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BLOK-ESAKIA THEOREMS VIA STABLE CANONICAL RULES
NICK BEZHANISHVILI AND ANTONIO MARIA CLEANI

Abstract. We present a new uniform method for studying modal companions of superintuitionistic
rule systems and related notions, based on the machinery of stable canonical rules. Using this method,
we obtain alternative proofs of the Blok—Esakia theorem and of the Dummett-Lemmon conjecture for
rule systems. Since stable canonical rules may be developed for any rule system admitting filtration. our
method generalizes smoothly to richer signatures. Using essentially the same argument, we obtain a proof
of an analogue of the Blok—Esakia theorem for bi-superintuitionistic and tense rule systems, and of the
Kuznetsov—Muravitsky isomorphism between rule systems extending the modal intuitionistic logic KM and
modal rule systems extending the provability logic GL. In addition, our proof of the Dummett-Lemmon
conjecture also generalizes to the bi-superintuitionistic and tense cases.

§1. Introduction. A modal companion of a superintuitionistic logic L is defined
as any normal modal logic M extending S4 such that the Gddel translation fully
and faithfully embeds L into M. The notion of a modal companion has sparked
a remarkably prolific line of research, documented, e.g., in the surveys [13, 44].
The jewel of this research line is the celebrated Blok—FEsakia theorem, first proved
independently by Blok [10] and Esakia [19]. The theorem states that the lattice
of superintuitionistic logics is isomorphic to the lattice of normal extensions of
Grzegorczyk’s modal logic Grz, via the mapping which sends each superintuitionistic
logic L to the normal extension of Grz with the set of all Godel translations of
formulae in L.

Zakharyashchev [47] developed a unified approach to the theory of modal
companions, via his technique of canonical formulae. These formulae generalize
the subframe formulae of Fine [22]. Like a subframe formula, a canonical formula
syntactically encodes the structure of a finite refutation pattern, i.e., a finite transitive
frame together with a (possibly empty) set of parameters. By applying a version of
the selective filtration construction, every formula can be matched with a finite
set of finite refutation patterns, in such a way that the conjunction of all the
canonical formulae associated with the refutation patterns is equivalent to the
original formula. By studying how the Godel translation affects superintuitionistic
canonical formulae, Zakharyashchev gave alternative proofs of classic theorems in
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2 NICK BEZHANISHVILI AND ANTONIO MARIA CLEANI

the theory of modal companions, and extended this theory with several novel results.
Among these, he confirmed the Dummett—Lemmon conjecture, formulated in [16],
which states that a superintuitionistic logic is Kripke complete iff its weakest modal
companion is. Jetabek [27] generalized canonical formulae to canonical rules, and
applied this notion to extend Zakharyaschev’s approach to the theory of modal
companions to rule systems (also known as multi-conclusion consequence relations.)

In [3, 5, 6], stable canonical formulae and rules were introduced as an alternative
to Zakharyaschev and Jetabek-style canonical rules and formulae. The basic idea
is the same: a stable canonical formula or rule syntactically encodes the semantic
structure of a finite refutation pattern. The main difference lies in how such structure
is encoded, which affects how refutation patterns are constructed in the process of
rewriting a formula (or rule) into a conjunction of stable canonical formulae (or
rules). Namely, in the case of stable canonical formulae and rules, finite refutation
patterns are constructed by taking filtrations rather than selective filtrations of
countermodels. A survey of stable canonical formulae and rules can be found in [4].

In this article, we apply stable canonical rules to develop a novel, uniform
approach to the study of modal companions and similar notions in richer signatures.
Our approach echoes the Zakharyaschev—Jerabek approach in using rules encoding
finite refutation patterns, but also bears circumscribed similarities with Blok’s
original algebraic approach in some proof strategies (see Remark 5.3). Our
techniques deliver central results in the theory of modal companions through
transparent geometrical arguments. In particular, we obtain an alternative proof
of the Blok—Esakia theorem for both logics and rule systems, and generalize the
Dummett-Lemmon conjecture to rule systems.

Due to the flexibility of filtration, our techniques generalize smoothly to rule
systems in richer signatures. To illustrate this, we apply our method to the study
of tense companions of bi-superintuitionistic deductive systems and to the study of
(mono)modal companions of modal intuitionistic rule systems above KM. In each
of these cases, we prove analogues of the Blok—Esakia theorem. When restricted to
logics, these results were proved, respectively, by Wolter [43, Theorem 23] and [31,
Proposition 3], though they appear to be new for rule systems. In the case of tense
companions, in addition, we also prove an analogue of the Dummett-Lemmon
conjecture for rule systems, which also appears to be novel.

Notably, in each of these three cases, our main results are proved by essentially the
same arguments. By contrast, generalizing the Zakharyaschev—Jefabek technique
beyond the case of modal companions of superintuitionistic logics is far from
straightforward. In particular, as we argue towards the end of Section 4, it is far from
clear whether the Zakharyaschev—Jerabek technique generalizes to the case of tense
companions, since selective filtration does not work well for bi-superintuitionistic
and tense logics.

The techniques described in this article can also be used to obtain axiomatic
characterizations of the modal companion maps (and their counterparts in the
richer signatures discussed here) in terms of stable canonical rules, as well as some
results concerning the notion of stability [7]. These results can be found in the recent
master’s thesis [15], on which the present article is based.

The article is organized as follows. We begin by reviewing some general
preliminaries in Section 2, followed by the basic constructions in the theory of modal
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BLOK-ESAKIA THEOREMS VIA STABLE CANONICAL RULES 3

companions in Section 3. We then introduce stable canonical rules in Section 4,
generalizing known constructions to the bi-superintuitionistic and tense case. In
Section 5, we present our proof of a general Blok—Esakia theorem, which uniformly
applies to each of the three notions of companions we are interested in. Finally,
in Section 6, we present our proof of a general Dummett—Lemmon conjecture,
applying to both modal and tense companions. We conclude in Section 7.

§2. Preliminaries. We review some basic facts about rule systems and their
interpretation over algebras, topological spaces, and Kripke frames. The reader
may consult the following references for more detailed information: [25] for rule
systems in general; [14, 27] for modal and superintuitionistic rule systems; [11] for
universal algebra; and [21, 28] for duality theory.

2.1. Rule systems. Throughout the article, we fix a countably infinite set of
propositional variables Prop. For a signature v (a finite set of propositional
connectives), the set Frm, of v-formulae is built from Prop using the connectives
in v in the usual way. A substitution is a map s : Frm,(Prop) — Frm,(Prop) which
commutes with the operators in v.

A rule in signature v is a pair (I', A) such that I', A are finite subsets of Frm,. In
case A = {¢}, we write I' /A simply as I' /¢, and analogously if I' = {y }. Moreover,
we write /¢ for the rule @/p. A rule is said to be single-conclusion when of the form
'/, and assumption free when of the form /A. We use ; to denote union between
finite sets of formulae, so that ;A =T UAandI'; o = T U {p}. We let Rul, be the
set of all rules in v.

DEFINITION 2.1. A rule system' in signature v is a set S C Rul, satisfying the
following conditions:

(1) if T/A € s, then s[I']/s[A] € S for all substitutions s (structurality);

(2) /e € s for every formula ¢ (reflexivity);

(3) if T/A €S, then TI';T'/A;A €S for any finite sets of formulae I, A’
(monotonicity);

(4) if T/A:p € sand I'; /A € S, then T'/A € S (cut).

If S is a set of rule systems and X, E are sets of rules, we write E g X for the
least rule system in S, if it exists, extending both = and . A set of rules X is said
to axiomatize a rule system S € S over some rule system 8’ € S if ' ®s X =S.
Normally, we will take S to be the set of all extensions of some particular rule
system. When S is clear from context, we write simply & instead of ®s.

In this article, we will work with rule systems in five different signatures.

e the modal signature m := {A, -, L, O};

o the fense signature ¢ ;= {A, -, 1,0, ¢};

o the superintuitionistic (si) signature si ;== {A,V,—, L, T};

o the bi-superintuitionistic (bsi) signature bsi 1= {A,V, —, <, L, T}

o the modal superintuitionistic (msi) signature msi := {A,V,—, X, T, L}.

TRule systems are also called multiple-conclusion consequence relations (e.g., in [5, 25]). We prefer the
terminology of rule systems (used in [27]) for brevity.
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4 NICK BEZHANISHVILI AND ANTONIO MARIA CLEANI

When working in the modal and tense signatures, we will treat the other Boolean
and modal connectives as defined in the usual way. We will denote the duals of OJ
and ¢ as O and B, respectively. In the bsi signature, we also use the abbreviations

pi=p—1, cp =T+ p.
For each unary propositional connective O, we define the rules
/9 = q) = (Op = Qq). (KQ)
0/Qep. (Nec®)

A normal modal rule system is a rule system in the signature m containing the rule
/¢ whenever ¢ is a theorem of the Classical Propositional Calculus, as well as the
rules (Kg), (Nec) and

o= y.o/y. (MP)

A normal tense rule system is a rule system in the signature ¢, whose [I-free and
#-free fragments are each a normal modal rule system (with respect to [J and 4.
respectively) and which, in addition, contains the rule

[ — O (1)

We will henceforth omit the prefix “normal.”

An si rule system is a rule system in the signature si containing the rule /¢
whenever ¢ is a theorem of the intuitionistic propositional calculus IPC, as well as
the rule (MP). A bsi rule system is a rule system in the signature bsi containing
the rule /¢ whenever ¢ is a theorem of the bi-intutionistic propositional calculus
biIPC, as well as the rules (MP) and (Nec—._ ). We refer the reader to [14, Chapter
12] and [36] for explicit axiomatizations of IPC and biIPC, respectively.

Finally, an msi rule system is a rule system in the signature msi, whose si fragment
is an si rule system and which, in addition. contains the rules (Kg) and (Neck), as
well as the following:

/p — Xp. (1)
/®p = (qV (g — p)). (2)

When M is a modal (resp., tense and msi) rule system, we write NExt(M) for the
class of all modal (resp., tense and msi) rule systems extending M. Similarly, when L
is an si or bsi rule system, we write Ext(L) for the class of all si or bsi rule systems
extending L. We note that all these classes of rule systems form complete lattices,
where the meet is intersection and the join is given by the & operation over the
relevant class of rule systems.

A (modal, tense, si, bsi, or msi) logic is a (modal, tense, si, bsi, or msi) rule system
which can be axiomatized, over the least rule system of the same kind, by a set of
assumption-free, single conclusion rules. Logics in this sense correspond one-to-one
with logics conceived of as sets of formulae closed under appropriate conditions, a
conception that much of the literature in the field of modal and superintuitionitstic
logic shares. For example, the (normal) modal logics in the standard sense [e.g.. 14,
p. 113] correspond one-to-one with the normal modal rule systems axiomatizable
by assumption-free, single conclusion rules. When M is a modal logic in this sense,
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BLOK-ESAKIA THEOREMS VIA STABLE CANONICAL RULES 5

there is always a corresponding modal rule system /M axiomatized by {/¢ : ¢ € M}.
Conversely, for any modal rule system N, the set {¢ : /¢ € N} is always a modal
logic in the standard sense.

CONVENTION 2.2. [In view of this correspondence, we will use familiar names for
standard logics in the literature to refer to the corresponding rule system: that is, when
S names a standard (modal, tense, si, bsi, or msi) logic, we shall identify S with the
rule system [S defined as above. Thus, for example, we write K for the least modal rule
system, IPC for the least si rule system, and so on.

The set £ of rule systems of a given kind which admit an assumption-free, single
conclusion axiomatization forms a complete lattice. Moving forward, when NExt(M)
(resp., Ext(L)) is a lattice of rule systems, we denote the corresponding lattice of
logics as NExtL(M) (resp.. ExtL(L)). The join @©ngxaaq coincides with Sngxea)-
However, the meets @y ) a0d @ngxe(n) generally come apart: the meet in NExt(M)
of two logics may itself fail to be a logic. Likewise in the si and bsi cases.

The meet @npxr) can be characterized in terms of @ngy) as follows. If
N € NExt(M) is a rule system, let Taut(N) be the logic axiomatized over M by all
assumption-free, single conclusion belonging to N. Analogously, we define Taut(L)
when L is an si or bsi rule system.

PROPOSITION 2.3. Let S := NExt(M)(resp.. Ext(L)) and let £ := NExtL(M)(resp..
ExtL(L)). Then the identity

@c{Si:iel}=Taut(®s{S;:i €l})
holds for all logics {S; :i € I} C L.

ProOOF. We prove this result for binary meets; the proof of the general case
is completely analogous. Note first that Taut is monotonic and for each rule
system S € S we have Taut(S) C S. Now, clearly S®, 8’ C S®s 8. So, Taut(S @,
8') C Taut(S ®s S’) by monotonicity. But Taut(S®,8') =S ®, 8, s0 S®, 8 C
Taut(S ®s S'). Conversely, by Taut(S ®s S’) C S ®s &', it follows that Taut(S ®s §’)
is a logic below both 8 and ', and so Taut(S®s §') C S®, 8. o

Throughout the article, we will refer to a number of standard rule systems. We
collect all of them in Table 1.

2.2. Algebraic semantics. We interpret rule systems over algebras in the same
signature. If 2 is a v-algebra, we denote its carrier as 4. Let 2 be some v-algebra.
A valuation on 2L is a map V : Frm, — A, satisfying the condition

V(f(@r.oon) = 2V (@1). ... Vign))

foreach f € v. A pair (2, V), where 2(is a v-algebra and V" a valuation on 2, is called
a model. A model (21, V') satisfies a rule T'/A when the following holds: if V' (y) = 1
forall y € T, then V' (6) = 1 for some d € A. In this case, we write 2, V = T/A. A
rule I'/A is valid on a v-algebra 2 when 2/, V' |= T'/A holds for all valuations V" on
2A. When this holds, we write 2 F T'/A, otherwise, we write 2 ¥ I'/A and say that
A refutes I'/A. We can extend this notion of validity to classes of v-algebras in the
obvious way.
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6 NICK BEZHANISHVILI AND ANTONIO MARIA CLEANI

Modal rule systems

K The least modal rule system
K4 Ko /Op — O0p
S4 Ked /Op—p
Grz sS4 /0(p —0Op) — p) —p
GL K4 /O0p — p) — Op
Si and bsi rule systems

IPC The least si rule system
biIPC The least bsi rule system

Tense rule systems
K.t The least tense rule system
K4.t Ko /Op—=00p @ /66p — &p
S4.t Ka /Op—>p®/p— &p
Grz.t s4t @ /00(p —Op) = p) = p@/p— (pA—4(®p A-p))

Msi rule systems

IPCK The least msi rule system
KM IPCK® /(Kp — p) = p

TABLE 1. Standard rule systems.

Write A, for the class of all v-algebras. For every rule system S, we define
Alg(s) :={A € A, : AE s}
Conversely, if K is a class of v-algebras, we set
ThR(K) :={T'/A € Rul, : K E T/A}.

A variety (resp., universal class) of v-algebras is a class of v-algebras closed under
homomorphic images, subalgebras, and direct products (resp., under isomorphic
copies, subalgebras, and ultraproducts). When K is a class of v-algebras, we write
Var(K) and Uni(K), respectively, for the class of subvarieties and of universal
subclasses of K. It is well known that both Var(K) and Uni(K) admit the structure
of a complete lattice. The meet operations of Var(K) and Uni(K), denoted ®yay (i)
and ®yypi(x). respectively, coincide. However, the joins @y, (k) and ©ypi(x) generally
come apart. We can characterize @y, (k) in terms of Gyyiic). For U € Uni(K). let
Var(U/) be the least variety in which I/ is contained.

PrROPOSITION 2.4. Let K be a class of v-algebras. Then the identity
Bvar(){Vi 11 € I't = Var(@ymixey{Vi i €1})
holds for any {V; i € I'} C Var(K).
PrOOF. Analogous to that of Proposition 2.3. o

Throughout the article, we study the structure of lattices of rule systems via
semantic methods. This is made possible by the following fundamental result
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BLOK-ESAKIA THEOREMS VIA STABLE CANONICAL RULES 7

connecting the syntactic types of rule system to closure conditions on the classes of
algebras that validate them. Item 1 is widely known as Birkhoff’s theorem, after [9].

THEOREM 2.5 [11, Theorems I1.11.9 and V.2.20]. For every class K of v-algebras,
the following conditions hold:

(1) K is a variety iff K = Alg(S) for some set of v-formulae S;
(2) K is a universal class iff K = Alg(8) for some set of v-rules S.

In this sense, v-logics correspond to varieties of v-algebras, whereas v-rule systems
correspond to universal classes of v-algebras.

We now briefly describe the classes of algebras we shall use to interpret the rule
systems under discussion in more detail, and review some of their basic properties.
For further details on these structures, we point the reader to [14, 20, 21, 30, 35,
37, 41].

A Heyting algebra is a tuple $ = (H, A, V,—,0.1) such that (H,A,V.0,1) is a
bounded distributive lattice and for every a, b, ¢ € A, we have

c<a—b << anNnc<h.

A bi-Heyting algebrais a tuple ) = (H, A, V., —, <, 0, 1) such that the <—-free reduct
of $) is a Heyting algebra, and such that for all ¢, b, ¢ € H, we have

a+b<c¢c < a<bvVve.

Equivalently, a bi-Heyting algebra can be defined as a Heyting algebra §) whose
order dual is also a Heyting algebra, whose implication is defined by the identity

a<—b::/\{c€H:a§b\/c}.
A modal algebra is a tuple MM = (M, A, V,—, 0,0, 1) such that (M, A,V,—,0,1) is
a Boolean algebra and the following equations hold:
a1=1, (3)
O(a Ab) =0Oa ADOb. 4)
In any modal algebra 91, we can define the compound modality
O'q :=0a Aa. (5)

A tense algebra is a structure 0 = (M, A, V,—. [, 4.0, 1), such that both the C-
free and the ¢-free reducts of 9 are modal algebras (the former with respect to
the dual of ¢), and [, ¢ form a residual pair. That is, for all @, b € M, we have the
following identity:

$a<b = a<0Oy. (6)

Finally, a fiontal Heyting algebra is a structure $ = (H, A, V,—,X,0, 1) whose
X-free reduct is a Heyting algebra and such that X satisfies the identities (3) and

(4), as well as the following inequalities:
a < Ka, (7)

Ka < bV (b— a). (8)
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8 NICK BEZHANISHVILI AND ANTONIO MARIA CLEANI

We write HA, biHA, MA, Ten, and FHA for the classes of Heyting algebras, bi-
Heyting algebras, modal algebras, tense algebras, and frontal Heyting algebras,
respectively. It is well known that all these classes are equationally definable, hence
varieties by Theorem 2.5. What is more, their universal subclasses are algebraic
counterparts of the rule systems introduced in the previous section, in the sense
spelled out by the following theorem.

THEOREM 2.6. The following maps are pairs of mutually inverse dual isomor-
phisms:

o Alg : Ext(IPC) — Uni(HA) and ThR : Uni(HA) — Ext(IPC);

e Alg : Ext(biIPC) — Uni(biHA) and ThR : Uni(biHA) — Ext(biIPC);
e Alg : NExt(K) — Uni(MA) and ThR : Uni(MA) — NExt(K);

e Alg : NExt(K.t) — Uni(Ten) and ThR : Uni(Ten) — NExt(K.t);

e Alg : NExt(IPCK) — Uni(FHA) and ThR : Uni(FHA) — NExt(IPCK).

Furthermore, the items above remain true when we substitute NExtL(resp., ExtL) for
NExt(resp.. Ext) and Var for Uni.

COROLLARY 2.7.  Every si (resp., bsi, modal, tense, and msi) rule system L is complete
with respect to some universal class of Heyting (resp., bi-Heyting, modal, tense, and
frontal Heyting) algebras. Moreover, if L is a logic, then (by Theorem 2.5) it is complete
with respect to a variety of algebras of the appropriate kind.

Lastly, we introduce some uniform notation to refer to the non truth-functional
operations of a v-algebra. For 2 a v-algebra, let

(=)} ifAeHA,
{—=.«} ifA e biHA,
op(2) =3 {0} if 2 € MA,
{O, ¢} if2A € Ten,
{—. K} if A € FHA.

2.3. Geometric semantics and duality. All the rule systems mentioned so far also
admit a more suggestive geometric-topological semantics, which we shall rely on
in the proofs of several results. We sketch this semantics here and relate the basic
topological structures it involves to their algebraic counterparts.

A Stone space is a compact Hausdorff space with a basis of clopens. The
topological structures we shall work with are all expansions of Stone spaces with one
or more binary relations satisfying various conditions. For each of the signatures
v presented earlier, there is a corresponding class of such spaces, which for the
moment we call v-spaces. When X := (X, <1. ..., =,. O) is a v-space we let Clop(X)
denote the set of clopen subsets of X. and let ClopUp, (X) denote the set of clopen
upsets of X with respect to the relation =;, i.e., those elements of Clop(X) which are
upward-closed with respect to the relation <;. Moreover, for U C X, we write

iz, U ={x € X:y = xforsomey e U},
<, U:={x€ X :x = yforsomey e U}.
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BLOK-ESAKIA THEOREMS VIA STABLE CANONICAL RULES 9

Incase U = {x}. we write <, x and |l <, x instead of f<, {x} and |} <, {x }. When the
space in question is only equipped with one relation or when the relation in question
is clear from context, we may omit the subscripts from any of these operations.

We now describe these spaces in more detail. An Esakia space is a triple X =
(X. <, O) such that (X, ©O) is a Stone space and < is a partial order satisfying the
following conditions:

(1) frx is closed for every x € X:
(2) LU € Clop(%) for every U € Clop(X).

If, in addition, the structure X! = (X, >. ) is also an Esakia space, where > is the
converse of <, then we call X a bi-Esakia space.

A modal space is a triple X = (X, R, O) such that (X, ©O) is a Stone space and R
is a binary relation—not necessarily reflexive and transitive—satisfying conditions
(1) and (2) above. When the structure X! = (X, R. ©) is also a modal space, where
R is the converse of R, we call X a tense space.

Finally, a modalized Esakia space is a quadruple X = (X, <.C, O) such that

(X. <.0) is an Esakia space and the following conditions hold:

(1) {x € X : ficx € U} € ClopUp (X) whenever U € ClopUp (X):
(2) the reflexive closure of C coincides with <.

LetX = (X.<..... =, 0)and X' = (X', =]..... =<, O') be v-spaces. A mapping
f X — X' is called a v bounded morphism when it is continuous and satisfies the
conditions below for all x, y € X and each i < n:

(1) x =; yonlyif f(x) <} f(»):

(2) f(x) =} f(y) onlyif thereis z € f~!(p) such that x <; z.

In the special case where v € {bsi, ten}, we must, in addition, require that the above
conditions hold for the converses of <, <.

We now describe how to interpret v-rule systems over v-spaces. Let X be a v-
space. If' v € {si, bsi, msi}, a v-valuation on X is a mapping V : Frm, — ClopUp(X)
that commutes with the connectives in v in the usual way. On the other hand, if
v € {md, ten}, a v-valuation on X is defined in a similar way, except that we require V'
to range over Clop(X) instead of ClopUp(X). We list below how valuations commute
with the most important connectives.

Vip = y) = 1<(V(p)\ V(y)). )
Vie «y) =1<(V(p) \ V(). (10)
V(Rp) ={x € X :cx C V(p)} (11)
V(Op) ={x € X :rx C V(p)}. (12)

V(#p) =1rV(p). (13)

Here and throughout the article, we use — and \ to denote, respectively, the set-
theoretic relative complement and difference operations.

Let X be a v-space and V' a valuation on it. A formula ¢ is satisfied on a model
(X, V) at a point x if x € V(). In this case, we write X, V, x F ¢, otherwise, we
write X, V. x ¥ ¢ and say that the model (X, V') refutes ¢ at a point x. A rule T'/A
is valid on a model (X, V') when the following holds: if X, ¥, x F y holds for each
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10 NICK BEZHANISHVILI AND ANTONIO MARIA CLEANI

x € X andevery y € I, then there is somed € A such that X, V, x F ¢ holds for each
x € X.In this case, we write X, V' E T'/A, otherwise, we write X, V' ¥ I'/A and say
that the model (X, V') refutes . A rule T'/A is valid on a v-space X if it is valid on
the model (X, V') for every valuation V' on X, otherwise X refutes T'/A. We write
X E I'/A to mean that I'/A is valid on X, and X ¥ I'/A to mean that X refutes I'/A.
The notion of validity generalizes to classes of v-spaces, as well as to classes of rules,
in the obvious way.

For each of the signatures v we shall work with, there is a duality result connecting
v-algebras to v-spaces. All these dualities are generalizations of Stone duality,
which relates the category of Boolean algebras with homomorphisms to that of
Stone spaces with continuous functions [28]. We list these dualities in the following
theorem.

THEOREM 2.8. The category of modal (resp., Heyting, tense, bi-Heyting, and
frontal Heyting) algebras with homomorphisms is dually equivalent to the category of
modal (resp., Esakia, tense, bi-Esakia, and modalized Esakia) spaces with bounded
morphisms.

In each of these cases, we write 2L, for the space dual to an algebra 2l and X* for
the algebra dual to a space X. The space 2L, is always an expansion of the space of
prime filters of 2(. We write f§ for the map, called the Stone map, which takes element
a and returns the set f(a) of prime filters in that algebras that contain a. In the other
direction, the algebra X* is constructed by taking clopen sets (if v € {md, ten}) or
clopen upsets (if v € {si, bsi, msi}). We refer the reader to [12, 17, 18, 38] for detailed
descriptions and proofs of these dualities.

2.4. Kripke semantics. Besides spaces, in Sections 4 and 5, we shall also work
with Kripke frames. We will only use Kripke frames to interpret si, bsi, modal, and
tense rule systems. Thus we define a Kripke frame to be a set X := (X, <), where
X is a non-empty set and =< is a binary relation on X. An intuitionistic Kripke
frame is a Kripke frame ¥ := (X, <), where < is a partial order. The notions of v
bounded morphism for v € {md, ten, si, bsi} are defined the same way as for spaces,
but omitting the requirement of continuity.

For v € {md, ten}, a v-valuation on a Kripke frame X is a mapping V' : Frm, —
©(X) that commutes with the connectives in v in the usual way. For v € {si, bsi},
v-valuation on an intuitionistic Kripke frame X is a mapping V : Frm, — p(X) that
commutes with the connectives in v in the usual way, such that V' (¢) = V (¢) for
every ¢ € Frm,. We extend our notions of satisfaction and validity from spaces to
Kripke frames in the obvious way.

We recall briefly the following duality results concerning Kripke frames, which
were first proved, respectively, in [29, 40] (see also [33]).

THEOREM 2.9. The following categories are dually equivalent.

(1) Kripke frames with modal (resp., tense) bounded morphisms and complete,
atomic, completely additive, and completely distributive modal (resp., tense)
algebras with complete homomorphisms;

(2) Intuitionistic Kripke frames with si (resp., bsi) bounded morphisms and
complete, completely distributive, and completely join prime generated Heyting
(resp., bi-Heyting) algebras with complete homomorphisms.
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BLOK-ESAKIA THEOREMS VIA STABLE CANONICAL RULES 11

We write 2. for the Kripke frame dual to an algebra 2f among those mentioned in
the theorem above, and X for the algebra dual to a Kripke frame X. The signature
of X* will be clear from context. The Kripke frame 2/, is constructed by expanding
the set of completely join prime filters of 2l with a binary relation, which is defined the
same way as in the dualities from Theorem 2.8. The algebra X" is constructed the
same way as 9)* when 2) is a space. but taking subsets (resp., upsets) instead of
clopen subsets (resp., clopen upsets).

CONVENTION 2.10. Before moving on, we introduce a notational convention we
shall use throughout the article to discuss related rule systems and structures while
avoiding cumbersome repetitions. The convention consists of the use of parentheticals
in expressions naming rule systems, mathematical structures, and classes thereof. For
example, we will use the expression ‘S4(.t)’ to refer simultaneously to the rule systems
S4 and S4.t. Similarly, we will use the expression ‘(bi-)Heyting algebras’ to refer
simultaneously to Heyting and bi-Heyting algebras.

We use these parentheticals in the same way parentheticals of the form “(resp., ...)”

are normally used. To illustrate, Item 2 in Theorem 2.9 can be rewritten, using the
convention just introduced, in the following way:

The following categories are dually equivalent: intuitionistic Kripke

frames with (b)si bounded morphisms and complete, completely
Jjoin prime generated (bi-) Heyting algebras with complete homomor-
phisms.

2.5. Transitive structures. We close our preliminaries by reviewing some classes of
transitive structures we shall encounter throughout the article. Let us first introduce
some more notational conventions. We refer to an algebra in Alg(S) as an S-algebra.
Similarly, we let an S-space be a space in Spa(8), and an S-frame be a Kripke frame
that validates every rule in S—with the additional requirement that an S-frame be
intuitionistic when S is a (b)si logic.

We recall that the K4(.t)-spaces can be characterized as those modal (resp., tense)
spaces with a transitive relation, and that the S4(.t)-spaces coincide with those
K4(.t)-spaces where the relation is, in addition, reflexive. We recall some well-known
properties of these spaces. Given a preordered set (X, R), we define:

gmaxp(U) :={x € U :forall y € U, if Rxy, then Ryx},
(U) =={x € U:fgx C {x}}.
gming(U) :={x € U :forall y € U, if Ryx, then Rxy},
(U):={x e U:{rx C{x}}.

We omit subscripts when they can be inferred from context.

maxg

Wlil’lR

ProposITION 2.11. Let X be a K4-space. Then the following conditions hold for
every x € X and each U € Clop(X).
(1) gmax(U) is closed
(2) If x € U, then either x € max(U) or there is y € gmax(U) such that Rxy:;
(3) When X is an S4-space, Item 2 can be strengthened to the following: if x € U,
then there is y € qmax(U) such that Rxy:;
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12 NICK BEZHANISHVILI AND ANTONIO MARIA CLEANI

(4) When X is an S4.t-space. Items | and 3 remain true if we substitute gmax(U)
Jfor gmin(U) and Rxy for Ryx.

Among S4(.t)-spaces, we shall pay particular attention to Grz(.t)-spaces. We
recall some of their basic properties. Given a preordered set (X, R) and U C X, we
call an element x € U passive in U when there isno y € X \ U such that Rxy and
Ryz for some z € U. In other words. x is passive in U when one cannot “leave” and
“re-enter” U starting from x. A cluster in (X, R) is a set C C X which is maximal
with the property that Rxy and Ryx whenever x,y € C. A set U C X is said to cut
a cluster C C X when neither C C U nor C N U = & hold.

THEOREM 2.12 [21, Theorem 3.5.5]. Let X be an S4(.t)-space. Then X is a Grz(.t)-
space if and only if for every U € Clop(X) and any x € U, thereisay € U such that
Rxy and y is passive in U (and there is some z € U such that Rzx and z is passive in
U with respect to the converse of R).

COROLLARY 2.13 [21, Theorem 3.5.6]. Let X be a Grz-spaces and U € Clop(%).
The following conditions hold:

(1) gmax(U) = max(U);
(2) max(U) does not cut any cluster.

Moreover, if X is also a Grz.t-space, the conditions above continue to hold when we
substitute gmin(U) for gmax(U) and min(U) for max(U).

COROLLARY 2.14 [21, Theorem 3.5.8]. Let X be an S4(.t)-space. If X is partially
ordered, then X is a Grz(.t)-space.

We mention another simple fact concerning clusters, which we shall appeal to
several times.

PROPOSITION 2.15. Let X.,9) be S4(.t)-spaces or Kripke frames and let f : X — 2)
be an order-preserving map. Then f~'(U) does not cut clusters for any U C Y.

Another class of K4-spaces we shall pay close attention to is the class of GL-
spaces. These spaces display various similarities with Grz-spaces, as the reader can
appreciate by comparing the following results with Proposition 2.11, Theorem 2.12,
and Corollary 2.13.

THEOREM 2.16. Let X be K4-space. Then X is a GL-space if and only if for every
U € Clop(X) and any x € X, if tx N U # @, then there is some y € U such that
Rxy andtyNnU = @.

COROLLARY 2.17. Let X be a GL-space and U € Clop(X). The following conditions
hold.:

(1) max(U) ={x e U :fxNnU = a};
(2) max(U) € Clop(X);
(3) if x € U, then either x € max(U) or there is y € max(U) such that Rxy.

COROLLARY 2.18. Let X be a K4-space. If X has an irreflexive relation, then X is a
GL-space.
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BLOK-ESAKIA THEOREMS VIA STABLE CANONICAL RULES 13

§3. Mappings and translations. The main results discussed in this article all
involve translations between rules in different signatures, and semantic transfor-
mations corresponding to them. The purpose of this section is to introduce these
translations and transformations.

COoNVENTION 3.1.  To treat these mappings uniformly, we introduce some notational
conventions to refer to the three pairs of signatures which we want to connect via
translations. We let the numerals 1, 2, and 3 denote, respectively, the pairs of signatures
(si,md). (bsi.ten), and (msi,md). When s is any of these pairs of signatures, the
signature occurring in the first coordinate of s is called the intuitionistic signature,
whereas the signature occurring in the second coordinate of s is called the classical
signature.

For each pair of signatures s € {1.2, 3}, we will define a translation function T,
as well as algebraic. topological, and syntactic versions of three mappings, oy, 7s.
and p;. In the case of signature pairs 1 and 2, we will also define versions of the maps
oy and p; on Kripke frames. We will adopt the further convention of suppressing
subscripts for signature pairs when they can be inferred from context.

We define distinguished rule systems and universal classes of algebras for each
pair of signatures s € {1,2, 3}, as follows:

IPC ifs=1 sS4 ifs=1 Grz ifs=1

I, := {biIPC ifs =2. Cy:={s4t ifs=2., C/:=1{Crzt ifs=2. (14)
KM ifs =3 K4 ifs=3 GL ifs=3

T, = Alg(Iy). Cy:=Alg(Cs), C:=Alg(cl). (15)

We shall use this notation to state definitions and results concerning the mappings
mentioned above in a uniform fashion.

3.1. Mappings on algebras. We begin by reviewing some well-known semantic
transformations between algebras. Recall that the free Boolean extension of a
Heyting algebra $) is the unique Boolean algebra B($)) in which § embeds as
a distributive lattice, such that the image of £ under this embedding generates
B($) as a Boolean algebra [21, Definition 2.5.6, Constraint 2.5.7; 1, Section V].
For simplicity. we will generally identify $ with its image in B($)). Note that this
convention is used in the definitions to follow.

If $ is a Heyting algebra, the algebra o1 §) is constructed by expanding B($)) with
the operation

Oa ::\/{bEH:bSa}.
If 91 is a bi-Heyting algebra, we define 0, the same way but also add the operation
¢a:= \{beH:a<b}

Finally, if 90 is a frontal Heyting algebra, we define 03§ by expanding B($)) with
the operation

Oa := Xla,

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.137, on 21 Nov 2025 at 18:46:29, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2025.10126


https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.10126
https://www.cambridge.org/core

14 NICK BEZHANISHVILI AND ANTONIO MARIA CLEANI

where
la ::\/{beH:bga}.

It is known that ¢(§)) is a Grz(.t)-algebra whenever $ is a (bi-)Heyting algebra
[21, Corollary 3.5.9; 43, Lemma 16], and moreover that o3($)) is a GL-algebra
whenever §) is a frontal Heyting algebra [20, Corollary 20].

Conversely, if 9 is an S4-algebra. the algebra p;90 is constructed as follows. As
the carrier, we take the bounded lattice O(90t) of open elements of 9, that is, of
those elements a € M with Oa = a, or, equivalently, ¢a = a. We expand this lattice
with the operation

a—b:=0(-aVb).
When 9t is an S4.t-algebra, we define p,9Jt the same way but also add the operation
a<b:=&(an-b).

Likewise, if 90 is a K4-algebra, the algebra p;91 is constructed as follows. As the
carrier, we take the bounded lattice O (9) of quasi-open elements of M, i.e., those
elements of 9 with O%a = a, where O%a := Oa A a. We then expand this lattice
with the following operations:

a—b:=0"-aVh),
Xa = Oa.

It is well known that p9) is a (bi-)Heyting algebra for every S4(.t)-algebra 91, and
that p39t is a frontal Heyting algebra for every K4-algebra 9.

All these mappings can be lifted to universal classes. Given s € {1,2,3}, leti,V
be universal classes of algebras on which, respectively, oy and p, are defined. We
then put

ol ;== Uni{a:$H: H e U}, psV = {pA:A eV}
We also introduce mappings 7, : Uni(Z;) — Uni(Cy) by setting
Wi={IMeC:pMe W}

3.2. Mappings on spaces. We now describe the maps defined in the previous
subsection dually. If X is an Esakia space, we set

aX:=(X.R.O), R =<.

When X is a bi-Esakia space we let 0,X := g, X. Thus ¢ and o, are just identity
maps; we simply notate the relation differently to indicate that we are viewing the
structure as a modal or tense space. Moreover, if X is a modalized Esakia space, we
let 03X be the <-free reduct of X. By Corollary 2.14, if X is a (bi-)Esakia space, then
o X is always a Grz(.t)-space. Likewise, by Corollary 2.18, g3X is always a GL-space
whenever X is a modalized Esakia space.

Conversely, let ) := (¥, R, O) be a K4-space. For x,y € Y, write x ~ y iff Rxy
and Ryx. Defineamap o : ¥ — p(Y) by setting o(x) = {y € Y : x ~ y}. We call
this map the skeleton map. When ) is an S4-space we let p2) := (o[Y]. <. 0,)
where o(x) < o(y) iff Rxy,and U € O, iff o 1(U) € O. We let p, be the restriction
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BLOK-ESAKIA THEOREMS VIA STABLE CANONICAL RULES 15

of p; to S4.t spaces. When 9) is a K4-space we let p39) := (o[Y]. <.C.0O,). where
o(x) < po(y)iff RTxy and o(x) C o(y) iff Rxy. and O, is defined as before. Here
R denotes the reflexive closure of R.

In other words, when 2) is an S4-space, the space p;2) is obtained by collapsing
the clusters of 9), lifting the relation R clusterwise and endowing the result with the
quotient topology under the mapping o. When 2) is a K4-space, p32) is constructed
in a similar way, except that the intuitionistic relation of p3%) is obtained by lifting
the reflexive closure of R clusterwise, and the modal relation is obtained by lifting
R itself clusterwise.

We note a simple property of the transformations p,, which we shall appeal to
later on.

PROPOSITION 3.2. Let X be a K4-space. If U C X is open (resp., closed) and does
not cut any cluster, then o[U] is open (resp.. closed) in p3X. Moreover, the same holds
when X is an S4-space and ps is replaced with p,.

Routine arguments show that the transformations just defined are indeed dual
to their algebraic counterparts defined in the previous subsection [see, e.g., 21,
Proposition 3.4.15]. This is to say that given s € {1, 2, 3}, for any algebras £, 9t on
which the algebraic maps ;. p, are defined we have (0,). = 0,9, and (p,IM), =
psIM,.. Consequently, for any spaces X,2) on which the geometric maps oy, p, are
defined we have (6,X)* = 6,X* and (p,)* = psD*.

By appealing to these dualities, the following proposition easily follows.

PRroOPOSITION 3.3. Given s € {1,2,3}, let $H € T, and M € C;. Then $H = pya:$H
and o, p; M is (isomorphic to) a subalgebra of .

3.3. Mappings on Kripke frames. For s € {1,2}, we also define versions of the
maps oy, p; on Kripke frames. When X is an intuitionistic Kripke frame, we let
o,X = X. Conversely, if X is a Kripke frame with a reflexive and transitive relation,
we let p,X be defined as we did above for spaces, but omitting the conditions
concerning topology. Since the maps are defined the same way for the two pairs
of signatures 1 and 2, we will always omit signature subscripts when working with
Kripke frames. We do not define counterparts of the maps o3, p3 on Kripke frames.

The p transformation on Kripke frames corresponds quite closely with its
topological version. In particular, for every Kripke frame § on which the mapping
p is defined, we have (pS)+ = pF T, and so for every perfect S4(.t)-algebra 9, we
have (p9), = pM,. On the other hand. the algebraic version of the map o fails
to preserve atomicity [44, p. 103], so in general, the identity J(S)+ ~ gF+ may fail.
Observe further that when § is an intuitionistic Kripke frame, o§ is not guaranteed
to be a Kripke frame for Grz(.t). As is well known, the Kripke frames for Grz(.t)
are precisely those partially ordered Kripke frames that are conversely well founded
(resp., well-founded and conversely well founded). However, intuitionistic Kripke
frames need not be well founded nor conversely well founded.

3.4. Translations. All the mappings we have introduced are semantic coun-
terparts to various translations between formulas in different signatures. These
translations are all versions of the Gddel Translation [23]. For present purposes,
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16 NICK BEZHANISHVILI AND ANTONIO MARIA CLEANI

we shall define the Godel translation as a mapping 7 : Frmy — Frm,,; defined
recursively as follows:

Ti(L):= 1. Ti(e V) =Ti(p)V Ti(y).
Ti(T):=T, Ti(e — w) =0(=Ti(p) v Ti(y)).
Ti(p) :=0Op. Ti(p Ay) = Ti(p) ANTi(y).

We extend this translation to define two more mappings, 75 : Frmpg; — Frmy,, and
T : Frmy,; — Frm,,;. These mappings are obtained by extending the definition
above with one of the following additional conditions [cf. 31, 42]:

(g « y) = ¥Ta(p) A-Da(y)), T3(Re) = 0Ts(p).

T, was introduced in [42], whereas T3 is equivalent to the translation introduced in
[31] (see also [45, 46]). We extend these mappings from formulae to rules by setting

T,(T/A) := T,[T]/ T [A].

We will refer to all of these mappings as “Godel Translations.”
The interactions between the Godel translations and the semantic mappings
previously introduced are described in the next lemma.

LemMa 3.4 [Cf. 27, Lemma 3.13]. Let s € {1,2,3} and let M be an algebra on
which py is defined. Then for every rule in the intuitionistic signature of s, we have

M T,(T/A) < p,M = T/A.

Let us now define mappings between logics in different signatures by means of
the Godel translations. For s € {1,2,3}, let L € Ext(I,). We define:

tL:=C, ® {T,(I'/A) : T/A € L}, oL :=C @ 1,L.
Conversely, if M € NExt(C;), we put
psM:=I, & {[/A: T(T'/A) € M}.

Finally, let L. € Ext(I,) and M € NExt(M;, ). We say that Mis a companion of L. when
psM = L. We call the companions of si and msi rule systems modal companions, and
the companions of bsi rule systems tense companions.

§4. Stable canonical rules. In this section, we introduce stable canonical rules for
si, bsi, modal, and tense rule systems. Essentially, stable canonical rules are syntactic
devices for encoding finite filtrations. Although the results of this sections are only
discussed in print for the si and modal case. their generalizations to the bsi and tense
case are straightforward. We point the reader to [3—6] and [26, Chapter 5] for more
in-depth discussion.

We are not going to define stable canonical rules for msi rule systems. This is
because the main result we are interested in with respect to msi rule systems is the
Kuznetsov—Muravitsky isomorphism, which can be proved using only modal stable
canonical rules. We comment on how stable canonical rules for msi rule systems
might be developed in Remark 4.3.
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Since, in this section, we shall not deal with frontal Heyting algebras and their
duals, unless otherwise specified, we use the term algebra to refer to something that
is either a modal, tense, Heyting, or bi-Heyting algebras, without specifying which.
We adopt analogous conventions for the terms space, rule, rule system, and so on.

We begin by defining stable canonical rules. Recall that when 2l is an algebra, by
op(2A) we denote the set of non truth-functional operations of 2I.

DEFINITION 4.1, Let §) be a finite (bi-)Heyting algebra and let D := (D)o, (5)-
where DY C H x H. For every a € H introduce a fresh propositional variable p,.
The (si or bsi) stable canonical rule n($), D) is defined as the rule I'/A, where

I={py < L}U{p1 < T}U
{Pars <> pa A ppia.b € HY U{payp <> paV pp:a.b € H}U

U {Paob < PaVps : (a.b) € DV},
Veop(H)
A={p, > py:a.b e H witha # b}.

DEFINITION 4.2. Let 91 be a finite modal (resp., tense) algebra and let D :=
(D”)@e(,p(im), where DY C M. For every a € M introduce a fresh propositional
variable p,. The modal (resp., tense) stable canonical rule u(9. D) is defined as the
rule I'/A, where

[={po< L}U{p < T}U
{Part & PaAppiabe MYyU{p_, < —p,:a € M}U
{roe = 0Opa:a e M} U ({®p, = pea :a € M}U)

U {pos < Vp,:a € DY},
Veop(9H)

A={p,:ae€A\1}.

The parenthetical ({#p, — pes: a € M }U), recall, indicates that the formulae
®p. — peq are to be added to T only when 90 is a tense algebra.’

We will use the notation &(2, D) to refer to a stable canonical rule without
specifying whether it is modal, tense, si, or bsi.

ReEMARK 4.3. To keep the article relatively short, we decided not to include stable
canonical rules for msi rule systems. We can indicate here two ways these might be
developed. One straightforward approach is to simply combine modal and si stable
canonical rules, requiring partial preservation of X. This approach is developed in
[32]. Another approach, pursued in [15], is to introduce rules which code up a more
general notion of filtration. In the msi setting, this notion of filtration is motivated by
the fact that any finite distributive lattice admits a unique expansion to a KM-algebra.
In the modal setting, it is obtained by lifting the requirement that (0 be preserved
in one direction from the definition of standard filtration. The main reason to work

2Had we taken M instead of 4 as primitive, we could have given a less disjunctive definition of a tense
stable canonical rule. However, the present definition affords a simpler method for transforming tense
stable canonical rules based on S4-algebras into corresponding bsi stable canonical rules.
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18 NICK BEZHANISHVILI AND ANTONIO MARIA CLEANI

with this more general notion of filtration is that KM and GL admit filtration in this
more general sense, but not in the standard sense.

Either version of stable canonical rules for msi rule systems can be used to
generalize our proof of the Dummett-Lemmon conjecture, to be presented in
Section 6, to the pair of signatures 3. Liao [32] was able to use our technique
to prove a Dummett-Lemmon conjecture for rule systems which are quite similar
to what we call msi rule systems, but where the intuitionistic modality satisfies at
least the axioms of S4. It does not seem, however, that anything of substance rests
on the assumption of the T axiom.

If $, & are (bi-)Heyting algebras, we call a map / : § — & stable when h is a
bounded lattice homomorphism. Given O € {—,+} and DY C H x H, we say
that 4 satisfies the O-bounded domain condition® (BDC®) for D% if

h(a¥b) = h(a)Vh(b)

for every (a.b) € D¥. It is not difficult to check that every stable map 4 : $ — &
satisfies h(a — b) < h(a) — h(b) for every (a.b) € H. If § € biHA, we also have
h(a < b) > h(a) < h(b) for every (a.b) € H.

Similarly, if 9, M are modal (resp., tense) algebras, we call a map /# : M — N
stable when h is a Boolean algebra homomorphism which, moreover, satisfies

h(Oa) <Oh(a)  (#h(a) < h(4a))

for each a € A. Given © € {(1, 4} and DY C A, we say that h satisfies the ©-
bounded domain condition (BDC?) for DY if

h(Qa) = Qhla)

for each a € D. In both the si/bsi and the modal/tense case, we say that / satisfies
the BDC for D if / satisfies the BDCY for D for each DY in D.

The next result gives a uniform description of the refutation conditions of stable
canonical rules on algebras in both the signatures under discussion.

ProposiTiON 4.4 [Cf. 3, Lemma 4.3], [Cf. 5, Theorem 5.4]. For every stable
canonical rule E(A, D) and every algebra B having the same signature as A, we
have that B = E(A, D) iff there is a stable embedding h : B — U satisfying the BDC
for D.

ProOF SKETCH. We use the identity V (p,) = h(a) to define either the desired
stable embedding satisfying the BDC or the desired valuation. -

Stable canonical rules also have uniform refutation conditions on spaces and
Kripke frames. If X,%2) are spaces, a map f : X — 2) is called stable when it is
continuous and relation preserving, in the sense that x < y implies f(x) < f(y)

3The BDC® was originally called closed domain condition in, e.g., [3, 5], following Zakharyaschev’s
terminology for a similar notion in the theory of his canonical formulae. The name stable domain
condition was later used in [4] to stress the difference with Zakharyaschev’s notion. However, this choice
may create confusion between the BDC and the property of being a stable map. The terminology used
in this article is meant to avoid this, while concurrently highlighting the similarity between the geometric
version of the BDC, to be presented in a few paragraphs, and the definition of a bounded morphism.
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foreach x, y € X. If X, %) are Kripke frames rather than spaces, wecall f : X — Q)
stable when it is relation preserving. In either case, given 0 C Y, we say that f satisfies
the upward bounded domain condition (BDC{) for d when, for all x € X, we have

ftf(x)No# @ = ffx]Nd # 2.

This is to say: if there is y € 0 such that f(x) < y, then there must be some z € X
with x < z and f(z) € 0. Analogously, we say that f satisfies the downward bounded
domain condition (BDCJ}) for  when for all x € X, we have

Vf(x)No#A o= flIx]N0 # 2.

Thus the BDC{ and BDCJ} are generalizations of the defining order-theoretic
conditions of a bounded morphism.

Given D* C p(Y) for x € {1}, ||}, we say that f satisfies the BDC* for ©* when
it satisfies the BDC* for each 0 € ©*. Given a tuple © with either one or two
coordinates, we say that f satisfies the BDC for © when f satisfies the BDC{} for
the first coordinate of ©® and the BDCJ} for the second coordinate of @, if it exists.
Thus the BDC{} is associated with the connectives [] and —, whereas the BDCJ is
associated with the connectives ¢ and +.

Let &(2A, D) be a stable canonical rule. We define a mapping D +— ®% by putting
D9 :={d] :d € D}, with

D?Z,m = f(a) \ p(b) Ve {—=. <}
o == pla),
08 == pla).

where f is the Stone map. We then let © := (’D@)QEOP(Q{).

PROPOSITION 4.5.  For every stable canonical rule (U, D) and for every space (resp.,
Kripke frame) X, we have X ¥ (U, D) iff there is a stable surjection f : X — 2.
satisfying the BDC for ®.

Proor. The case for modal spaces is proved in [5, Theorem 3.6]; essentially the
same argument can be used for the remaining cases involving spaces. In each of these
cases, one appeals to the appropriate duality result from Theorem 2.8. To establish
the cases involving Kripke frames, one can adapt the same argument, but replacing
appeals to duality results from Theorem 2.8 with appeals to duality results from
Theorem 2.9. -

CONVENTION 4.6. In view of Proposition 4.5, we adopt the convention of writing a
stable canonical rule E(2A, D) as &(2A,, D) when working with spaces.

Stable maps and the BDC are closely related to the filtration construction. We
recall its definition in an algebraic setting, and state the fundamental theorem used
in most of its applications.

DEerINITION 4.7. Let 2 be an algebra, ¥ a valuation on 2, and © a finite,
subformula-closed set of formulae. A (finite) model (B, V') is called a (finite)
Siltration of (., V') through © if the following conditions hold:
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(1) Heyting and bi-Heyting case:
(a) The bounded lattice reduct of 9B is isomorphic to the bounded sublattice
of 2 generated by V' [®];
(b) V(p) = V'(p) for every propositional variable p € ©;
(c) The inclusion C: B — 2 is a stable embedding satisfying the BDC® for
the set

{(V' (). V'(y)) : Oy € O},

for each © € op().
(2) Modal and tense case:
(a) The Boolean algebra reduct of B is isomorphic to the Boolean subalgebra
of 2l generated by V[®];
(b) V(p) = V'(p) for every propositional variable p € ©:;
(c) The inclusion C: B — 2 is a stable embedding satisfying the BDC" for
the set

{Vip): Qp € ©},
for each O € op(2A).

THEOREM 4.8 (Filtration theorem). Let 2 be an algebra, V a valuation on A, and ®
a finite, subformula closed set of formulae. If (B, V') is a filtration of (U, V') through
Q, then for every ¢ € O, we have

Vip)=V'(p).
Consequently, for every rule T' /A such that T, A C O, we have
AVET/A < B, V' ET/A

The next result establishes that every rule is equivalent to finitely many stable
canonical rules. The restriction of this lemma to si and modal rules was proved in
[6, Proposition 3.3], [5, Theorem 5.5].

Lemma 4.9 [Cf. 6, Proposition 3.3], [Cf. 5, Theorem 5.5]. The following conditions
hold:

(1) Forevery (b)sirule T /A, there is a finite set = of (b)si stable canonical rules such
that for any (bi-) Heyting algebra & we have & ¥ T /A iff there is n($, D) € 2
such that R¥ (9, D).

(2) For every modal rule T'/A, there is a finite set E of modal stable canonical rules
of the form u(9M. D) with M a Ké-algebra, such that for any K4 algebra 91, we
have that W ¥ T /A iff there is u(9N, D) € Z such that ¥ u(9N, D).

(3) For every modal (resp., tense) rule T /A, there is a finite set E of modal (resp..
tense) stable canonical rules of the form u(ON. D) with M an S4(.t)-algebra,
such that for any S4(.t) algebra N, we have that N ¥ T /A iff there is u (9. D) €
= such that MU w(OM, D).

PrOOE. We spell out the proofs of the si and bsi cases to illustrate the exact
role of filtration in the machinery of stable canonical rules. When I'/A is a rule,
write Sfor(I'/A) for the set of all formulas that are subformulas of some y € T or
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some J € A. Since bounded distributive lattices are locally finite, there are, up to
isomorphism, only finitely many pairs (§, D) such that:

e § is a (bi-)Heyting algebra which is at most k-generated as a bounded

distributive lattice, where k = |Sfor(T'/A)|;

oD = (DO)@EOP%) with DY = {(V (@). V(y)) : ¢Qy € Sfor(T'/A)}. where V

is a valuation on $) refuting I'/A.
Let Z be the finite set of all rules #(§), D) for all such pairs (§, D), identified up to
isomorphism.

(=) Assume £ ¥ I'/A and take a valuation ¥ on 8 refuting I'/A. Consider the
bounded distributive sublattice J of & generated by V[Sfor(I'/A)]. Since bounded
distributive lattices are locally finite, J is finite. Moreover J may be viewed as a
Heyting or bi-Heyting algebra by defining one or both of the following operations
onJ:

awb::\/{ceJ:a/\bgc}
awb::/\{ceJ:aSb\/c}.

Define a valuation V'’ on J with V'(p) = V(p) if p € Sfor(T'/A), V'(p) arbitrary
otherwise. Since J is a sublattice of K, the inclusion C is a stable embedding.

e Let ¢ — w € Sfor(T/A). Then V'(p) — V'(w) € J. Since C is a stable
embedding, we have V'(¢) ~ V'(y) < V'(p) = V/(w). Conversely, by the
definition of ~», we find V'(¢) ~ V'(w) A V() < V'(y). By the properties
of Heyting algebras, it follows that V' (p) ~ V'(y) < V'(¢) — V'(w). Thus,
Vi)~ V'(y) =V'(p) = V'(y)

e By analogous reasoning, whenever ¢ < w € Sfor(I'/A), we have that V' () «~
Vi) =V'(p) < V'(y).

We have thus shown that the model (J, V') is a filtration of the model (&, V') through
Sfor(I'/A), which implies J, V' ¥ T'/A.

(<) Assume that there is #($). D) € Z such that R ¥ 5#($. D). Let V be the
valuation associated with D in the sense spelled out above. Then $. V ¥ T'/A.
Moreover, ($. V) is a filtration of the model (&, V). so by the filtration theorem, it
follows that &, V' £ T'/A. -

The proofs of the modal and tense cases of Lemma 4.9 are analogous, appealing
to the local finiteness of Boolean algebras instead of the local finiteness of bounded
distributive lattices. While filtrations of models based on modal or tense algebras
are not unique, they can always be constructed. Furthermore, a model based on
a K4-algebra always has a filtration which is itself based on a K4-algebra, and a
model based on an S4(.t)-algebra always has a filtration which is itself based on an
S4(.t)-algebra. These observations allow one to prove the second and third parts of
Lemma 4.9 by essentially the same argument.

As a consequence of Lemma 4.9, we obtain uniform axiomatizations of si, bsi,
modal, and tense rule systems in terms of stable canonical rules.

THEOREM 4.10 [Cf. 6, Proposition 3.4]. The following conditions hold:

(1) Any si, bsi, modal, and tense rule system is axiomatizable, over the least rule
system of the same kind, by some set of stable canonical rules;
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(2) Every modal rule system above K4 is axiomatizable, over K4, by a set of stable
canonical rules based on K4-algebras;

(3) Every modal (resp., tense) rule system above S4(.t) is axiomatizable, over
S4(.t), by a set of stable canonical rules based on S4(.t)-algebras.

We close this section with a brief comparison of our stable canonical rules with
Jetabek-style canonical rules. Our bsi and tense stable canonical rules generalize
si and modal stable canonical rules in a way that mirrors the intimate connection
existing between Heyting and bi-Heyting algebras on the one hand, and modal and
tense algebras on the other. Just like a bi-Heyting algebra is nothing but a Heyting
algebra whose order-dual is also a Heyting algebra, every bsi stable canonical ruleis a
sort of “independent fusion” between two si stable canonical rules, whose associated
Heyting algebras are order-dual to one another. Similarly for the tense case.

Jetabek-style si and modal canonical rules (like Zakharyaschev-style si and modal
canonical formulae), by contrast, do not generalize as smoothly to the bsi and tense
case. Algebraically, a Jefabek-style si canonical rule may be defined as follows (Cf.
[2. 6]).

DEFINITION 4.11. Let $ € HA be finite and let D C H. The si canonical rule of
(9. D) is the rule {(H, D) = T'/A, where

I:={py+ L}U
{Pars & PaANppiab € HYU{p,p < pa — pp:a,b e HU
{pa\/b < Da \/Pb : (Cl,b) S D}x

A:={p, < pp:a.b e Hwitha # b}.

Generalizing the proof of [6, Corollary 5.10], one can show that every si rule is
equivalent to finitely many si canonical rules. The key ingredient in this proof is a
characterization of the refutation conditions for si canonical rules: { ($), D) is refuted
by a Heyting algebra £ iff there is a (A, —,0)-embedding 4 : $ — & preserving V
on elements from D. Because (A, —, 0)-algebras are locally finite, a result known
as Diego’s theorem, one can then reason as in the proof of Lemma 4.9 to reach the
desired result.

It should be clear that if one defined the bsi canonical rule {z($, D, D’) by
combining the rules {($, D) and {($). D’) the same way bsi stable canonical rule
combine si stable canonical rules, then {3 ($3. D, D’) would be refuted by a bi-Heyting
algebra R iff there is a bi-Heyting algebra embedding /4 : $) — K. Since the variety
of bi-Heyting algebras is not locally finite, this refutation condition is clearly too
strong to deliver a result to the effect that every bsi rule is equivalent to a set of bsi
canonical rules. Without such a result, in turn, there is little hope of axiomatizing
every rule system over biIPC by means of bsi canonical rules.

Similar remarks hold in the tense case. Bezhanishvili et al. [8] show that the proof
of the fact that every modal formula is equivalent, over S4, to finitely many modal
Zakharyaschev-style canonical formulae of S4-algebras rests on an application of
Diego’s theorem [cf. 8, Main Lemma]. This has to do with how selective filtrations
of S4-algebras are constructed. Given an S4-algebra B refuting a rule I'/A, a key
step in constructing a finite selective filtration of 9 through Sfor(I'/A) consists in
generating a (A, —, 0)-subalgebra of p2 from a finite subset of O(4). This structure
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is guaranteed to be finite by Diego’s theorem. The most obvious way of generalizing
this construction to tense algebras would require replacing this step with one of the
following:

(1) Generate both a (A, —, 0)-subalgebra of p2A and a (V, . 1)-subalgebra of

p2 from a finite subset of O(A4):;

(2) Generate a bi-Heyting subalgebra of p2l from a finite subset of O(A4).
On option 1, Diego’s theorem and its order dual would guarantee that both the
(A, —,0)-subalgebra of p2( and the (V, <, 1)-subalgebra of p2 are finite. However,
it is not clear how one could then combine the two subalgebras into a bi-Heyting
algebra, which is required to obtain a selective filtration based on a tense algebra.
On option 2, on the other hand, we would indeed obtain a bi-Heyting subalgebra of
p2, but not necessarily a finite one, since bi-Heyting algebras are not locally finite.

We realize that the argument sketches just presented are far from conclusive, so
we do not rule out the possibility that Jerabek-style bsi and tense canonical rules
could somehow be developed in such a way as to be a suitable tools for developing
the theory of tense companions of bsi-rule systems. What such rules would look
like, and in what sense they would constitute genuine generalizations of Jefabek’s
canonical rules and Zakharyaschev’s canonical formulae are interesting questions,
but we cannot hope to adequately answer them here. The point we wish to stress
is that answering this sort of questions is a non-trivial matter, whereas generalizing
stable canonical rules to the bsi and tense setting is a completely routine task. In our
approach exactly the same methods used in the si and modal case work equally well
in the bsi and tense case.

§5. Blok-Esakia theorems and the Kuznetsov—Muravitsky isomorphism. We now
set out to develop the theory of modal and tense companions of si and bsi rule
systems using the machinery of stable canonical rules just presented. For each of the
three pairs of signatures 1, 2, and 3 under discussion, we prove that the companions
of a rule system form an interval, and establish a Blok-Esakia like result. The
original Blok—Esakia theorem and the Kuznetsov—Muravitsky isomorphism follow
as corollaries.

5.1. Novel proofs. The main problem one needs to deal with in order to prove the
results just announced is showing that each syntactic mapping o, is surjective on
the codomain C; (recall we are using the notation introduced in Convention 3.1.)
The novelty of our approach lies in the use of stable canonical rules to establish that
result.

Our strategy is centered on the following lemma.

LemMA 5.1 (Main Lemma). Given s € {1,2,3}, let M € C{. Then for every rule
I'/A in the classical signature of s, we have that M |= T'/A iff a,ps9 = T/A.

In each of the three cases, the (=) direction is immediate from Proposition 3.3.
We give full proofs of the other direction in the cases s = 2 and s = 3. A proof of
the case s = 1 can be derived from the proof of the case s = 2 by making minimal
adaptations, which we shall sketch.

PrOOF OF CASE s = 2. We prove the dual statement that 91, ¥ I'/A implies
apM. ET/A. Let X := 9M,. In view of Theorem 4.10, it is enough to consider
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the case T'/A = u(F, D), for § the dual of a finite S4(.t)-algebra. So suppose X ¥
1(F. D). By Proposition 4.5, there is a stable map f : X — § satisfying the BDC for
D := (DT, D). We construct a stable map g : 6pX — § which satisfies the BDC
for ©.

Let C :={x}.....x,} C F be some cluster and let Z¢ := f~'(C). Since f is
relation-preserving, Z¢ does not cut clusters. Therefore, by Proposition 3.2, o[Z¢]
is clopen, and so is f!(x;) for each x; € C. Now for each x; € C let

M; == maxg(f ' (x:)),
N; == ming (£~ (x:)).

By Proposition 2.11 and Corollary 2.13, both M;, N; are closed, and moreover
neither cuts any cluster. Consequently, by Proposition 3.2 again, both o[ M;], o[ N;]
are closed as well.

For each x; € C let O; := M; U N;. Clearly, O; N O; = & for each distinct i, j <
n, and since no O; cuts any cluster this implies ¢[O;] N p[O,] for each distinct
i, j < n. We shall now find disjoint clopens Uy, ..., U, € Clop(apX) with o[O;] C U;
and {J; U; = o[Z¢]. Let k < n and assume that U; has been defined for all i < k. If
k =n.put U, = o[Zc]\ (U<, U:) and we are done. Otherwise set V. := o[Z¢] \
(Ui <k Ui) and observe that it contains each p[O;] for k < i < n. By the separation
properties of Stone spaces, for each i with k < i < n. there is some Uy, € Clop(apX)
with o[Ox] C Uy, and o[M;] N Uy, = @. Then set Uy := (;_;<, Ux; N V.

We can now define a map

gc:o0[Zc]l—C
z—=Xx <= z e U,.

Clearly, g¢ is relation preserving. Finally, define g : pX — § by setting

(0(2)) = f(2) if (z) does not belong to any proper cluster,
e " )gclo(z)) if f(z) € C for some proper cluster C C F.

Now, g is evidently relation preserving. Moreover, it is continuous because both f
and each g¢ are. Thus, g is a stable map.

We must now show that g satisfies the BDC for ©. Suppose Rg(o(x))yand y €
for some 0 € DT, By construction, f(x) belongs to the same cluster as g(o(x)).
so also Rf(x)y. Since f satisfies the BDCT for ©", there must be some z € X
such that Rxz and f(z) € 0. Since f~'(f(z)) € Clop(X). by Proposition 2.11 and
Corollary 2.13, thereis z/ € max(f'(f(z))) with Rzz’. Thenalso Rxz’ and f (z') €
9. But from z’ € max(f~'(f(z))). it follows that f(z’) = g(o(z’)) by construction,
so we have g(p(z')) € 0. As clearly Ro(x)o(z’), we have shown that g satisfies the
BDCT for ®T. Analogous reasoning establishes that g satisfies the BDCY for ©V.
By Proposition 4.5, this implies apX £ u(F. D). -

ProoF OF CASE s = 1. To obtain a proof of this case, one runs essentially the
same argument, but ignoring the sets /V; in the construction of the map g. That is,
one partitions each g[Z] into disjoint clopens, in such a way that each closed set
of the form p[M;], instead of o[ O;], is contained in one of such clopens. The rest of
the construction is carried out the same way. o
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PrROOF OF CASE s = 3. As before, we prove the dual statement 9, |~ I'/A implies
apM. [~ T'/A. Let X := 9. Using Theorem 4.10, wlog, we restrict attention to the
case I'/A = u(F. D), for F the dual of a finite K4-algebra. By Proposition 4.5, we
take a stable map f : X — § satisfying the BDC for .

Given a cluster C := {xy.....x,} C F we let Z¢ := f~}(C). Then Z¢ does not
cut clusters, so by Proposition 3.2, o[ Z¢]is clopen, and sois ' (x;) foreach x; € C.
For each x; € C, we let

M; = maxg(f ' (x;)).

By Proposition 2.11 and Corollary 2.17, each M; is clopen and does not cut any
cluster. Consequently, by Proposition 3.2, each o[ M;] is clopen.

Note M; N M; = @ holds for each distinct i, j < n, and since no M; cuts clusters
we have o[M;] N g[M;] = @ for each distinct i, j < n. Constructing the desired
partition of g[Z¢] into clopen sets is now simpler. First, for k < n let Uy = o[ M].
Then let U, := o[Zc]\ (UyU--U U,). Then Uy, ..., U, are clopen sets which
partition g[Z¢], such that o[M}] C Uy foreach 1 < k < n.

We define our map g : o3p3X — § as before. First, we let

gc:o0[Zc]—C
z— X <= z€eU.

Clearly, g¢ is relation preserving. Finally, define g : g3p3X — § by setting

f(z) if f (z) belongs to no proper cluster,

gle(2)) = gclo(z)) if f(z) € C for some proper cluster C C F.

It is clear that g is a stable map. We show that it satisfies the BDC for .

Suppose Rg(o(x))y and y € 0 for some 0 € D. If 1/ (x) belongs to no proper
cluster, then g(o(x)) = f(x).so Rf (x)z.If (x) belongs to a proper cluster, then
g(o(x)) belongs to the same proper cluster, so again R f (x)z. Either way, R f (x)z.
Since f satisfies the BDC for 0, there must be some x € Z such that Rxz and
f(z) €d. Now. f1(f(2)) € Clop(X%). so by Proposition 2.11 and Corollary 2.17,
one of the following conditions hold:

(1) z e max(f1(f(2))):
(2) Thereis z/ € max(f~'(f(z))) with Rzz'.
Either way, there is z' € max(f~'(f(z))) such that Rxz’. But by construction, since

z' € max(f'(f(2))). we have f(z') = g(o(z’)). Consequently, g(o(z')) € 0. As
clearly Ro(x)o(z’), we have shown that g satisfies the BDC for D. -

Our main lemma has the following key consequence.

THEOREM 5.2 (Skeletal generation theorem). Let s € {1,2,3}. Every universal
classU € C is generated by its skeletal elements, i.e., U = a5p;U.

PRrOOF. Since gpMtis a subalgebra of 90t for each M € U (Proposition 3.3), surely
apld C U. Conversely, suppose U ¥ T'/A. Then there is I € U with M ¥ T'/A. By
Lemma 5.1, it follows that gp90t ¥ T'/A. This shows ThR(apid) C ThR(U), which is
equivalent to U C opU. Hence, indeed. U = apld. o

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.137, on 21 Nov 2025 at 18:46:29, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2025.10126


https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.10126
https://www.cambridge.org/core

26 NICK BEZHANISHVILI AND ANTONIO MARIA CLEANI

ReEmARK 5.3. The restriction of Theorem 5.2 to varieties of Grz-algebras plays
an important role in the algebraic proof of the Blok—Esakia theorem for si and
modal logics given by Blok [10]. The generalization to universal classes of modal
algebras is explicitly stated and proved in [39, Lemma 4.4] using a generalization of
Blok’s approach, although it also follows from [27, Theorem 5.5]. Blok establishes
the restricted version of Theorem 5.2 as a consequence of what is now known as
the Blok lemma. The proof of the Blok lemma is notoriously involved. By contrast,
our techniques afford a direct and, we believe, semantically transparent proof of
Theorem 5.2.

5.2. Main results. The main results of this section follow from Theorem 5.2 by
routine arguments; we review them here for completeness. We begin by establishing
that the syntactic mappings 7. p, ¢ commute with Alg(-).

LemMMmA 5.4. Given s € {1,2,3}, let L € Ext(I,) and let M € NExt(C,). The
following conditions hold:

Alg(z,L) = t,Alg(L), (16)
Alg(o,L) = a,Alg(L), (17)
Alg(psM) = psAlg). (18)

Proor. (16) For every 9 € Cy, we have M € Alg(zL) iff M = T(I'/A) for all
['/A € Liff poN = T/Afor all T/A € Liff p9nt € Alg(L) iff 9 € tAlg(L).

(17) In view of Theorem 5.2, it suffices to show that Alg(cL) and oAlg(L) have
the same skeletal elements. So let M = gpMt € oAlg(L). Since oAlg(L) is generated
by {66 : $ € Alg(L)} as a universal class, by Proposition 3.3 and Lemma 3.4, we
have 9t = T(T'/A) for every I'/A € L. But then 9 € Alg(oL). Conversely, assume
M = apM € Alg(oL). Then M = T(I'/A) for every I'/A € L. By Lemma 3.4, this
is equivalent to p2 € Alg(L), therefore gpIt = M € gAlg(L).

(18) Let $ € pAlg(M). Then $ = p9N for some Nt € Alg(M). It follows that for
every situle T(I'/A) € M, we have M |= T(I'/A). and so by Lemma 3.4, in turn §) |=
I'/A. Therefore indeed $ € Alg(pM). Conversely, for all rules T'/A, if pAlg(M) = T'/A.,
then by Lemma 3.4, Alg(M) = T(I'/A). hence T'/A € pM. Thus ThR(pAlg(M)) C pM,
and so Alg(pM) C pAlg(M). -

The result just proved leads straightforwardly to the following, purely semantic
characterization of companions.

LEMMA 5.5. Givens € {1,2,3}, let L € Ext(I,) and let M € NExt(Cy). ThenMis a
companion of L iff Alg(L) = psAlg(M).

PROOF. (=) Assume Mis a companion of L. Then we have L = pM. By Lemma 5.4,
Alg(L) = pAlg(M).

(«) Assume that Alg(L) = pAlg(M). Therefore, by Proposition 3.3, § €
Alg(L) implies g$) € Alg(M). This implies that for every rule T'/A, T/A € L iff
T(T'/A) e M. -

We can now prove the main results of this section. The first result asserts that the
companions of a rule system form an interval.
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THEOREM 5.6 (Interval theorem). Given s € {1.2.3}, let L € Ext(I;). The
companions of L form an interval in NExt(Cy ), where the least and greatest companions
are given by t,L and o L.

ProoF. In view of Lemma 5.4, it suffices to prove that M is a companion of L iff
agAlg(L) C Alg(M) C zAlg(L).

(=) Assume Mis a modal companion of L. Then by Lemma 5.5, we have Alg(L) =
pAlg(M), therefore it is clear that Alg(M) C tAlg(L). To see that cAlg(L) C Alg(M) it
suffices to show that every skeletal algebra in o Alg(L) belongs to Alg(M). So let 9t =
apIM € oAlg(L). Then pIM € Alg(L) by Lemma 3.4, so there must be 91 € Alg(M)
such that p9t = p2t. But this implies apt = gp = M, and as universal classes
are closed under subalgebras, by Proposition 3.3, we conclude 9t € Alg(M).

(<) Assume cAlg(L) C Alg(M) C 7Alg(L). It is an immediate consequence of
Proposition 3.3 that poAlg(L) = Alg(L), which gives us pAlg(M) D Alg(L). But
by construction pAlg(M) = prAlg(L), hence pAlg(M) C Alg(L). Therefore, indeed,
pAlg(M) = Alg(L), so by Lemma 5.5, we conclude that M is a modal compan-
ion of L. -

The second result is an analogue of the Blok—Esakia theorem. We use the qualifier
“general” to indicate that the theorem applies uniformly to three different pairs of
signatures.

THEOREM 5.7 (General Blok-Esakia theorem). Lets € {1.,2,3}. The mappings o
and the restriction of p to NExt(C!) are mutually inverse complete lattice isomorphisms
between Ext(Is) and NExt(C]).

PrOOF. It is enough to show that the algebraic class operators ¢ : Uni(Z;) —
Uni(C;") and p : Uni(C;") — Uni(Z;) are complete lattice isomorphisms and mutual
inverses. Both maps are evidently order preserving, and preservation of infinite
joins is an easy consequence of Lemma 3.4. Let &/ € Uni(C;"). Then U = apld by
Theorem 5.2, so ¢ is surjective and a left inverse of p. Now let &/ € Uni(Z;). It is an
immediate consequence of Proposition 3.3 that pald/ = U. Hence p is surjective and
a left inverse of ¢. Thus ¢ and p are mutual inverses, and therefore must both be
bijections. -

We note that Theorem 5.6 remains true when restricted to lattices of logics only.
This result, in the case of pair of signatures 1, was established by Maksimova and
Rybakov [34] (see also [14, Section 9.6]). The same holds for Theorem 5.7. Thus we
obtain, as corollaries, the original Blok—Esakia theorem (case s = 1), Wolter’s [43]
generalization thereof to bsi and tense logics (case s = 2), as well as the original
Kuznetsov—Muravitsky isomorphism (case s = 3).

COROLLARY 5.8 (General Blok—Esakia theorem for logics). Lets € {1,2,3}. The
restrictions of the mappings a, : Ext(13) — NExt(C]) and p, : NExt(CT) — Ext(I;)
to the lattices of logics ExtL(Is) and NExtL(C!) are complete lattice isomorphisms
and mutual inverses.

PrOOF. By construction, ¢ and p preserve the property of being a logic, because
the Godel translation of an assumption free, single-conclusion rule is always an
assumption free, single-conclusion rule. Since we already know that the restrictions
of g, and p; to logics are mutual inverses, it suffices to show that g, commutes with
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meets and joins. This is obvious for joins, since the join of two logics is a logic.
For meets, it is enough to show that g, commutes with Taut: for each rule system
L € Ext(I), we have o, Taut(L) = Taut(o,L). For if this condition holds, then we

have:
05 (L @pxe(zy) L) = 05 (Taut(L @pyg(r,) L)) By Proposition 2.3
= Taut(as (L ®Ext(Is) L/))
= Taut(o,L ®@gxe(r,) 0sL') By Theorem 5.7
= 0L @px(1,) OsL- By Proposition 2.3

Note that the reasoning is analogous when we consider infinite meets.

The claim indeed holds. Since o is order-preserving and Taut(L) C L, we have
oy Taut(L) C o,L. Since Taut is also order preserving and the left-hand side is already
a logic, it follows that o, Taut(L) C Taut(a,L). Likewise, if M € NExt(I;). then
psTaut(M) C Taut(p,M). Thus,

Taut(o,L) = g, p, Taut(o,L)
C oy Taut(p,o,L)
= oy Taut(L),

as desired. =

§6. Dummett—Lemmon conjectures. In this last section, we apply stable canonical
rules to give an alternative proof of the Dummett—Lemmon conjecture for rule
systems. This result states that a (b)si rule system is Kripke complete iff its weakest
modal companion is. We recall that a rule system is called Kripke complete if it is of
the form L = {I'/A : K |= I'/A} for some class of Kripke frames IC. We also remind
the reader that we will not be discussing msi rule systems in this section.

We will need to introduce and study new operations on stable canonical rules. We
first define an operation taking a (b)si stable canonical rule to a modal (resp., tense)
stable canonical rule equivalent to the Gddel translation of the former.

DEFINITION 6.1. Let #($). D) be a (b)si stable canonical rule. The modal (resp..
tense) stable canonical rule u,($), D) is defined as the rule u(c$, D,), where D, :=

(D?)C?Eop(f]) and
DE:={-avb:(a.b)ec D} DY ={an-b:(a.b)e D"}

We call u.($), D) the modalization of (), D). Adopting our conventions for
notating stable canonical rules using spaces rather than algebras, given a (b)si stable
canonical rule (X, D). the rule u, (X, D) is just the rule u(cX. D).

We call a rule &(90, D) modalized when it is the modalization of some (b)si stable
canonical rule. Dually, we may characterize modalized rules as follows.

LEMMA 6.2. A modal (resp.. tense) u(F.®) stable canonical rule is modalized
precisely when it satisfies the following conditions:
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(1) § is partially ordered.:
(2) Everyd € ®U is of the form U NV, where U is an upset and V is a downset:
(3) If D¢ is defined, then so is every 0 € D¥.

Proor. If u(F.®) is modalized, then § is the dual of ¢§ for some finite
(bi-)Heyting algebra ). so it is partially ordered. Furthermore, every d € DY is of
the form —a V b for a.b € H, and so 0 is of the form — f(—a Vv b) = B(a)N — B(b).
But (a), B(b) are upsets, and the complement of an upset is a downset. By similar
reasoning, we may infer Item 3.

Conversely, assume u(F, D) satisfies the three conditions above. Then the dual
of § is clearly of the form ¢$) for some finite (bi-)Heyting algebra ). Given 0 =
UNV €D, by (bi-)Esakia duality, there must be a.b € H with U = (a) and
V = B(b). Butthen UNV = B(a)N - p(b) = B(—a V b), and by definition d =
—a V b. Likewise, if ©* is defined and 9 = U U V satisfies Ttem 3, we find that
d =a N-bforsomea,b e H. -

We now verify that modalization indeed coincides, up to equivalence over S4(.t),
with the Godel translation.

LemMA 6.3 (Rule translation lemma). Let O € Alg(S4(.t)). For any (b)si stable
canonical rule n($), D). we have

M E 1o(H.D) = M= T[H(H.D)).

PrOOF. Let X : =9, and § := $.. Then n($H.D) = #(F.D) and u,(H.D) =
u(0§.D).

(=) Suppose X £ T(7(F.D)). Then, by Lemma 3.4, pX [~ n(F.D). Conse-
quently, there is a stable map f : pX — § satisfying the BDC for ©. We construct a
stable map g : X — oF that also satisfies the BDC for ©. To this end, put

g(x) = f(o(x)).

Now, g is continuous because both f and p are. Moreover, both f and g are relation
preserving, whence g is as well. Thus g is a stable map. We check that it satisfies the
BDC for®.Letd € ©®" and x € X. Suppose there is y € 0 such that Rg(x)y. Since
f satisfies the BDCT for 0. there must be o(z) € pX such that o(x) < (o(z)) and
f(o(2)) = g(z) € d. Moreover, since g is relation reflecting, we have Rxz, showing
g satisfies the BDCT for ©T. Similarly, g satisfies the BCD' for ©¥. Consequently.
X u(0f.9).

(<) Suppose X £ u(6F, D). Then there is a stable map g : X — o satisfying
the BDC for ©. We construct a map f : pX — § satisfying the BDC for ©. To this
end, let

flo(x)) == g(x).

Note that f is well defined. For if x and y belong to the same cluster, we must have
both Rf (x)f(y) and Rf (y)f(»). But § lacks proper clusters, showing f(x) =
f(y). Moreover, f is relation preserving and continuous, hence a stable map. It is
relation preserving because g is relation reflecting and g is relation preserving. To
see that it is continuous, observe that g~!(U) never cuts clusters for any U C F,
then apply Proposition 3.2.
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We check that f satisfies the BDC for ©. Let 0 € ©" and o(x) € pX. Suppose
there is y € 0 such that R f (p(x))y. Since g satisfies the BDC™ for 9. there must be
z € X suchthat Rxz and g(z) = f(o(z)) € 0. Since p is relation preserving, po(x) <
0(y). showing f satisfies the BCD™ for ®T. Similarly, / satisfies the BCDV for ©*¥.
Consequently, pX [~ 7(F, D), which by Lemma 3.4 implies X £ T (7(3.D)). -

We now show that every rule u(F.®) where § is a Grz(.t)-space may be
equivalently rewritten as a finite conjunction of modalized stable canonical rules.
First, some preliminary definitions. Let X be a finite Grz-space. If U C X, let pas(U)
be the set of points that are passive in U. The chunks of a set U C X are defined
recursively as follows. We put ¢/ (U) := pas(U). Assuming c/; (U ) has been defined,
we put

chi1(U) == pas (U \ (chi(U) U -+ Uchi(U)))

whenever the right-hand side is non-empty: we leave ch; 1 (U) undefined otherwise.
Since X is finite, every U C X only has finitely many chunks: we let the chunk height
of U be the number of chunks it has. Moreover, observe that ch; (U) = pas(ch;(U)).
for each i less than or equal to the chunk height of U.

LEMMA 6.4. Let u(9M, D) be a stable canonical rule with M € Alg(Grz(.t)). Then
there is a finite set ® of modalized stable canonical rules, such that an S4(.t)-algebra
N refutes u(OM., D) iff it refutes some u(c$H. E) € @.

Proor. We prove the dual statement. To keep things simple, we only show the
case of modal spaces; the case of tense spaces is an adaptation of the same argument.

Let § be the dual of 9t. Observe that there are, up to isomorphism, only finitely
many pairs (&, €) satisfying the following conditions:

(1) & is a finite Grz-space whose cardinality is at most |F| - 2¥, where k is the
number of all chunks of any 0 € ©;

(2) € ={g'(ch;(d)) : 0 € ® and i at most the chunk height of 0}, where g : &
— § is a stable surjection satisfying the BDC for .

We let @ be the set of all rules u(&, &) for all such pairs (&, €).
Note that each rule u(®, ) is modalized. By definition, & is partially ordered.
Moreover. if g !(ch;(d)) € €, then

g (chi(0)) = g™ (chi(0)) N Yg ™ (chi(0)).

Indeed. if x € tg 1 (ch;(d)) N Ig ' (ch;(d)). then there are y.z € g7 '(ch;(d)) such
that Rzx and Rxy. Since g is stable, it follows that Rg(z)g(x) and Rg(x)g(y).
But since ch; (0) = pas(ch;(0)), we must have g(x) € ch;(?), else one could leave and
re-enter ¢h;(0). Thus, by Lemma 6.2, each u(®, €) is modalized.

(=) Let X be an S4-space and suppose X £ u(®, €) for some u(®, €) € ®. Then
there is a stable surjection f : X — & satisfying the BDC for €. Let g : & — § be
the stable surjection satisfying the BDC for © given by Item 2 from the definition of
®. By definition, € = {g"(ch;(0)) : 0 € D.i at most the chunk height ofo}.

Consider the map g o f : X — §. We claim that g o f is a stable surjection that
satisfies the BDC for ®. That g o f is surjective follows because both f, g are.
Likewise, g o f is stable because both f, g are. To check the BDC, take any x € X
and suppose 1g(f (x)) N0 # & for some ? € D. Since g satisfies the BDC for D,
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there must be some f(y) € & such that Rf (x) f(y) and g(f(y)) € 0. Let ch;(d)
be the unique chunk of ® such that g(f(y)) € ch;(d). Then f(y) € g '(ch;(d)).
By definition, g~!(ch; (d)) € €. Since f satisfies the BDC for &, there must be some
z € X such that Rxz and f(z) € g '(ch;(d)). In other words. g(f (z)) € ch;(d) C d.
This shows that, indeed, g o f satisfies the BDC for ©. We may then conclude
X B u(3.9).

(<) Let X be an S4-space. Assume X £ u(F, D). Then there is a stable surjection
f X — § that satisfies the BDC for ©. We define an equivalence relation on X as
follows. We put x ~ y when both

(i) f(x)=f(y). and
(ii) for every ch;(d) with d € D, we have

txn M ehi(0) # @ <= fryn f T (chid) # 2.

In other words, x ~ y holds when x and y have the same image under £, and “see”
the f-preimages of exactly the same chunks of domains from ©. We write [x] for the
equivalence class of x under ~. Next, we define a relation on equivalence classes of
~. We put R[x][y] when both

(iii) Rf (x)f(y). and
(iv) for every ch;(d) with 0 € D, we have

N (ehi(@) # @ = fxn £ (chi(0) # 2.

It should be clear that R is well defined. We let & denote the modal space that results
from equipping the quotient of X under ~ with R.

Observe that, by definition, ~ refines the partition whose cells are points with the
same f-images. The cardinality of that partition is clearly | F|. But ~ splits each cell
of this partition into at most 2X sub-cells, where k is the total number of chunks of
any 9 € ©. Consequently, the cardinality of & is at most | F| - 2, as required by the
definition of ®.

Furthermore, we claim that & is a Grz-space. Since & is finite, we need only
check that its relation R is a partial order. R is clearly reflexive and transitive.
For antisymmetry, assume R[x][y] and R[y][x]. By (6). we have Rf (x)f(y) and
Rf(y)f(x). which implies f(x) = f(y) because F is partially ordered. Moreover,
by (6). we have that fty N £~ (ch; (2)) # @ holdsexactly when yx N £ (ch;(0)) # @
does, for each ch;(0) with € ©. But then [x].[y] meet conditions (i) and (ii),
showing [x] = [y].

Let us define a map g : & — § by putting g[x] = f(x). Then g is a stable
surjection satisfying the BDC for ®. Indeed, g is surjective because f and the
quotient map both are. Moreover, the way we defined the relation of ) immediately
implies that g is relation preserving, and continuity follows from the finiteness of &.
For the BDC, suppose ftg[x] N0 # @ for some d € D. Then 1} f (x) N0 # &. Since
f satisfies the BDC for ®, there must be y € X with Rxy and f(y) = g[y] € 0.
Since Rxy implies R[x][y]. this shows that g satisfies the BDC for .

Via g, we may then define, in accordance with the definition of @,

¢ = {g ' (ch;(d)) : 0 € D.i at most the chunk height of d}.
It follows that u(®, &) € @.
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We show that X [~ u(&, &), by showing that the quotient map x — [x]is a stable
surjection satisfying the BDC for €. The quotient map is clearly relation preserving
and surjective. Moreover, it is continuous, because each equivalence class under ~ is
definable as a finite intersection of clopens. Thus, it is a stable surjection. Let us check
the BDC. Let x € X and g '(ch; (0)) € &, and suppose t[x] N g ' (ch;(d)) # @. This
means that there is [y] € g ' (ch; () such that R[x][y]. By the definition of g. this
is to say y € f1(ch;(d)). A fortiori, y N f1(ch;(d)) # @. By condition (iv) in
the definition of R, we may then infer that {x N f~'(ch;(9)) # @. In other words,
there must be z € X with Rxz and f(z) € ch; (). But Rxz implies R[x][z]. and
f(z) € ch;i(d) is equivalent to [z] € g ! (ch;(D)). as desired. -

REMARK 6.5. It is a straightforward consequence of the Blok—Esakia theorem
and Lemma 6.3 that every modal (resp., tense) rule is equivalent over Grz(.t) to
a set of modalized stable canonical rules. Indeed, given a modal rule T'/A, the
modal rule system Grz(.t) @& I'/A must be of the form oL, for some (b)si rule
system L. We know that L. must be axiomatizable, over (bi)IPC, by a set of (b)si
stable canonical rules ¥. But then oL = Grz(.t) @ {u.(H. D) : n($H, D) € ¥} by
Lemma 6.3, which is to say that I'/A is equivalent, over Grz(.t), to {,uo(j’J,D) :
n($9.D) e W¥}. Furthermore, one direction of this equivalence remains true over
S4(.t). Indeed, p(s4(.t) ® T'/A) = p(Grz(.t) ® T/A), so by Lemma 6.3, we have
7p(34(t) ®T/A) = 84(.t) @ {uo(H. D) : n(H. D) € ¥} C s4(.t) ® I'/A. Thisisto
say I'/A implies each u,($. D) over S4(.t).

These observations do not imply Lemma 6.4: for all we have said, ¥ might be
infinite, and the above reasoning does not establish that both directions of the
equivalence go through when restricting attention to rules based on Grz(.t)-spaces.
That being said, the observations in this remark would be enough to carry out our
proof of the Dummett-Lemmon conjecture. This is the strategy followed by [32] in
a generalization of our technique. We chose to rely on Lemma 6.4 because we find
the construction it employs independently interesting. A similar construction can be
used to establish that Grz(.t) admits filtration, albeit in a somewhat non-standard
sense (see [15, Theorem 2.74]).

The last notion we need to introduce is that of a collapsed stable canonical rule.

DEFINITION 6.6. Let u(90t, D) be a stable canonical rule with 9t € Alg(S4(.t)).
The collapsed stable canonical rule is defined as the rule u(ap9M., apD), where apD :=

(GPD(?)@Gop(DJT) and
opD? = {/\{b cB(OM):a<b):ac D@}.

To understand the intuition behind collapsed rules, it is helpful to characterize
them dually. Observe that the mapping on 9t given by

a— /\{b € B(O(M)) :a < b}
is the algebraic dual of the cluster collapse map on 91, in the sense that

B (/\b € BOO):a <b}) = elBla)l
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Consequently, the collapsed rule wu(op9M.opD) is identical to the rule
w(opM..opD)., where opD is obtained by setting

opD? = {p[0]: 0 € D7} Ce{nd}
op® = (6pD) 5o -

In other words, u(apM.,ap®) is obtained from u(F, D) by collapsing all clusters
in § and in the sets of domains ® as well.

Collapsed rules obey the following refutation condition on spaces and Kripke
frames.

LemMAa 6.7 (Rule Collapse Lemma). For all X € Spa(S4(.t)) and any stable
canonical rule u(F.®) such that § € Spa(S4(.t)). if X ¥ u(F3. D). then opX ¥
u(apg.ap®). Moreover, the same holds if X is a reflexive and transitive Kripke frame.

PROOF. Assume X ¥ u(F.D). Then there is a stable map f : X — § that satisfies
the BDC for ©. Consider the map g : pX — gpF given by

glo(x)) = o(f(x)).

Now Ro(x)e(y) implies Rxy, and since f is relation preserving also Rf (x) f(y).
which implies Ro(f (x))o(f(y)). So g is relation preserving. Furthermore, again
because f is relation preserving we have that for any U C F. the set f~!(U) does
not cut clusters, whence g 1 (U) = o[f (o' (U))] is clopen for any U C o[F]. as
pX has the quotient topology. Thus, g is continuous.

Let us check that g satisfies the BDC for gp®. Let 9 € ®T and suppose that
g (o(x)) N o[d] # @. Then there is some o(y) € o[F] with Ro(f(x))e(y) and
o(y) € o[0]. By construction, wlog, we may assume that y € 9. As g is relation
reflecting it follows that R/ (x)y, and so we have that f[f(x)] N0 # @. Since f
satisfies the BDCT for © we conclude that f[ffx] N0 # @. So, there is some z € X
with Rxz and f(z) € 0. By definition, o(f(z)) € o[0]. Hence we have shown that
o[ fIx]] N o[?] # @. and so g indeed satisfies the BDCT for ®T. Similarly, g indeed
satisfies the BDCY for ®¥. The case where X is a Kripke frame is analogous. -

We are now ready to prove the Dummett—Lemmon conjecture for rule systems.

THEOREM 6.8 (Dummett-Lemmon conjecture for rule systems). A4 (b)si rule
system L is Kripke complete iff TL is.

PrOOF. (=) Let L be Kripke complete. Suppose that I'/A ¢ tL. Then there
is X € Spa(rL) such that X ¥ I'/A. By Lemma 4.9, we may assume, wlog, that
['/A = u(§.®) for § a preorder. By the Rule Collapse Lemma, it follows that
apX B 1w(opS.apD). Let @ be the set of modalized stable canonical rules whose
conjunction is equivalent, over S4(.t), to u(opF.op®D). given by Lemma 6.4. Then,
by Lemma 6.4, there is a modalized stable canonical rule u(c®, &) € ® such that
apX [~ u(o®, €). By the Rule Translation Lemma, it follows that pX [~ (&, €). By
Lemma 5.5 and the fact that X € Spa(zL) it follows that pX € Spa(L). Consequently,
n(®,€) ¢ L. Since L is Kripke complete, there must be a (b)si Kripke frame
2 such that 9 [~ 5(®, €). Therefore, by the Rule Translation Lemma again,
Q) W~ u(o®, €). Since ¢2) is an S4-Kripke frame, by Lemma 6.4 and Theorem 2.9,
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it follows that 69 [~ u(opF.op®). Thus, there is a stable map f : 62 — opF
satisfying the BDC for p®.

The goal now is to construct, from ¢%) and £, respectively, a Kripke frame 3 for 7L
and a stable map g : 3 — § satisfying the BDC for ®. We do so as follows. For each
x € o[F]., enumerate o' (x) := {x}...., X, }. Working in ¢9), for each y € f~!(x).
replace y with a k-cluster yi, ..., yi, . and extend the relation R clusterwise: Ry;z; iff
either y = z or Ryz. This constitutes our Kripke frame 3. Note that 3 |= 7L, because
p3 =29 (Lemma 5.5). For convenience, we identify p3 and ). For every x € o[F]
define a map g, : f1(x) = o '(x) by setting g.(y;) = x; (i < k). Finally, define
g:3— Fbyputtingg =, pr) &x-

The map g is evidently well defined, surjective, and relation preserving. We claim
that moreover, it satisfies the BDC for ®. To see this, let 9 € D" and suppose that
f1g(y:) N0 # @. Then there is x; € F with x; € 9 and Rg(y;)x;. By construction
also o(x;) € p[o] and Rf (o(y:))e(x;). Asf satisfies the BDCT for apDT it follows
that there is some z € Y such that Ro(y;)z and f(z) € o[0]. We may view z as o(z,,).
where o' (f(z)) has cardinality k > n. Surely Ry, z,. Furthermore, since f(z) €
o[0] there must be some m < k such that f(z),, = g(z,) € 0. By construction
Rz,z,, and so in turn Ry;z,,. This establishes that g indeed satisfies the BDC™ for
DT, Analogous reasoning shows that g satisfies the BDC for ®¥. Thus we have
shown 3 ¥ u(§.D). Since 3 E 7L, it follows that 7L is Kripke complete. =

§7. Conclusion and further work. This article presented a novel approach to the
study of modal companions and related notions based on stable canonical rules. We
hope to have shown that our method is effective and quite uniform. With only minor
adaptations to a fixed collection of techniques, we provided a unified treatment of
the theories of modal and tense companions, and of the Kuznetsov—Muravitsky
isomorphism. We offered alternative proofs of classic theorems and established new
results.

The techniques presented in this article are based on a blueprint that is easily
applicable across signatures. Stable canonical rules can be formulated for any class
of algebras which admits a locally finite expandable reduct in the sense of [26,
Chapter 5]. and once stable canonical rules are available, there is a clear recipe for
adapting our strategy to the case at hand. We propose that further research be done
in this direction, in particular addressing the following topics.

Firstly, there are several more general notions of an msi rule system than that we
have been working on, and one could try and study the theory of modal companions
of such msi rule systems using our method. Some work in this direction has already
been done. [32] uses our methods to study bimodal companions of rule systems over
IPC ® S4. But there are more general settings to consider. For example, one can try
replacing S4 with a weaker modal logic, or consider systems in a richer signature
with a primitive possibility operator. Wolter and Zakharyashchev [45, 46] give a
very general definition of an msi logic, subsuming the cases we just mentioned, and
study the theory of their polymodal companions. We conjecture that our techniques
can recover several of the main known results in this area and generalize them to
rule systems.

A second avenue for further research is the theory of modal companions of
extensions of the Heyting—Lewis logic, which expands superintuitionistic logic with
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a strict implication connective. Early work in this area began with de Groot et al.
[24]. and [32] more recently applied our methods to this setting. However, several
results remain open, including whether an analogue of the Blok—Esakia theorem
holds.
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