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Time-dependent fluid dynamics plays a crucial role in both natural phenomena and
industrial applications. Understanding the flow instabilities and transitions within these
dynamical systems is essential for predicting and controlling their unsteady behaviour.
A classic example of time-dependent flow is the Stokes layer. To study the transition
mechanism in this flow, we employ the finite-time Lyapunov exponent (FTLE) to
demonstrate that a linear energy amplification mechanism may explain the intracyclic
instability in the transitional Stokes layer, supported by favourable comparisons with
experimental measurements of axial turbulence intensity. This complements existing
theories applied to the Stokes layer in the literature, including the Floquet analysis and
the instantaneous/momentary analyses, which have struggled to capture this experimental
observation accurately. The FTLE analysis is closely related to the transient growth
analysis, formulated as an optimisation problem of the disturbance energy growth over
time. We found that the energy amplification weakens as the finite Stokes layer becomes
more confined, and the oscillating frequency has a non-monotonic effect on the maximum
transient growth. Based on these results, we recommend future experimental studies to
validate this linear mechanism.

Key words: boundary layer stability, shear-flow instability

1. Introduction
Time-dependent systems, including periodic, quasi-periodic and chaotic dynamical
systems, can exhibit complex behaviours. These behaviours are often more intricate
compared to those of autonomous systems. By studying time-dependent flows, engineers
and scientists can better predict and control the fluid dynamics in oscillatory flow systems,
leading to improved designs and more efficient processes across multiple disciplines,
including rheology characterisation, wave energy conversion, modelling of pulsatile blood

© The Author(s), 2025. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/
licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original
article is properly cited. 1013 A50-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
30

4 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://orcid.org/0000-0002-8354-7129
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2025.10304&domain=pdf
https://doi.org/10.1017/jfm.2025.10304


M. Zhang

flows and medical diagnostics. One of the fundamental time-dependent systems in fluid
mechanics is the Stokes layer, a thin fluid layer near a solid boundary subject to a periodic
motion, named after Sir George Gabriel Stokes. Analytical solutions exist for this flow,
and stability analyses of these solutions have been conducted extensively in the past due
to their theoretical significance. However, the physical mechanism underpinning the flow
transition in Stokes layers remains poorly understood (Davis 1976). This study aims to
address the longstanding discrepancy between theoretical predictions and experimental
observations in transitional Stokes layers by investigating their intracyclic instability.

As a time-periodic flow system, the linear dynamics of the Stokes layer has been
initially studied using the Floquet theory by von Kerczek & Davis (1974) and Hall (1978).
Leveraging more powerful computational resources, Blennerhassett & Bassom (2002,
2006) were the first to identify an unstable Floquet mode in semi-infinite Stokes layers,
determining the critical Reynolds number to be Rec ≈ 708, which is defined based on
the Stokes layer thickness. However, experimental studies on the transitional Stokes layers
report a broad range of transition Reynolds numbers, from 140 to 300 (Hino et al. 1976,
1983; Jensen, Sumer & Fredsøe 1989; Akhavan et al. 1991a), significantly lower than the
theoretical prediction. This signals a typical subcritical transition scenario.

While Floquet theory has provided insights into the long-term behaviour of disturbances
in time-periodic systems, this approach falls short in capturing the intracyclic instability of
the Stokes layer observed experimentally with significant modulation in each oscillation
cycle. This has led to the study of instability using instantaneous or momentary stability
theory (Cowley 1987; Luo & Wu 2010; Blondeaux & Vittori 2021), which assesses
the local stability by treating the base flow profile as frozen at each moment in time
and assuming that the disturbance is of high frequency. The theory typically predicts
disturbance decay at the start of the deceleration phase of the wall motion, which conflicts
with experimental observations. On the other hand, using the non-normal stability theory,
Biau (2016) found large transient energy growth due to the two-dimensional (2-D) Orr
mechanism in subcritical semi-infinite Stokes layers. Akhavan et al. (1991b) have already
observed the transient growth in their experiments, even though they connected their
observations to the quasi-steady theory. The non-normal property of the Stokes layers
is also evidenced in the exceptionally large flow response investigated by Blennerhassett
& Bassom (2002) and Thomas et al. (2010), and the influence of high-frequency noise on
the flow explored by Thomas et al. (2015).

Additional factors have been taken into account to further examine the transitional
process in the Stokes layer. For example, (weakly) nonlinear stability theories were
developed by Monkewitz & Bunster (1985) and Wu (1992) to study the nonlinear
interaction of the salient modes in the flow. Besides, the role of wall roughness in the
transition has been elucidated by Blondeaux & Vittori (1994), Vittori & Verzicco (1998)
and Luo & Wu (2010). However, compelling evidence for a meaningful comparison with
experimental results is still lacking. As a result, it remains unclear which theory is most
relevant to the flow dynamics in Stokes layers from a practical standpoint. A significant
research gap remains in our understanding of how the Stokes layer becomes unstable and
transitions to turbulence.

To further clarify the flow instability and transition mechanism in the Stokes layer, this
study revisits the linear dynamics of the periodic flow, aiming to determine whether the
theory aligns with experimental results. Our focus is on the transient intracyclic instability,
analysed through the finite-time Lyapunov exponent (FTLE) framework. Unlike the
instantaneous or momentary stability theory, the FTLE analysis inherently incorporates
the flow’s evolutionary history, without requiring a frozen base-flow profile. It also
connects the transient growth and the numerical abscissa at short times and the Floquet
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exponent at long times, reconciling and complementing the existing theories. The obtained
results in general align with prior experimental and numerical observations.

In the following, we will first formulate the linear equations and then introduce the
numerical method to study these equations in § 2. Section 3 will show the results. We
first illustrate the finite Stokes layer with h = 5 (where h is the non-dimensionalised
channel half-height, to be defined), corresponding to the case with the maximum transient
growth. Then the h = 10 case will be analysed and compared to the experimental data.
Stokes layers with small h will be also studied. This is followed by an investigation of the
effect of the oscillation frequency, the most practical parameter to vary in experiments,
on transient growth. Additionally, nonlinear simulations will be presented to examine
both the transient evolution and the saturated dynamics of the Stokes layer. Finally, we
conclude the paper with some discussions that underscore the favourable comparison to
experimental observations, establishing the non-normal mechanism as the key ingradient
for the intracyclic instability in the Stokes layer, and outlining future directions for flow
control and nonlinear analysis.

2. Problem formulation and numerical methods

2.1. Formulation
We consider a finite Stokes layer in a channel, subject to a harmonic motion of the two
oscillating walls in their own planes. The walls move at the same velocity U0 cos ωt̂ ,
where U0 is the maximum oscillating velocity, and ω denotes the oscillating frequency.
The hat indicates dimensional variables. The two walls are separated by 2d, with the
Cartesian coordinates located at the channel centre. For sufficiently distanced walls,
this flow mimics the dynamics of the semi-infinite Stokes layer. The streamwise, wall-
normal and transverse directions are denoted by (x̂, ŷ, ẑ), respectively, corresponding to
the velocity components û, v̂, ŵ in the three directions. The streamwise and transverse
wavenumbers are represented by α and γ , respectively.

Following Blennerhassett & Bassom (2002, 2006), we non-dimensionalise the flow
system using the Stokes layer thickness

√
2ν/ω, the maximum wall-oscillating velocity

U0, the time scale 1/ω, and the pressure scale ρU 2
0 , where ν is the kinematic viscosity

coefficient, and ρ is the density. The non-dimensional incompressible Navier–Stokes
equations read

∂ ũ
∂t

+ Re (ũ · ∇)ũ = −Re ∇ p̃ + 1
2
∇2ũ, ∇ · ũ = 0, (2.1)

where the Reynolds number is defined as

Re = U0√
2νω

= 1/ω√
2ν/ω/U0

. (2.2)

The second equation implies that Re can be thought of as the ratio between the time scale
for wall oscillation and the time scale for the ‘penetration’ effect of the wall oscillation. No-
slip boundary conditions for the velocity components are imposed on the channel walls.
Driven by the non-dimensionalised periodic wall motion cos t , the equations admit an
analytical solution of a time-periodic flow Ub in the x direction, i.e.

Ub = (Ub(y, t), 0, 0) = (U1(y) eit + U∗
1 (y) e−it , 0, 0), with U1(y) = cosh

√
2i y

2 cosh
√

2i h
,

(2.3)
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where h = d/
√

2ν/ω denotes the non-dimensional channel half-height, i is the imaginary
unit, and the superscript ∗ marks the complex conjugate.

The linear analysis is formulated based on the decomposition of the flow variables
into a sum of a base flow plus a fluctuation component, i.e. ũ(x, t) = Ub(x, t) +
u(x, t), p̃(x, t) = p(x, t), where there is no base pressure gradient. By substituting
these equations into (2.1), expanding all the terms, subtracting the base-flow terms and
neglecting the nonlinear terms, we obtain

∂u
∂t

+ Re [Ub · ∇u + u · ∇Ub] = −Re∇ p + 1
2
∇2u, (2.4a)

∇ · u = 0. (2.4b)

The initial value problem (2.4) can be recast as ∂u/∂t = L(t) u. In our calculation, the
pressure term in the momentum equation was eliminated using the continuity condition,
leading to the v−η formulation based on the vertical velocity v and the vertical vorticity
η = (∂u/∂z) − (∂w/∂x). The v−η formulation reads

∂

∂t

[
v

η

]
=

[∇2 0
0 1

]−1 [
L11(t) 0
L21(t) L22(t)

] [
v

η

]
,

L11(t) = −ReUb(t)
∂

∂x
∇2 + ReU ′′

b (t)
∂

∂x
+ 1

2
∇4,

L21(t) = −ReU ′
b(t)

∂

∂z
, L22(t) = −ReUb(t)

∂

∂x
+ 1

2
∇2, (2.5)

where prime ′ denotes the y derivative. The boundary conditions of the perturbed variables
are v(±h) = v′(±h) = η(±h) = 0.

To numerically discretise these equations, the classic spectral collocation method
(Weideman & Reddy 2000) is used for the spatial discretisation, with grid resolution
Ny = 69 (excluding the boundary grid points) in the wall-normal direction. The
homogeneous boundary conditions of the variables are implemented by removing the
first/last rows and first/last columns of the corresponding matrices in the collocation
method. The clamped boundary conditions of v are implemented using the code scripts
provided by Weideman & Reddy (2000). The fourth-order backward Euler method is used
for time integration, with dt = 10−5 in solving the linear equations.

2.2. The FTLE analysis
The FTLE analysis (Lekien, Shadden & Marsden 2007; Shadden 2012; Haller 2015) is
traditionally applied to nonlinear flow systems to probe how initially close trajectories are
separated with time. The maximum FTLE Λ is defined as

‖u(t)‖2 ≈ e2Λ(t−t0) ‖u(t0)‖2 or
‖u(t)‖2

‖u(t0)‖2
≈ e2Λ(t−t0). (2.6)

In general, using the flow map Ft
t0 to represent a (nonlinear) trajectory ũ from t0 to t , the

dynamics of the perturbation to ũ(t), denoted as u(t), can be approximated as

u(t) = Ft
t0(ũ(t0) + u(t0)) − Ft

t0(ũ(t0)). (2.7)

By Taylor expansion, u(t) = ∇Ft
t0(ũ(t0)) u(t0), where ∇Ft

t0(ũ(t0)) is called the
deformation gradient. The energy norm of u(t) can then be expressed as

‖u(t)‖2 = u(t0)
∗ ∇Ft

t0
∗
(ũ(t0)) ∇Ft

t0(ũ(t0)) u(t0). (2.8)
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The energy ratio ‖u(t)‖2/‖u(t0)‖2 represents the Rayleigh quotient of the right Cauchy–
Green strain tensor ∇Ft

t0
∗
(ũ(t0)) ∇Ft

t0(ũ(t0)), or the squared first singular value of
∇Ft

t0(ũ(t0)), which is quantitatively equal to the induced 2-norm ‖∇Ft
t0(ũ(t0))‖2. The

2-norm, defined as ‖u‖2 = 1/2
∫

V (u∗u + v∗v + w∗w) dV , calculates the kinetic energy
density in the flow.

When applying the FTLE to our linear time-periodic system, the deformation gradient
of the linearised flow map reads

∇Ft
t0(ũ(t0)) = lim

δt→0

n∏
j=1

eL(t j ) δt , (2.9)

following Farrell & Ioannou (1996). Here, L(t j ) is the linearised operator in (2.4). Note
that ∇Ft

t0(ũ(t0)) integrates the flow from t0 to t = t0 + n δt with t j ∈ (t0 + ( j − 1) δt, t0 +
j δt), and correspondingly, the time-ordering product Π ensures that the dynamics
propagates in the positive temporal direction. To quantify the growth or decay rate of the
disturbance as t → ∞, the first Lyapunov exponent (Farrell & Ioannou 1996) is defined as

Λ∞ = lim
t→∞ sup

ln ‖∇Ft
t0(ũ(t0))‖2

2t
, (2.10)

which implicitly assumes that the disturbance at t0 has a unit norm. A closely related
concept is the transient growth, defined as the maximum energy amplification

G(t0, t) = max
u(t0)
=0

‖u(t)‖2

‖u(t0)‖2
(2.11)

optimised over all possible initial conditions; see Schmid & Henningson (2001). We will
apply the transient growth analysis to the finite Stokes layer. To calculate the maximised
energy amplification G(t0, t), we follow the direct-adjoint looping algorithm (Luchini &
Bottaro 2014), which has also been adopted by Biau (2016). Figure 1(a) validates our
calculation in the case h = 16 against those in the semi-infinite Stokes layer calculated by
Biau (2016).

The Lyapunov exponent Λ∞ at large time (t → ∞) is equivalent to the Floquet exponent
in a time-periodic system. It concerns the flow behaviour at asymptotically large times.
To investigate the intracyclic dynamics in the Stokes layer, we calculate the first FTLE
(Shadden 2012; Haller 2015)

Λ(t0, t) = sup
u(t0)
=0

ln
( ‖u(t)‖2

‖u(t0)‖2

)
2(t − t0)

, (2.12)

with the disturbance initiated at time t0 and evolving until time t . The FTLE measures the
maximum ‘stretching’ effect that a system can have in the time period [t0, t]. Although
it does not directly indicate the growth rate of a perturbation over time, it suggests the
potential for maximum transient amplification within the system (Kern et al. 2021).

Existing theories on the instability of Stokes layers include Floquet theory and
instantaneous/momentary stability theory, and will also be conducted in this work for
comparison. Briefly, Floquet analysis assumes the solution ansatz

u(x, y, z, t) =
[ ∞∑

n=−∞
u(n)(y) eint

]
eiαx+iγ z−iλt + c.c., (2.13)
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(Biau 2016) Re = 800, kx = 0.7821, kz = 0

(Biau 2016) Re = 1000, kx = 0.7670, kz = 0
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(Current) Re = 338.51, α = 0.426, γ = 0 −0.05

−0.06

−0.03

−0.04

−0.01

−0.02

0.01

0

0.03

0.02

t t

λ2

(a) (b)

Figure 1. (a) Transient growth in 2-D Stokes layers with parameters identical to those in Biau (2016). The
two studies use different non-dimensionalisation methods for the flow system, necessitating conversion of the
parameters; see the legend for details. The finite domain in our computation is set to h = 16 to mimic the semi-
infinite flow considered in Biau (2016). The lines show our computational results, while the three filled dots are
extracted from Table 1 of Biau (2016). The T f in Biau (2016) needs to be interpreted as the elapsed time from
T0, rather than from 0, as confirmed by Professor Biau (private communication). Here, T0 denotes the starting
time in the transient growth calculation, which will later be referred to as t0 in our work. (b) Validation of
the 2-D instantaneous/momentary instability analyses against the results in Luo & Wu (2010) and Blondeaux
& Vittori (2021). Their results were manually extracted from the respective papers. The red areas represent
decelerating phases, and white areas represent accelerating phases.

Cases Blennerhassett & Bassom (2006) Our results

Re = 0.1, h = 8 −0.08833 (even) −0.08832989
Re = 0.1, h = 8 −0.18181 (odd) −0.18180475
Re = 570, h = 16 −0.06572 (even) −0.06572140
Re = 570, h = 16 −0.11620 (odd) −0.11619931
Re = 750, h = 16 −0.06695 (even) −0.06694976
Re = 750, h = 16 −0.11951 (odd) −0.11951087

Table 1. Validation of the 2-D Floquet analysis against the results in Blennerhassett & Bassom (2006) at α =
0.3, γ = 0. Even and odd indicate the symmetry of the corresponding least-stable eigenfunction with respect
to the channel centreline. We use Ny = 99 and N f = 170 for the validation.

where λ is the Floquet exponent encompassing the growth/decay rate and frequency
of the disturbance, and c.c. indicates the complex conjugate of the preceding term.
The infinite Fourier series needs to be truncated in numerical calculation, i.e. n ∈
[−N f , N f ]. We consider a sufficient large N f (> 0.8α Re), following Thomas et al.
(2011). Another theory, the instantaneous/momentary stability theory (Luo & Wu
2010; Blondeaux & Vittori 2021), assumes a solution form that reads u(x, y, z, t) =
ũ(y) exp(iαx + iγ z − i Re

∫
λ2(t) dt) + c.c. with λ2 indicating the stability/instability of

the disturbance. Verification of our Floquet analysis of the Stokes layers is shown in table 1,
and that of the instantaneous/momentary stability theories in figure 1(b).

3. Results and discussion

3.1. General results
Figure 2 shows the comparison of the stability analyses applied to the finite Stokes
layer at Re = 540, α = 0.4, γ = 0, h = 5. This Re is close to values investigated in
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1

0
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Stokes layer (not to scale)

FTLE Λ (t0 = 0)

λ2, Re = 540, α = 0.4, h = 16

λ2, Re = 540, α = 0.4, h = 5

6

t
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Δt
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t0
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λ2

Δt

(a)

(b)

(c) (d )

Figure 2. Stability analyses of a typical 2-D finite Stokes layer with Re = 540, α = 0.4, h = 5. (a) Transient
growth calculated using two time-integration methods (see the legend) and the Floquet decay rate at large time.
(b) The growth rate λ2 in the instantaneous/momentary stability analyses (left-hand y-axis) and the first FTLE
Λ (right-hand y-axis). (c) Distribution of FTLE as a function of the starting time t0 and the integrated period
�t (= t − t0). (d) The corresponding transient growth G(t0, �t) on a base-10 logarithmic scale.

experiments, e.g. by Akhavan et al. (1991a) on the Stokes layer in a pipe, and by Hino
et al. (1983) on the Stokes layer in a duct (see the caption of figure 3 for details).
The streamwise wavenumber α = 0.4 corresponds closely to the wavelength of the most
unstable disturbance, approximately 15, in the nonlinear simulations of Thomas et al.
(2014) at Re = 600, which employed the same length scale as ours.

At these parameters, the flow is linearly stable according to the Floquet theory, as
indicated by the dashed line in figure 2(a). Figure 2(b) shows that the instantaneous/
momentary stability analysis of this flow predicts a negative growth rate λ2 at the
beginning of the first deceleration phase (red shade). For the chosen parameters, this
contradicts the experimental observation that ‘turbulence appeared explosively towards the
end of the acceleration phase of the cycle and was sustained throughout the deceleration
phase’ (Akhavan et al. 1991a).
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10 20 30 40
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t
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α = 0.42

α = 0.44

α = 0.46

α = 0.48

(a) (b) (c)

(d )

Figure 3. (a) Distribution of FTLE as function of the starting time t0 and the integrated period �t (= t − t0).
The parameters are Re = 540, α = 0.4, γ = 0, h = 10. (b) Normalised axial turbulence intensity (u′2)1/2

digitally extracted from the experimental literature. Lines with symbols from figure 9 of Akhavan et al. (1991a).
Akhavan et al. (1991a) concerns the Stokes layer in a pipe with Re = 540, h = 10.6 (or in their notation,
Reδ = 1080, Λ = 10.6), and their data are normalised by the maximum value in time at each radial location
r/R = 0.992 (blue), 0.95 (red), 0.85 (black) and 0.75 (cyan), respectively, where R is their pipe radius. Their
experimental data have been shifted in time by π/2 to be consistent with our wall oscillation signal (i.e. cos t).
Thick lines without symbols from figure 11 of Hino et al. (1983). Hino et al. (1983) studies the Stokes layer in
a duct with Re = 438, h = 12.8 (or in their notation, Rδ = 876, λ= 12.8), and their data are normalised by
the maximum value in time at each vertical location 0.01 (blue), 0.05 (red) and 0.1 (green), respectively, where
d is their channel height. (c) Normalised axial turbulence intensity in our nonlinear simulation (to be detailed
in § 3.4). Lines with stars blue curve is for y = 9.9818; lines with stars red curve is for y = 9.7773; lines with
stars green curve is for y = 8.0545. (d) Effect of streamwise wavenumber α on the first FTLE Λ distributed in
the t0−�t space. The other parameters are the same as those in (a).

Conversely, the transient growth G(t0 = 0, t) in figure 2(a) initially shows a quick
increase around t = 0 and further climbs to 1017 in the second decelerating phase at
t ≈ 4. The substantial transient growth is consistent with the calculation by Biau (2016) for
the semi-infinite Stokes layer, and the significant flow response to an impulse excitation
studied by Thomas et al. (2014) (cf. their figure 1). The mechanical explanation for this
2-D transient growth has been attributed to the Orr mechanism by Biau (2016). Biau also
confirmed that three-dimensional (3-D) transient growth is less significant than its 2-D
counterpart. Given that the maximum transient growth is exceptionally large, even small
systematic or external perturbations may be amplified appreciably. This may explain why
no experiments have reported carefully controlled Stokes layers reaching a supercritical
transition. In short, despite the Floquet stability of the Stokes layer, a subcritical transition
likely occurs.
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To investigate the intracyclic instability in the Stokes layer from the lens of the FTLE, the
first FTLE Λ is computed and shown in figure 2(b) with t0 = 0 as a function of t . The result
for Λ presents a different trend than λ2 in the instantaneous/momentary stability analysis,
and approaches the negative Floquet exponent λ as t → ∞ in this case. Figure 2(d)
shows the corresponding G(t0, �t) on a base-10 logarithmic scale. It can be seen that the
global maximum transient growth is found at approximately �t ∈ [3, 4] after the initial
disturbance is imposed. Besides, the global maximum transient growth takes place in the
decelerating phases (see the red areas), which is an encouraging result.

3.2. The FTLE results compared to experiments
The focus of the work is to test the comparison of the FTLE and transient growth
with the experimentally observed intracyclic instability in the Stokes layer flow. An
appealing comparison of the FTLE with the experimental data is shown in figure 3(a),
which presents the distribution of Λ as a function t0 and �t (= t − t0). We now
take h = 10 to be consistent with the experimental set-up (see the caption for details).
Overall, the distribution implies relatively larger growth rates during the decelerating
phases (red shades in the contour figure), indicating stronger flow instability, which may
lead to more intensive turbulence. This appears to be consistent with the experimental
observation that strong turbulent activity bursts and persists in the decelerating phases,
but weaker turbulence occurs during the accelerating phase; see figure 9 in Akhavan et al.
(1991a) for the turbulence intensity, figure 6 in Hino, Sawamoto & Takasu (1976) for the
velocity variation, and figures 15 and 16 in Hino et al. (1983) for the turbulence energy
production. As pointed out by one of the reviewers, the experiments were conducted
with oscillating pressure gradient and stationary walls. Indeed, conducting experiments
with physically oscillating walls is not practically feasible. However, from a mathematical
standpoint, the Navier–Stokes equations with oscillating wall boundary conditions are
equivalent to those with an oscillating pressure gradient and stationary walls. Therefore,
it is reasonable to compare our results directly with the existing experiments involving
oscillatory pressure-driven flows.

To facilitate the comparison, the experimental results of axial turbulence intensity
extracted from Akhavan et al. (1991a) and Hino et al. (1983) are reproduced in figure 3(b)
at various radial/vertical locations in their experiments. Notably, the ‘eggplant’ regions
within �t ∈ [1, 2π] in our Λ distribution, which encompass the maximum transient
growth, precisely align with the peak positions of axial turbulence intensity observed in
the experiments. Figure 3(c) shows the results of our nonlinear simulations, which will
be discussed in detail in § 3.4. As a brief remark, the intracyclic instability observed in
the nonlinear simulations is also consistent with the FTLE results. In short, figures 3(a,b)
reveals a strong correlation between the distribution of the FTLE and the experimentally
observed axial turbulence intensity, providing convincing evidence of intracyclic dynamics
in the finite Stokes layer. Together with Biau (2016), these results imply a linear energy
amplification mechanism underpinning the turbulence generation cycle in transitional
Stokes layers.

The above result focuses on the Stokes layer for a single wavelength. To assess the
robustness of the FTLE distribution across different wavelengths, figure 3(d) presents
line contours of the FTLE for α = 0.40 : 0.02 : 0.48. This range of α encompasses the
most significant transient growth in this subcritical Stokes layer; see also figure 4. The
same FTLE distribution is observed across all these wavenumbers, demonstrating that
the energy amplification mechanism in the finite Stokes layer extends over a spectrum of
wavenumbers linked to the most amplified disturbances.
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Figure 4. Effect of α and Re on the transient growth G(t0 = 0, t) (colour contour) in 2-D finite Stokes layers
with h = 5.

3.3. Parametric study: effects of Re, h and ω

A parametric study of the effects of Re and α on the transient growth G(t0 = 0, t) in
the 2-D finite Stokes layer is shown in figure 4. It is evident that transient growth rises
with Re within this subcritical range. This is consistent with the calculation by Biau
(2016), who similarly observed the monotonic increases of the transient growth in the
subcritical semi-infinite Stokes layer. The optimal wavenumber for transient growth is
found to be approximately α = 0.42, thereby supporting our choice of α = 0.4 in the
present investigation.

Next, we explore the effect of the half-wall distance h on the FTLE in the finite
Stokes layers. Large-h flows have been widely studied in the literature, while small-h
cases, though less explored, are relevant in fields such as biology and microrheology
(Mitran et al. 2008). Figure 5(a) shows the 2-D transient growth at Re = 540, α = 0.4 for
various h. For relatively large h (h � 9), the flow resembles its semi-infinite counterpart,
presenting significant transient growth. The effect of changing h is minor in this range.
The maximum G(t0 = 0, t) is found at h = 5; see the magenta line. Upon reducing h,
the transient growth decreases drastically. This suggests that as h decreases, the linear
amplification mechanism weakens. This trend is consistent with the observation by Hino
et al. (1976) that ‘The critical Reynolds number of the first transition decreases as the
Stokes parameter increases’ in the small-h range. Their Stokes parameter is identified as h
in our work. To illustrate the feature of the Λ distribution in the small-h Stokes layers, we
take the case h = 2 as an example, depicted in figure 5(b). By comparing this result with
that for h = 10 in figure 3 and that for h = 5 in figure 2 (corresponding to the maximum
FTLE over all h), it is evident that the FTLE for h = 2 is significantly smaller and exhibits
a weaker history effect along the �t-axis. Thus our FTLE analysis suggests a weaker
energy amplification mechanism in the small-h Stokes layers. Based on this observation,

1013 A50-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
30

4 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10304


Journal of Fluid Mechanics

10−16

0 1 2 3 4 5 6

10−10

100

1010

1020

G
 (t

0
 =

 0
, 
t) h = 16

h = 9

h = 5

h = 2

h = 1.75

h = 1.5

h = 1

t

t0

1 2 3 4 5 6

�t

0−5

6

4

2

0

5 15 25 3510 20 30 40

(a)

(b)

Figure 5. (a) Effect of non-dimensional channel half-height h on the transient growth G(t0 = 0, t).
(b) Distribution of the first FTLE Λ in the t0−�t plane for the case h = 2. The other parameters are
Re = 540, α = 0.4, γ = 0.

we hypothesise that the small-h Stokes layers, if they can transition to turbulence, will
show a smaller temporal standard deviation in the normalised axial turbulence intensity,
compared to the large-h flows. We encourage future experimental research to confirm this
finding by changing the dimensional channel half-height d.

In experiments involving the Stokes layer, nevertheless, the most practical way to vary
the system parameters is by adjusting the wall-oscillation frequency ω. Under our non-
dimensionalisation scheme, changes in ω induce corresponding changes in Re, h and α. To
investigate how transient growth varies with frequency, we consider a reference parameter
set defined by

Reref = U0√
2νωref

= 540 and href = d√
2ν/ωref

= 3, (3.1)

while fixing αref = 0.4. We choose to fix α = 0.4 because in realistic experiments, a
spectrum of waves is typically excited rather than a single mode. Our parametric study
(see figure 4) indicates that the maximum transient growth occurs near α ≈ 0.4, justifying
its use to focus on the most dangerous scenario. Defining the frequency ratio as r = ω/ωref,
the new dimensionless parameters become

Re = Reref√
r

, h = href
√

r (3.2)

as functions of r .
Figure 6 implies that increasing ω (or equivalently r ) leads to a non-monotonic response

in the maximum transient growth, with the initial disturbance imposed at t0 = 0. From
r = 0.5 (h = 2.1213, Re = 763.7) to r = 1 (h = 3, Re = 540), the maximum transient
growth increases, indicating a destabilising effect of increasing frequency. Beyond this

1013 A50-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
30

4 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10304


M. Zhang

0.5

1.0

1.5

2.0

2.5

3.0

2.1213

3.0000

3.6742

4.2426

4.7434

5.1962

−15

−10

−5

0

5

10

15

763.7

540.0

440.9

381.8

341.5

311.8

0 1 2 3 4

t

h Re

r =
 ω

/
ω

re
f

Figure 6. Contour plot of G(t0 = 0, t) on a base-10 logarithmic scale. The left-hand y-axis indicates the ratio
ω/ωref, where ωref corresponds to the reference parameter set (Reref = 540, href = 3). The wavenumber is fixed
at α = 0.4 in all cases, to capture the most amplified transient growth. The corresponding values of h and Re
are also shown in blue and red, respectively.

point, however, further increases in frequency suppress transient growth. We compare
this trend to those in the literature. Merkli & Thomann (1975) showed in their figure 5
that the maximum velocity in the flow increases with increasing frequency, suggesting
a destabilising effect associated with higher oscillation frequencies. The discrepancy
between our results and those of Merkli & Thomann (1975) may arise from differences
in the parameter regimes explored. As presented in our figure 5, the value of h seems
to be playing an important role in determining the transient growth; however, Merkli &
Thomann (1975) did not report the values of h, making a direct comparison difficult.

To gain further insight, we refer to the experimental work of Hino et al. (1976), where
a comparable parameter λ (the same definition as our h) increases from 2.76 to 3.90 as
the oscillation period T is reduced from 6.0 s to 3.0 s, effectively doubling the frequency.
Table 1 of Hino et al. (1976) shows that the increase in λ is accompanied by a transition
from disturbed laminar flow (denoted by empty circles) to weak turbulence (denoted by
filled circles), also supporting the destabilising effect of increasing frequency. Notably, this
transition in experiments occurs within the range h ∈ [2.76, 3.90], which approximately
aligns with the low-h regime in our study, where a similar destabilising trend is observed.

3.4. Nonlinear evolution
The discussions above centre around the linear dynamics. To further extend the implication
of the linear results, especially the intracyclic instability shown in figure 3, nonlinear
simulations were conducted. The numerical method adopted is the classic peusdo-spectral
method, and the details are presented in Appendix A. The computation domain, with the
channel half-height as the reference length, is (2π/0.4, 5, 2π) discretised with resolution
129 × 105 × 89 along the x, y, z directions. A constant time step dt = 2π/2 50 000 ≈
2.5132 × 10−5 is considered. The initial condition of the nonlinear simulation consists of
the laminar Stokes layer solution at t = 0 plus the optimal initial condition (whose kinetic
energy is 10−10) targeting the maximum transient growth at t = 1. A 3-D perturbation is
additionally imposed to trigger the transition, following Biau (2016).

Figure 7 presents the evolution of the perturbation energy E ′
k , computed by integrating

the kinetic energy of the velocity deviation from the laminar Stokes layer solution Ub(y, t)
over the entire domain at Re = 540. The inset highlights that the evolution of E ′

k closely
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Figure 7. Nonlinear evolution of the perturbation kinetic energy E ′
k(t) = (1/2h)

∫ ‖u(y, t) − Ub(y, t)‖2 dy
(cyan line) at Re = 540, h = 10. Note that u(y, t) have been averaged over the x−z plane before the integration,
and Ub(y, t) is homogeneous in the x−z plane by definition. The dashed black line represents the envelope
of the maximum transient growth. The total simulation time is approximately 186 time units, corresponding to
29.6 complete periods.

follows the optimal growth envelope (calculated in the transient growth analysis), indicated
by the black dashed line; this is an outcome of the optimal initial condition as part of the
initial condition used in our nonlinear simulation. The sharp energy rise at t = 0 results
from the 3-D disturbance, which decays rapidly. After the initial transient, the flow reaches
a statistically saturated state before the end of the first decelerating phase. It is evident
that the perturbation energy consistently troughs during the accelerating phases (white
background) and peaks during the decelerating phases (red shading). This behaviour aligns
with both the FTLE analysis and the experimental observations shown in figures 3(a,b).
To enable a more quantitative comparison, we also compute the phase-averaged axial
turbulence intensity (u′2)1/2, normalised by its maximum value, at three different vertical
positions (y = 9.9818, 9.7773, 8.0545) approximately corresponding to the three vertical
positions in Hino et al. (1983); see the lines with stars curves in figure 3(c). The axial
turbulence intensity is calculated by subtracting the axial component of the laminar Stokes
layer Ub(y, t) from the raw data. The result in figure 3(c) confirms that the phase evolution
of axial turbulence intensity relative to the laminar reference flow qualitatively captures the
intracyclic instability of the perturbations.

As nonlinear effects distort the laminar base flow, it is instructive to compare the laminar
Stokes layer Ub(y, t) with the phase-averaged flow, denoted as ū(y, t) averaged over
the x−z plane. The x component of the two flows is shown in figure 8. The nonlinear
simulation was run for 186 time units, corresponding to 29.6 oscillation periods. To
eliminate initial transients, the first two periods are discarded, leaving the remaining 27
periods to be used for the phase averaging. This duration is considered sufficiently long,
comparable with simulation times reported in studies such as 2–13 cycles in Vittori &
Verzicco (1998), 50 cycles in Manna, Vacca & Verzicco (2015), and 10 cycles in Ebadi
et al. (2019). Figure 8(a) displays the laminar Stokes layer in a y–t diagram, and figure 8(b)
shows the phase-averaged flow. Although the near-wall velocity patterns appear similar
in the two flows, the less tilted green/cyan stripes in the ū(y, t) field suggest enhanced
temporal coherence across the velocity field. The small difference, as shown in figure 8(c),
indicates the relative resemblance of the two flows.

To further compare the laminar base flow Ub(y, t) and the phase-averaged flow ū(y, t),
figure 9 shows the x component of the perturbation kinetic energy E ′

x computed with
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Figure 8. Profiles of (a) the laminar Stokes layer Ub(y, t), (b) the phase-averaged flow along the x direction
over 27 periods ū(y, t), and (c) the difference between the two, Ub(y, t) − ū(y, t), at Re = 540, h = 10. Here,
ū(y, t) has been spatially averaged in the x−z plane.
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Figure 9. Phase-averaged x component perturbation kinetic energy E ′
x (t) calculated with respect to the

laminar flow (red, E ′
x (t) = (1/2h)

∫ ‖u(y, t) − Ub(y, t)‖2 dy) and the time-mean flow (blue, E ′
x (t) =

(1/2h)
∫ ‖u(y, t) − ū(y, t)‖2 dy) at Re = 540, h = 10. Here, ū(y, t) denotes the x component of the

phase-averaged flow, averaged over the x−z plane.

respect to them. As observed, E ′
x is smaller for the time-mean flow (blue) than for the

laminar flow (red), suggesting that the nonlinear flow evolves towards a periodic state that
is statistically closer to the phase-averaged flow, which is consistent with expectations.
Besides, both curves exhibit the same intracyclic pattern observed in the experiments and
the FTLE, demonstrating qualitative agreement with our results in figure 3.

Following the evaluation of the two base flows, we note that obtaining the time-mean
flow requires a computationally expensive nonlinear simulation, whereas the laminar
solution can be derived analytically. Given their comparable performance in capturing key
dynamical features, it may be worthwhile to explore modelling strategies for the Stokes
layer based on both formulations, and quantify the difference in their performance. In
particular, a comparative resolvent analysis using the laminar base flow versus the phase-
averaged flow could offer valuable insights into their respective effectiveness in capturing
the flow’s response characteristics.
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4. Conclusion
The flow transition in the Stokes layer is studied numerically by calculating its first FTLE
in the linear regime. The distribution of the FTLE closely matches the intracyclic dynamics
of the axial turbulence intensity observed in experimental studies of Stokes layers in
channel and pipe, a phenomenon that earlier stability analyses were unable to capture
accurately. Our nonlinear simulations also confirm the intracyclic instability, particularly
the elevated disturbance amplification during the decelerating phase, and the quenched
flow instability during the accelerating phase, similar to the FTLE results. The underlying
energy amplification mechanism is the non-normal transient growth in the time-dependent
shear flow (Farrell & Ioannou 1996), first revealed by Biau (2016) for the semi-infinite
Stokes layer.

According to our calculation, this non-normal mechanism can significantly amplify
systematic or external disturbances within the first oscillation cycle, leading to intracyclic
instability despite the long-term stability predicted by the Floquet theory. This may explain
the consistent experimental observations of subcritical transition in the confined Stokes
layers. The agreement between the intracyclic instability observed in experiments and
that predicted by the FTLE analysis underscores the significance of non-normality in flow
transition, which is the main contribution of this investigation.

In conventional rectilinear wall-bounded shear flows, the non-normal mechanism has
been widely studied as a key factor in the energy amplification mechanism (Schmid &
Henningson 2001) and turbulence generation process; see Jiménez (2013) and Lozano-
Durán et al. (2021) among many others. In periodically driven time-dependent shear flows,
such as the Stokes layer and other pressure-driven flows (Pier & Schmid 2021; Kern et al.
2021), the non-normal mechanism plays an equally significant role in flow transition. In
brief, this investigation enhances our understanding of turbulence generation in the Stokes
layer, and may help to provide new insights into other time-dependent systems, including
climate dynamics and biological flows.

This work opens several avenues for future research to deepen our understanding of flow
transition in Stokes layers and other time-dependent flows. First, the FTLE analysis of
the direct numerical simulation results should be conducted to account for the nonlinear
Stokes layers. Nonlinear FTLE, computed without linearisation, not only depends on t0
and �t , but also varies with spatial location. Since experimental results can be viewed
as nonlinear realisations, we anticipate that the distribution of the FTLE in the nonlinear
flow may resemble the linear results presented here. Second, flow control can be more
effectively applied to the Stokes layer by targeting the identified energy amplification
mechanism. Finally, future experiments should detail the influence of channel heights
on the turbulence generation in finite Stokes layers, where the reduced transient growth
will lead to a more stable flow and alter the turbulence dynamics. Such experiments
would provide validation of the linear mechanisms identified in this study, and explore
the subsequent nonlinear dynamics. Further quantification of the differences between
the laminar Stokes layer and the phase-averaged flow, particularly in the context of flow
modelling, is also a worthwhile direction for future investigation.
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Appendix A. Numerical methods for direct numerical simulations
The numerical algorithm for the in-house direct numerical simulations (DNS) code used
in § 3.4 is explained in this appendix. A Fourier–Chebyshev–Fourier spatial discretisation
scheme is employed along the x, y, z directions, respectively. The incompressible Navier–
Stokes equations (2.1) are time-advanced using a Crank–Nicolson Adams–Bashforth
(CNAB) scheme

ũn+1 − ũn

�t
+ 3

2
Re Ñ

n − 1
2

Re Ñ
n−1 = − Re

2
∇ p̃n+1 − Re

2
∇ p̃n + 1

2
∇2ũn+1

2
+ 1

2
∇2ũn

2
,

(A1)

where the convective term Ñ = (ũ · ∇)ũ is expressed using the rotational formulation
and the conservative formulation alternately at each time step. The CNAB method has
been proven to be effective for simulating low-Re flows (Kim, Moin & Moser 1987).
The above numerical equation is solved together with the continuity condition with the
imposed boundary conditions ũn+1(±h) = Ub(tn+1) at the moving walls. This is achieved
following the influence matrix method introduced in Madabhushi, Balachandar & Vanka
(1993). After some manipulation, (A1) becomes

2
ũn+1

Re �t
− 1

2 Re
∇2ũn+1 + ∇ p̃n+1 = r̃n = 2ũn

Re �t
− 3Ñ

n + Ñ
n−1 − ∇ p̃n + 1

2 Re
∇2ũn.

(A2)

According to Madabhushi et al. (1993), discretisation error must be accounted for in the
numerical equation. Denoting the discretisation error as σ = (σx , σy, σz), the equation
then takes the form

1
2 Re

D2ũn+1 −
(

1
2 Re

(α2 + γ 2) + 2
Re �t

)
ũn+1 − ∇ p̃n+1 = −r̃n + σ , (A3)

where D1, D2 are the first- and second-order spatial derivatives for the Gauss–Lobatto
points, and the wave-like assumption in space has been adopted. We have overloaded
the same notations ũ, p̃, r̃ to represent the unknowns or expressions in the physical and
spectral space. Taking the divergence of the above equations and utilising the discretised
continuity equation iαũn+1 + D1ṽ

n+1 + iγ w̃n+1 = 0, we arrive at

−∇2 p̃n+1 = −∇ · r̃n + ∇ · σ . (A4)

Built on the idea of a Green’s function, the influence matrix method decomposes the
solution at the time step n + 1 as(

p̃n+1

ũn+1

)
=

(
p̃p
ũp

)
+ αt

(
p̃t
ũt

)
+ αb

(
p̃b
ũb

)
+ αc

t

(
p̃c

t

ũc
t

)
+ αc

b

(
p̃c

b

ũc
b

)
, (A5)

where the coefficients αt , αb, αc
t , αc

b will be determined to satisfy the continuity condition
and the boundary condition at the walls.

Among these components, p̃p, ũp solve

−∇2 p̃p = −∇ · r̃n, (A6a)
1

2 Re
D2ũp −

(
1

2 Re
(α2 + γ 2) + 2

Re �t

)
ũp − ∇ p̃p = −r̃n, (A6b)

with p̃p(±h) = 0 and ũp(±h) = Ub.
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The components p̃t , ũt solve

− ∇2 p̃t = 0, (A7a)
1

2 Re
D2ũt −

(
1

2 Re
(α2 + γ 2) + 2

Re �t

)
ũt − ∇ p̃t = 0, (A7b)

with p̃t (h) = 1, p̃t (−h) = 0 and ũt (±h) = 0.
The components p̃b, ũb solve

− ∇2 p̃b = 0, (A8a)
1

2 Re
D2ũb −

(
1

2 Re
(α2 + γ 2) + 2

Re �t

)
ũb − ∇ p̃b = 0, (A8b)

with p̃b(h) = 0, p̃b(−h) = 1 and ũb(±h) = 0.
The components p̃c

t , ũc
t solve

− ∇2 p̃c
t = −D1σt , (A9a)

1
2 Re

D2ũc
t −

(
1

2 Re
(α2 + γ 2) + 2

Re �t

)
ũc

t − ∇ p̃c
t = 0, (A9b)

with p̃c
t (±h) = 0 and ũc

t (±h) = 0. Note that σy has been further decomposed as σy =
αc

t σt + αc
bσb.

Finally, the components p̃c
b, ũc

b solve

− ∇2 p̃c
b = −D1σb, (A10a)

1
2 Re

D2ũc
b −

(
1

2 Re
(α2 + γ 2) + 2

Re �t

)
ũc

b − ∇ p̃c
b = 0, (A10b)

with p̃c
b(±h) = 0 and ũc

b(±h) = 0.
After solving all the subsystems, one can assemble the solutions in (A5) to determine

the four coefficients αt , αb, αc
t , αc

b, requiring four equations. Two of the equations enforce
the continuity equation at the boundaries, i.e. D1ṽ

n+1 = 0 at y = ±h or by substitution

D1ṽp + αt D1ṽt + αb D1ṽb + αc
t D1ṽ

c
t + αc

b D1ṽ
c
b =0 at y = ±h. (A11a)

The other two equations implement the boundary corrections, i.e.

1
2 Re

D2ṽ
n+1 −

(
1

2 Re
(α2 + γ 2) + 2

Re �t

)
ṽn+1 − D1 p̃n+1 = −r̃ n

y − αc
t at y = h,

(A12a)
1

2 Re
D2ṽ

n+1 −
(

1
2 Re

(α2 + γ 2) + 2
Re �t

)
ṽn+1 − D1 p̃n+1 = −r̃ n

y − αc
b at y = −h.

(A12b)

After these steps, we can obtain the pressure p̃n+1 that enforces the continuity condition
at all the grid points (including the boundary grid points), and ṽn+1 at the next time
step. The other two velocity components, ũn+1 and w̃n+1, can be obtained by solving
the Helmholtz equations (A3). When solving these equations, the matrix diagonalisation
method proposed by Ehrenstein & Peyret (1989) is employed, significantly enhancing the
algorithm’s efficiency. To ensure accurate computation of the nonlinear terms in physical
space, the 3/2 dealiasing rule is applied along the periodic directions.
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Figure 10. Verification of the DNS code: (a,b) mean velocity profiles; (c,d) profiles of turbulence intensities;
(e,f ) profiles of shear stresses. Solid lines indicate Reynolds stress (RS+); dashed lines indicate viscous shear
stress (U+′); dash-dotted lines indicate total stress). (a,c,e) Plane Poiseuille flow at Reτ ≈ 177.8 compared to
Moser et al. (1999) (red symbols). (b,d,f ) Plane Couette flow at Reτ ≈ 171.8 compared to Lee & Kim (1991)
(red symbols), whose data points are extracted manually. Superscript + indicates normalisation with respect to
the wall units. Here, y, y+ denote distance from a wall.

We present the validation of our numerical code in figure 10 for turbulent channel flow
and turbulent Couette flow. For the channel flow with constant mass flux at Reτ ≈ 180,
the computation domain is (4π, 2, 4π/3) with resolution 129 × 129 × 89, following the
numerical set-up in Moser, Kim & Mansour (1999). The length is normalised by the
channel half-height. For the plane Couette flow, it is well known that the computational
domain significantly influences flow statistics due to its impact on resolving large-scale
dynamics (Komminaho, Lundbladh & Johansson 1996; Pirozzoli, Bernardini & Orlandi
2014). We chose to validate our implementation against the pseudo-spectral simulations
of Lee & Kim (1991), following their numerical domain (8π/3) and a similar resolution
129 × 129 × 193 along the x, y, z directions. As shown in the figure, our results exhibit
good agreement with the classic data.
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