A(U )→ Cp given
by ψ(g) = g(z0). From Proposition 3 d) it follows that ψ( f ) = f (z0) is a generating
element of C p. Thus we arrived at the following question: Is there an f ∈ A(U ) such
that f (z) is a generating element of C p for any z in B[0, 1]?

The answer is “no”. Indeed, write f (z) = a0 + a1z + · · ·+ anzn + · · · , with an ∈ Cp

and an → 0 as n → ∞. Let us choose an α ∈ Q̄p close enough to a0 such that
|α− a0| < maxn≥1 |an| and put g(z) = f (z)−α = (a0−α) + a1z + · · ·+ amzm + · · · .
Now from the Weierstrass Preparation Theorem (see Lang [L, Ch. 5, Section 2]) we
have a decomposition g(z) = P(z)h(z) with h(z) ∈ OCp [[z]] and P polynomial of
degree ≥ 1 distinguished in the sense that its leading coefficient is larger than the
other coefficients. Here the roots of P are in B(0, 1). If z1 is such a root then g(z1) = 0
and f (z1) = α which is not a generating element of Cp. This completes the proof of
Theorem 2.
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