CONVEXITY CONDITIONS ON *f*-RINGS

SUZANNE LARSON

Introduction. Let *n* be a positive integer. An *f*-ring *A* is said to satisfy the left n^{th} -convexity property if for any $u, v \in A$ such that $v \ge 0$ and $0 \le u \le v^n$, there exists a $w \in A$ such that u = wv. The right n^{th} -convexity property is defined similarly and an *f*-ring is said to satisfy the n^{th} -convexity property if it satisfies both the left and the right n^{th} -convexity property. In this paper, we study arbitrary *f*-rings which satisfy one of the convexity properties.

Those f-rings which satisfy one or more of these properties have been studied by several authors. In [3, 1D], L. Gillman and M. Jerison note that any C(X) satisfies the n^{th} -convexity property for all $n \ge 2$, and in [3, 14.25], they give several properties that in C(X) are equivalent to the 1st-convexity property. M. Henriksen proves some results about the ideal theory of an f-ring satisfying the 2nd-convexity property in [5] and S. Steinberg studies left quotient rings of f-rings satisfying the left 1st-convexity property in [13]. In [7, Section 3.4], C. Huijsmans and B. de Pagter use the 2nd-convexity property to prove some results about the ideal theory of uniformly complete archimedean f-algebras and in [7, Section 6], [8], [9] and [12], they give several properties that in archimedean f-algebras with identity element are equivalent to the 1st-convexity property.

In Section 2, we derive some basic facts about such f-rings. In Section 3 we give some conditions under which f-rings satisfying a convexity property are guaranteed to have an identity element or to be embeddable in an f-ring with an identity element. Section 4 is concerned with the ideal theory of an f-ring satisfying a convexity property, and in Section 5, we study the relationships between the various convexity properties.

1. Preliminaries. Much of the material given here can also be found in [1].

Given an *f*-ring A and an element $x \in A$, we let

$$A^+ = \{a \in A : a \ge 0\}, x^+ = x \lor 0, x^- = (-x) \lor 0$$

and $|x| = x \vee (-x)$.

Received December 13, 1983 and in revised form September 17, 1984 and February 26, 1985.

f-RINGS

Then $x = x^+ - x^-$ and $|x| = x^+ + x^-$. Recall that the Riesz decomposition property states that if $0 \le a \le b_1 + b_2 + \ldots + b_m$ with $b_1, \ldots, b_m \in A^+$ then there exists $x_1, \ldots, x_m \in A^+$ such that

$$a = x_1 + x_2 + \ldots + x_m$$
 and $x_i \leq b_i$ for $i = 1, 2, \ldots, m$

By an ideal in A we always mean a ring ideal. Suppose A is a ring and I an ideal of A. Then I is called *semiprime* (*prime*) if whenever $J(J_1, J_2)$ is an ideal such that $J^2 \,\subset\, I(J_1J_2 \,\subset\, I), J \,\subset\, I(J_1 \,\subset\, I \text{ or } J_2 \,\subset\, I)$. The ring A is called semiprime (prime) if $\{0\}$ is a semiprime (prime) ideal. We call I pseudoprime if $a, b \in A$ and ab = 0 implies $a \in I$ or $b \in I$. A subset M of A is called an *m*-system if whenever $a, b \in M$ there exists an $x \in A$ such that $axb \in M$. In [11, Section 18] it is shown that I is semiprime if and only if $I = \{a \in A : every m$ -system in A which contains a has nonempty intersection with I}.

An ideal *I* of an *f*-ring *A* is said to be an *l*-ideal if $|x| \leq |y|, y \in I$ implies $x \in I$. It is well known that the sum of two *l*-ideals in *A* is again an *l*-ideal. Given an *f*-ring *A* and an element $x \in A$ there is a smallest (left) *l*-ideal containing *x*, and we will denote this by $(\langle x \rangle_l) \langle x \rangle$. The (left) ideal generated by $x \in A$ is denoted by $(\langle x \rangle_l), \langle x \rangle$. The following may be found in [2] or in [1].

1.1) If I is an *l*-ideal, then I is semiprime (prime) if and only if $a^2 \in I$ $(ab \in I)$ implies $a \in I$ $(a \in I \text{ or } b \in I)$.

An element a > 0 of an *f*-ring is called a *super idempotent* if $a \le a^2$, called a *weak order unit* if $a \land w = 0$ implies w = 0, and called a *super unit* (left super unit) if $ax \ge x$ and $xa \ge x$ ($ax \ge x$) for all $x \ge 0$. An *f*-ring is said to be *l*-simple if $A^2 \ne \{0\}$ and *A* has no proper *l*-ideals. Then as can be found in [1]:

1.2) A super idempotent in a totally ordered ring is not contained in any proper left or right *l*-ideal.

1.3) If a is a super idempotent which is also a weak order unit, then a is not contained in any proper *l*-ideal.

1.4) If A is *l*-simple, then A is totally ordered and prime, A contains a super unit and has no proper left or right *l*-ideals.

An *f*-ring *A* is called *infinitesimal* if $a^2 \leq |a|$ for every $a \in A$. Now not every *f*-ring can be embedded in an *f*-ring with identity element. The following is established in [1].

1.5) If a totally ordered ring is embeddable in an f-ring with identity element, then it is embeddable in a totally ordered ring with identity.

1.6) An f-ring is embeddable in an f-ring with identity if and only if it is a subdirect product of totally ordered rings embeddable in f-rings with identity.

SUZANNE LARSON

1.7) Every infinitesimal or prime *f*-ring is embeddable in an *f*-ring with identity.

1.8) A totally ordered ring is embeddable in an f-ring with identity if and only if every super idempotent is a super unit.

1.9) If an f-ring is embeddable in an f-ring with identity, its idempotent elements are in its center.

The following is probably well known, and a proof is given for the sake of completeness.

1.10) Let A be an f-ring with an identity and $a \in A$. Then a left inverse of a is also a right inverse of a.

Proof. Suppose b is a left inverse of a. Then $(ab)^2 = ab$ and so ab is in the center of A. Then ab = abba = baba = 1.

2. In this section, we will define some convexity conditions on an f-ring and look at some of the basic properties of an f-ring which satisfies one of these conditions.

Definition. Let $n \ge 1$. An f-ring is said to satisfy the left n^{th} -convexity property if for any $u, v \in A$ such that $v \ge 0$ and $0 \le u \le v^n$, there exists a $w \in A$ such that u = wv. The right n^{th} -convexity property is defined similarly. An f-ring is said to satisfy the n^{th} -convexity property if it satisfies both the left and the right n^{th} -convexity property. If A satisfies the left n^{th} -convexity property, then we may assume that the element w satisfies $0 \le w \le v^{n-1}$ (by replacing the element w, if necessary, by $(w \land v^{n-1}) \lor 0$).

Examples of *f*-rings satisfying the n^{th} -convexity property for $n \ge 2$ include a totally ordered division ring, and C(X), the *f*-ring of all real-valued continuous functions defined on a topological space. C. Huijsmans and B. de Pagter have shown that a uniformly complete *f*-algebra with identity element satisfies the n^{th} -convexity property for all $n \ge 2$ [7, 3.11].

The next result has been proved for uniformly complete f-algebras with identity element in [7, 3.11]. The proof is similar and therefore omitted.

2.1 LEMMA. Let $n \ge 2$. If A is a semiprime f-ring satisfying the left n^{th} -convexity property, then the w of the previous definition is unique.

The condition that A be semiprime cannot be dropped, as shown next.

2.2 Example. Let $n \ge 2$ and $\mathbf{R}'[x]$ denote the ring of polynomials with real coefficients and zero constant term. Order $\mathbf{R}'[x]$ by defining $p(x) = p_1 x + \ldots + p_m x^m > 0$ if the first non-zero coefficient of p(x) (i.e., the coefficient of the least power of x) is greater than 0. Let

50

$$A = \mathbf{R}'[x]/\langle x^n \rangle.$$

Then A is a totally ordered ring satisfying the n^{th} -convexity property. In A,

$$0 \le u = 0 \le (x)^n = 0;$$

$$0 \le w = 0 \le w' = x^{n-1} \le x^{n-1} \text{ and }$$

$$u = wx = w'x.$$

So w and w' both satisfy the result in Lemma 2.1.

2.3 THEOREM. Let $n \ge 1$ and A be an f-ring which satisfies the left n^{th} -convexity property. Any l-homomorphic image of A satisfies the left n^{th} -convexity property.

Proof. Suppose $\phi: A \to B$ is an *l*-homomorphism onto $B, \phi(v) \ge 0$ and $0 \le \phi(u) \le [\phi(v)]^n$ in B. Then

$$0 \leq (0 \lor u) \land (0 \lor v)^n \leq (0 \lor v)^n$$

in A. Then there is $w \in A$ such that

 $(0 \lor u) \land (0 \lor v)^n = w(0 \lor v).$

Thus,

$$\phi[(0 \lor u) \land (0 \lor v)^n] = \phi[w(0 \lor v)].$$

So $\phi(u) = \phi(w)\phi(v)$.

2.4 THEOREM. Let A be an f-ring satisfying the left 1^{st} -convexity property. Then

(1) For each $f \in A$, there is an $r \in A$ such that f = r|f| and |f| = rf.

(2) Every left ideal I in A is a left l-ideal.

(3) For all $f, g \in A$, $(f, g)_l = (|f| + |g|)_l$.

(4) For all $f, g \in A$, $(f, g)_l = (|f| \vee |g|)_l$.

(5) If A is semiprime, then every left ideal I is an intersection of pseudoprime left ideals.

If A also contains a left super unit a, then (2), (3) and (4) are equivalent to the left 1^{st} -convexity property.

Before proving this, we note that (1) through (4) have been shown for C(X) in [3, 14.25] and subsequently shown for an archimedean *f*-algebra with identity element in [7, 6.3, 6.5]. Part (5) has been shown for C(X) in [4, 4.7 and 6.2]. S. Steinberg gives a related result in [13, 3.2]. The proofs mimic the proofs given in [7] and [4], so we confine ourselves to showing the last statement.

Proof. We show that (2), (3) and (4) imply the left 1^{st} -convexity property under the additional hypothesis that A contains a left super unit a.

Suppose $0 \le u \le v$. Then $0 \le u \le av$.

(2). Now $av \in Av$ and Av is a left *l*-ideal. Hence $u \in Av$. (3). By (3),

$$(u, av - u)_l = (u + av - u)_l = (av)_l \subset Av.$$

So $u \in Av$.

(4). By (4),

$$(u, av)_l = (u \lor av)_l = (av)_l \subset Av.$$

So $u \in Av$.

Part (1) and (5) of this theorem are not equivalent to the left 1^{st} -convexity property (even when an identity element is present) since every totally ordered prime ring with identity element satisfies (1) and (5).

2.5 THEOREM. Let $n \ge 2$. If A is an f-ring with the left n^{th} -convexity property, then for every $v \ge 0$, $\langle v^n \rangle_l \subset (v)_l$. If A has a left super unit a, then these properties are equivalent.

Proof. Let $u \in \langle v^n \rangle_l$. Then $|u| \leq sv^n + lv^n$ for some $s \in A^+$, $l \in \mathbb{N}$. It is easily seen that

$$0 \leq u^+ \leq (sv + (l \vee 1)v)^n.$$

So there is $w \in A$ such that

 $u^+ = w(sv + (l \vee 1)v).$

Thus $u^+ \in (v)_l$. Similarly, $u^- \in (v)_l$.

Suppose now that *a* is a left super unit and that for every $v \ge 0$, $\langle v^n \rangle_l \subset (v)_l$. Assume $v \ge 0$ and $0 \le u \le v^n$. Then

$$0 \leq u \leq (av)^n$$
 and $u \in \langle (av)^n \rangle_l \subset (av)_l \subset Av$.

3. We now consider two general questions: under what conditions are we assured that an f-ring satisfying one of the convexity conditions contains an identity element, and what can be said about f-rings with one of the convexity conditions and having an identity element?

The following has also been proven by Steinberg in [13, 3.1(d)].

3.1 THEOREM. If A is a prime f-ring satisfying the left 1^{st} -convexity property, then A has an identity element.

Proof. Let u > 0. Then $0 < u \le u$ and there exists $w \in A$ such that u = wu. Now, $(w^2 - w)u = 0$. Since A is prime, $w^2 = w$. This implies that w is a right identity element for Aw and a left identity element for wA. Also, by 1.7 and 1.9, w is in the center of A. Hence Aw = wA and w is an identity element for Aw = wA. We now show A = Aw. Note w

is a weak order unit in A. Also, by 2.4.2, Aw is an *l*-ideal. So 1.3 implies Aw = wA = A.

By considering the direct sum of an infinite number of copies of **R**, we see that the condition that our *f*-ring be prime cannot be omitted from this theorem. The condition that A satisfy the left 1st-convexity property cannot be weakened to the condition that A satisfy the left n^{th} -convexity property for any $n \ge 2$ as shown next.

3.2 *Example*. Totally order $\mathbf{R}[x]$ by defining

$$\sum_{i=0}^m a_i x^i > 0 \quad \text{if } a_m > 0.$$

In the quotient ring of $\mathbf{R}[x]$, define

$$\mathrm{deg}\frac{p(x)}{q(x)} = \mathrm{deg} \ p(x) - \mathrm{deg} \ q(x).$$

Now let A be the subring

$$A = \left\{ \frac{p(x)}{q(x)} : p(x), q(x) \in \mathbf{R}[x] \text{ and } \deg \frac{p(x)}{q(x)} < 0 \right\}.$$

Order A so that

$$\frac{p(x)}{q(x)} \ge 0 \quad \text{if } p(x)q(x) \ge 0 \text{ in } \mathbf{R}[x].$$

Then A is a totally ordered prime f-ring satisfying the n^{th} -convexity property for all $n \ge 2$ but without identity element.

3.3 THEOREM. Let $n \ge 1$ and A be a totally ordered ring satisfying the n^{th} -convexity property. If A contains a super idempotent a, then A contains an identity element.

Two portions of the proof will be separated out and stated as a lemma.

3.4 LEMMA. Let $n \ge 1$ and A be an f-ring satisfying the nth-convexity property. If A has a super idempotent a, then

(1) The left ideal Aa has a right identity element and the right ideal aA has a left identity element.

(2) Aa is a left l-ideal and aA is a right l-ideal.

Proof. (1) If n = 1, then $0 < a \le a$ and if n > 1, then $0 \le a \le a^2 \le a^n$. In either case, there exist $w, w' \in A$ such that a = wa and a = aw'. Then w' is a right identity for Aa and w a left identity for aA.

(2) In order to show that Aa is a left *l*-ideal it is sufficient to prove that $0 \le u \le |ba|$ for some $b \in A$ implies that $u \in Aa$. If $0 \le u \le |ba| = |b|a$, then

 $0 \leq u \leq (|b|a + a)^n.$

So there is $x \in A$ such that

u = x(|b|a + a).

Hence $u \in Aa$. Similarly, aA is a right *l*-ideal.

We proceed to the proof of Theorem 3.3.

Proof. By the lemma, Aa and aA have a right and left identity element, and are left and right *l*-ideals respectively. By 1.2, a is not contained in any proper left or right *l*-ideal of A. But, $a \in Aa$ and $a \in aA$. So Aa = aA = A and A has a right and a left identity element.

At least for $n \ge 2$, the hypothesis that A contain a super idempotent cannot be omitted from this theorem since the totally ordered f-ring A of Example 3.2 satisfies the n^{th} -convexity property for all $n \ge 2$ and does not contain a super idempotent or identity element. The hypothesis that A satisfy the n^{th} -convexity property cannot be weakened to the hypothesis that it satisfy the left or right n^{th} -convexity property, as shown by the following example.

3.5 Example. Let $A = \{ae + bz:a, b \in \mathbf{R}\}$. Carry out addition coordinatewise and multiplication using the rules $e^2 = e$, ze = z and $z^2 = ez = 0$. Order A lexicographically so that

 $ae + bz \ge ce + dz$ if a > c or $a = c, b \ge d$.

Then A is a totally ordered f-ring satisfying the left n^{th} -convexity property for all $n \ge 2$, but not the right n^{th} -convexity property for any n. It even has an idempotent (namely e + z), but not an identity element. Moreover, in [10, III 3.4], D. Johnson shows that A is not even embeddable in a totally ordered ring with identity element.

3.6 COROLLARY. Let $n \ge 1$ and A be an f-ring satisfying the n^{th} -convexity property. Then

(1) A is a subdirect sum of totally ordered rings, each of which is either infinitesimal or contains an identity element.

(2) A is embeddable in an f-ring with identity element.

Proof. A is a subdirect sum of totally ordered rings, say A_i , each of which is either infinitesimal or contains a super idempotent. The latter implies that A_i has an identity element. The former implies A_i is embeddable in a totally ordered ring with identity by 1.7.

Example 3.5 illustrates that the condition that A satisfy the n^{th} -convexity property cannot be weakened to satisfy the left or right n^{th} -convexity property.

54

f-RINGS

3.7 THEOREM. Let $n \ge 1$ and A be an f-ring satisfying the nth-convexity property. If A contains a left or a right super unit a, then A has an identity element.

Proof. Suppose A is a left super unit. By Lemma 3.4, Aa and aA possess a right and left identity element respectively. We will show Aa = aA = A. To that end, we first show a is a right super unit. Suppose A is a subdirect product of the totally ordered rings A_i . By Theorems 2.3 and 3.3, each A_i has an identity element 1_i . Since a is a left super unit, $1_i \leq a_i 1_i = a_i$ for each i (where a_i denotes the projection of a onto A_i). Then for each $x \geq 0$ and each i, $x_i = x_i 1_i \leq x_i a_i$ and hence $x \leq xa$. So a is a right as well as a left super unit. Now Aa and aA is a left and right *l*-ideal respectively, by Lemma 3.4. For any $b \geq 0$, $0 \leq b \leq ba$ and $ba \in Aa$. So $b \in Aa$. Thus A = Aa. Similarly, aA = A.

Again Example 3.5 shows that the hypothesis in this theorem cannot be weakened to include "A satisfies the left n^{th} -convexity property."

The previous theorem is the key to the proof of the following.

3.8 THEOREM. Let $n \ge 1$ and A be an f-ring satisfying the nth-convexity property. If A is l-simple, then A is a division ring.

Proof. By 1.4, A contains a super unit and so the previous theorem implies A has an identity element 1. Also by 1.4, A is totally ordered and has no proper left or right *l*-ideals. Let v > 0. Then $\langle v \rangle_l = A$. In particular, $1 \in \langle v \rangle_l$ and so $1 \leq av$ for some $a \in A$. Thus, $0 \leq 1 \leq (av)^n$, and so there is $w \in A$ such that 1 = wav. So wa is a left inverse for v. By 1.10, wa is also a right inverse.

Next we show that an f-ring satisfying a convexity property is what M. Henriksen and D. Johnson have called closed under bounded inversion [6].

3.9 THEOREM. Let $n \ge 1$ and A be an f-ring satisfying the left n^{th} -convexity property. If A has an identity element and if $0 \le u \le v$ and u^{-1} exists in A, then v^{-1} exists in A.

Proof. If $0 \le u \le v$ and u^{-1} exists, then $0 \le 1 \le u^{-1}v$ and so $0 \le 1 \le (u^{-1}v)^n$. There is a $w \in A$ such that $1 = wu^{-1}v$. Hence wu^{-1} is a left inverse for v. Then 1.10 implies wu^{-1} is the inverse for v.

4. Ideals and *l*-ideals in an *f*-ring satisfying a convexity condition will be considered in this section. Recall that Theorem 2.4 states that in an *f*-ring satisfying the left 1st-convexity property, every (left) ideal is a (left) *l*-ideal. In light of this, most of the content of this chapter will be redundant in case the 1st-convexity property is satisfied. We will be most concerned with ideals in *f*-rings satisfying the (left) n^{th} -convexity property for some $n \ge 2$.

C. Huijsmans and B. de Pagter have proved the following for uniformly complete semiprime f-algebras [7, 4.7, 4.9].

4.1 THEOREM. Let $n \ge 1$ and A be an f-ring satisfying the left n^{th} -convexity property. Then

(1) If I is an idempotent left ideal, I is a left l-ideal.

(2) If I is a semiprime ideal, then I is an l-ideal.

Proof. (1) Suppose $0 \le u \le |v|$ and $v \in I$. Since $I = I^2 = I^{2n}$,

$$v = \sum_{k=1}^{m} r_{1,k} r_{2,k} \dots r_{2n,k}$$

for some $r_{1,k}, r_{2,k}, \ldots, r_{2n,k} \in I, 0 \leq k \leq m$. Then

$$u \leq |v| \leq \sum_{k=1}^{m} [r_{1,k}^{2n} + \ldots + r_{2n,k}^{2n}].$$

By the Riesz decomposition property,

$$u = \sum_{k=1}^{m} (p_{1,k} + p_{2,k} + \ldots + p_{2n,k})$$

for some $p_{1,k}, \ldots, p_{2n,k}$, $0 \leq k \leq m$ with $0 \leq p_{1,k} \leq r_{1,k}^{2n}, \ldots$, $0 \leq p_{2n,k} \leq r_{2n,k}^{2n}$. Then there exist $q_{1,k}, \ldots, q_{2n,k}$ such that

$$p_{1,k} = q_{1,k}r_{1,k}^2, \ldots, p_{2n,k} = q_{2n,k}r_{2n,k}^2.$$

Hence

$$u = \sum_{k=1}^{m} (q_{1,k}r_{1,k}^{2} + \ldots + q_{2n,k}r_{2n,k}^{2}) \in I.$$

(2) Suppose $0 \le u \le |v|$ and $v \in I$, and let M be an m-system in A which contains u. We will show $M \cap I \ne \phi$. There is some $x_1 \in A$ such that $ux_1u \in M$. There also is some $x_2 \in A$ such that $(ux_1u)x_2u \in M$. Continuing this, we find $x_1, \ldots, x_{2n} \in A$ such that

 $ux_1ux_2\ldots ux_{2n}u \in M.$

Then

$$0 \leq (ux_1ux_2...ux_{2n}u)^+ \leq |v| |x_1| |v| |x_2|...|v| |x_{2n}| |v|.$$

For i = 1, 3, ..., 2n - 1,

$$|v| |x_i| |v| \leq v^2 |x_i| + |x_i| v^2$$

since on each totally ordered coordinate of A, the projection of $|v| |x_i|$ is less than or equal to that of $|x_i| |v|$, or vice versa. Thus,

$$0 \leq (ux_{1}ux_{2}...ux_{2n}u)^{+}$$

$$\leq (v^{2}|x_{1}| + |x_{1}|v^{2}) |x_{2}| (v^{2}|x_{3}| + |x_{3}|v^{2}) |x_{4}|$$

$$...(v^{2}|x_{2n-1}| + |x_{2n-1}|v^{2}) |x_{2n}| |v|$$

$$\leq [(v^{2}|x_{1}| + |x_{1}|v^{2}) |x_{2}| + (v^{2}|x_{3}| + |x_{3}|v^{2}) |x_{4}| + ...$$

$$+ (v^{2}|x_{2n-1}| + |x_{2n-1}|v^{2}) |x_{2n}| |v|]^{n}.$$

So there exists a $w \in A$ such that

$$(ux_1ux_2...ux_{2n}u)^+$$

= w[(v²|x_1| + |x_1|v²)|x_2| + ...
+ (v²|x_{2n-1}| + |x_{2n-1}|v²)|x_{2n}||v|].

Therefore

 $(ux_1ux_2\ldots ux_{2n}u)^+ \in I.$

Similarly

 $(ux_1ux_2\ldots ux_{2n}u)^- \in I.$

We have shown that any *m*-system M which contains u meets I. Therefore, $u \in I$.

As an easy consequence of part (2), we can characterize semiprime and prime ideals in an f-ring with a convexity condition in the same way that D. Johnson has characterized semiprime and prime *l*-ideals in f-rings (1.1 or [10, 1.4]) and in the same way that they are characterized in commutative rings.

4.2 THEOREM. Let $n \ge 1$ and A be an f-ring satisfying the left n^{th} -convexity property. If I is an ideal then I is (semiprime) prime if and only if $(a^2 \in I)$ ab $\in I$ implies $(a \in I)$ $a \in I$ or $b \in I$.

Proof. Suppose I is prime. By the last theorem, I is an *l*-ideal. So by 1.1 $ab \in I$ implies $a \in I$ or $b \in I$. Now suppose I is an ideal satisfying $ab \in I$ implies $a \in I$ or $b \in I$. Using 1.1, we need only show I is an *l*-ideal. Suppose $0 \le u \le |v|$ and $v \in I$. Then $0 \le u^{2n} \le v^{2n}$. So there is $w \in A$ such that $u^{2n} = wv^2$. Thus $u^{2n} \in I$. So $u \in I$.

Remark. Let A be an f-ring. The fact that if I is an l-ideal in A, then I is prime if and only if I is pseudoprime and semiprime, has been proved by H. Subramanian [14] for commutative f-rings with identity element and by C. Huijsmans and B. de Pagter [7] for archimedean f-rings. However, the proof that is given by Huijsmans and de Pagter does not require the archimedean condition. So, a direct consequence of this and of Theorem 4.1 (2) might be stated as: if I is an ideal in an f-ring satisfying the left n^{th} -convexity property for some $n \ge 1$, then I is a prime ideal if

and only if I is pseudoprime and semiprime. Examples do exist showing that the left n^{th} -convexity property is necessary here.

Next, we use M. Henriksen's notion of a square dominated ideal [5] to show a relationship between semiprime and idempotent ideals. An ideal I of an f-ring A is called square dominated whenever the l-ideal $\langle I \rangle$ generated by I satisfies

$$\langle I \rangle = \{a \in A : |a| \le x^2 \text{ for some } x \in A \text{ such that } x^2 \in I\}$$

Let I be an *l*-ideal of a semiprime *f*-ring A. In [5, 3.4], M. Henriksen proves $I = \langle I^2 \rangle$ if and only if I is semiprime and square dominated.

4.3 THEOREM. Let $n \ge 1$ and A be a semiprime f-ring satisfying the left n^{th} -convexity property. An ideal I is idempotent if and only if I is semiprime and square dominated.

Proof. Since an *f*-ring satisfying the left 1st-convexity property also satisfies the left 2nd-convexity property, we may assume $n \ge 2$. Suppose $I = I^2$. Then *I* is an *l*-ideal by 4.1 and so by Henriksen's result, *I* is semiprime and square dominated.

Now suppose I is semiprime and square dominated. Again I is an l-ideal and so

$$I = \langle I \rangle = \{ a \in A : |a| \le x^2 \text{ for some } x \in A \text{ such that } x^2 \in I \}.$$

Let $a \in I$. Let *m* be the largest integer such that $2^m \leq n$. Now $0 \leq a^+ \leq x_1^2$ for some $x_1 \in A^+$ with $x_1^2 \in I$. Since *I* is semiprime, $x_1 \in I$. As before, $0 \leq x_1 \leq x_2^2$ for some $x_2 \in A^+$ with $x_2^2 \in I$. Again $x_2 \in I$. So

 $0 \leq a^+ \leq x_1^2 \leq x_2^4.$

Continuing this, we get

 $0 \leq a^+ \leq x_m^{2^m} \leq x_{m+1}^{2^{m+1}}$ with $x_m, x_{m+1} \in I^+$.

If $2^m = n$, then $0 \le a^+ \le x_m^n$ and there is a $w \in A$ such that

 $0 \leq w \leq x_m^{n-1}$ and $a^+ = wx_m$.

Then since I is an l-ideal, $w \in I$ and so $a^+ \in I^2$. If $2^m \neq n$, then

$$0 \leq a^{+} \leq x_{m}^{2^{m}} = x_{m}^{2^{m+1}-n} x_{m}^{n-2^{m}}$$
$$\leq x_{m}^{2^{m+1}-n} x_{m+1}^{2n-2^{m+1}} \leq (x_{m} \vee x_{m+1})^{n}.$$

So there is $w \in A$ such that

$$0 \le w \le (x_m \lor x_{m+1})^{n-1} \text{ and } a^+ = w(x_m \lor x_{m+1}).$$

Thus $a^+ \in I^2$. Similarly, $a^- \in I^2$.

We now consider products and sums of ideals. The product theorems

f-RINGS

and corresponding example will reflect a difference between the 2^{nd} -convexity condition and the n^{th} -convexity condition for $n \ge 3$.

4.4 THEOREM. Let A be an f-ring and I, J l-ideals of A. Then

(1) If A satisfies the left 2^{nd} -convexity property, then I^2 is also an *l*-ideal.

(2) If A satisfies the 2nd-convexity condition, then IJ is also an l-ideal.

Proof. (1) Suppose $0 \le u \le |v|$ and $v \in I^2$. Then $|v| \le p^2$ for some $p \in I^+$. Hence $0 \le u \le p^2$, and there is $w \in A$ such that u = wp and $0 \le w \le p$. Now $w \in I$ and therefore $u = wp \in I^2$.

(2) Suppose $0 \le u \le |v|$ with $v \in IJ$. Then there is $p \in I^+$, $q \in J^+$ such that $|v| \le pq$. So

 $0 \leq u \leq (p \lor q)^2 \leq p^2 + q^2.$

The Riesz decomposition property implies u = r + s for some r, s such that $0 \le r \le p^2$ and $0 \le s \le q^2$. So there are $w_1, w_2 \ge 0$ such that $r = pw_1$ and $s = w_2q$. Hence

$$u = pw_1 + w_2 q.$$

Let $r_1 = w_1 \land q$ and $r_2 = w_2 \land p$. Then $r_1 \in J$, $r_2 \in I$ and $pr_1 + r_2q \in IJ$. Now,

$$pr_1 + r_2q = p(w_1 \land q) + (w_2 \land p)q$$
$$= pw_1 \land pq + w_2q \land pq.$$

But $pw_1 \leq u \leq pq$ and $w_2q \leq pq$. So

$$pr_1 + r_2q = pw_1 + w_2q = u.$$

So $u \in IJ$.

Part (2) has been shown by C. Huijsmans and B. de Pagter [7, 4.13] under more restricted circumstances, and our proof mimics theirs.

This result need not hold in case A satisfies the (left) n^{th} -convexity property for $n \ge 3$. In this case, no power of I larger than 1 need be an *l*-ideal as shown by the following (inspired by [7, 3.13]).

4.5 Example. Let $n \ge 3$ and A be the set of all real-valued functions defined on [0, 1] of the form ri^{n-2} , where $r \in C([0, 1])$ and i(x) = x for all $x \in [0, 1]$. With respect to the usual pointwise operations A is an f-ring satisfying the n^{th} -convexity property, but does not satisfy the m^{th} convexity property for any m < n. For m < n, A does not satisfy the m^{th} -convexity property since $u:[0, 1] \rightarrow \mathbb{R}$ defined by

$$u(x) = x^{n-1} \left| \sin \frac{1}{x} \right|$$

is in A, and $0 \le u \le i^m$, but $u \ne wi$ for any $w \in A$. Now A is an *l*-ideal in itself and for any m > 1, A^m is not an *l*-ideal since

$$0 \leq i^{m(n-2)} \left| \sin \frac{1}{x} \right| \leq i^{m(n-2)}, i^{m(n-2)} \in A^m \text{ and}$$
$$i^{m(n-2)} \left| \sin \frac{1}{x} \right| \notin A^m.$$

The next example shows that the conclusion of part (2) of this theorem is not valid under the weaker hypothesis that A satisfy the left 2^{nd} -convexity property.

4.6 Example. Let

$$A = \{ax_1 + bx_2 + cx_3 : a, b, c \in \mathbf{R}\}.$$

Carry out addition coordinatewise and multiplication using the rules

$$x_1^2 = x_1, x_2x_1 = x_1x_2 = x_2, x_3x_1 = x_3$$
 and
 $x_1x_3 = x_2^2 = x_3x_2 = x_2x_3 = x_3^2 = 0.$

Order A lexicographically by defining

 $ax_1 + bx_2 + cx_3 \ge 0$

if either a > 0, or a = 0, b > 0, or a = b = 0 and $c \ge 0$. It is easily seen that A is a totally ordered ring. The ring A satisfies the left but not the right 2nd-convexity property. Let

$$I = \{ax_1 + bx_2 + cx_3 \in A : a = 0\}.$$

Then I is an *l*-ideal. But

$$AI = \{ax_1 + bx_2 + cx_3 \in A : a = c = 0\}$$

is not an *l*-ideal in A.

Let A be an f-ring. In [5, 3.10, 3.11], it is proved that the sum of two square dominated semiprime *l*-ideals is semiprime, and if one of the ideals is prime, then the sum is also prime. Recall that an f-ring is said to be square-root closed if for every $a \in A$ there is an $x \in A$ such that $x^2 = |a|$. Under more restricted conditions, part (2) of the following theorem has also been shown in [7].

4.7 THEOREM. Let $n \ge 1$ and A be an f-ring satisfying the left n^{th} -convexity property. Then

(1) The sum of two idempotent ideals is idempotent.

(2) If A is square-root closed, then the sum of any two semiprime ideals is semiprime, and if one of the summands is prime, then the sum is also prime.

Proof. (1) We may assume $n \ge 2$. Suppose I, J are idempotent ideals. Then $I = I^n$ and $J = J^n$ and both are *l*-ideals. Let $a \in I + J$. We will show $a \in (I + J)^2$. Now a = b + c for some $b \in I = I^n, c \in J = J^n$. Also, $|b| \le p^n$ for some $p \in I^+$ and $|c| \le q^n$ for some $q \in J^+$. So

$$a^+ \leq p^n + q^n \leq (p + q)^n.$$

So there is $w \in A$ such that

$$0 \le w \le (p+q)^{n-1}$$
 and $a^+ = w(p+q)$.

Since I + J is an *l*-ideal, $w \in I + J$ and hence $a^+ \in (I + J)^2$. Similarly, $a^- \in (I + J)^2$.

(2) Suppose I and J are semiprime ideals. Then they are *l*-ideals. Any semiprime *l*-ideal in a square-root closed *f*-ring is square dominated and so the theorem follows from Henriksen's result.

When A satisfies the left n^{th} -convexity property for some $n \ge 3$, the hypothesis that A is square-root closed in part (2) cannot be weakened to the hypothesis that A is square dominated, as shown next. We will make use of the following example which also appears in [7, 4.16].

4.8 *Example*. In C([0, 1]), denote by *i* the function i(x) = x, by *e* the function e(x) = 1, and let $w = \sqrt{i}$. Let

$$A = \{ f \in C([0, 1]) : f = ae + bw + g; g \in \langle i \rangle, a, b \in \mathbf{R} \}$$

with the pointwise operations. A tedious but straightforward calculation shows that A satisfies the n^{th} -convexity property for all $n \ge 3$. Moreover, A is square dominated, as every $f \in A$ satisfies $|f| \le a^2 e$ for appropriate $a \in \mathbf{R}$. Since $\sqrt{w} \notin A$, the f-ring A is not square-root closed. Let

$$I = \left\{ f \in A : f\left(\frac{1}{2n-1}\right) = 0 \text{ for } n = 1, 2, \dots \right\} \text{ and}$$
$$J = \left\{ f \in A : f\left(\frac{1}{2n}\right) = 0 \text{ for } n = 1, 2, \dots \right\}.$$

Then I and J are semiprime *l*-ideals, but as is shown in [7, 4.16], I + J is not semiprime.

5. Some of our examples and theorems have shown that there is a difference between the various convexity conditions, and at least the 1^{st} and 2^{nd} -convexity conditions are significantly stronger than the other convexity conditions. In this section, we give some relationships between these conditions.

First, note that any f-ring A satisfying the left 1st-convexity condition also satisfies the left n^{th} -convexity condition for all $n \ge 2$.

5.1 THEOREM. Let $n \ge 2$ and A be an f-ring satisfying the left n^{th} -convexity property. If A is infinitesimal or if A has a left super unit, then A also satisfies the left m^{th} -convexity property for every m > n.

Proof. Suppose $v \ge 0$ and $0 \le u \le v^m$. If A is infinitesimal, then $0 \le u \le v^m \le v^n$ and so by the left nth-convexity property, there is a $w \in A$ such that u = wv. Now assume A has a left super unit a > 0. If n divides m, then

$$0 \leq u \leq (v^{m/n})^n$$

implies that

 $u = (wv^{(m/n)-1})v$

for appropriate $w \in A$. If not, then

 $0 \leq u \leq ((v \vee a)v^{\perp m/n \perp})^n$

and so there is a $w \in A$ such that

$$u = w(v \vee a)v^{\lfloor m/n \rfloor}$$

5.2 THEOREM. Let A be a semiprime f-ring with identity element. Then A satisfies the left 1^{st} -convexity property (and hence the left m^{th} -convexity property for all $m \ge 1$) if and only if A satisfies the left or right n^{th} -convexity property for some $n \ge 1$ and every finitely generated left ideal in A is principle.

Proof. Necessity follows from Theorem 2.4. Now suppose A satisfies the left n^{th} -convexity property for some $n \ge 1$ and that every finitely generated left ideal is principal. Suppose also that $0 \le u \le v$ and $v \ne 0$. For some $d \ne 0$, $(u, v)_l = (d)_l$. So there are $p, q, r, s \in A$ such that u = pd, v = qd and ru + sv = d. Then

$$[(rp + sq) - 1]d = 0.$$

Let

$$I = \{ f \in A : fd = 0 \}$$

= $\{ f \in A : |f| \land |d| = 0 \} = \{ f \in A : df = 0 \}.$

Then I is a semiprime *l*-ideal by 4.2. Note that A/I satisfies the left n^{th} -convexity property by 2.3. Now

((rp + sq) - 1) + I = 0 + I

and hence

$$(rp + sq) + I = 1 + I.$$

Now $|p| - |p| \land |q| \in I.$ So
 $|p| + I = |p| \land |q| + I = (|p| + I) \land (|q| + I).$

Hence $|p| + I \leq |q| + I$. Thus

 $1 + I = (rp + sq) + I \leq (|r| + |s|) |q| + I.$

Therefore $[(|r| + |s|)|q| + I]^{-1}$ exists in A/I by 3.9. Hence

 $[(|r| + |s|)|q| + I]^{-1}((|r| + |s|) + I)$

is a left inverse of |q| + I in A/I. Then there is a $q' \in A$ such that

 $q' + I = [(|r| + |s|)|q| + I]^{-1}((|r| + |s|) + I)$

and

(q' + I)(|q| + I) = 1 + I.

Then

(|p|q')v = |p|q'|qd| = |p|(1 + a)|d|

for some $a \in I$. Thus

$$(|p|q')v = |p|(1 + a)|d| = |p|(|d| + a|d|) = |p||d| = u.$$

Not both of the conditions that A be semiprime and have an identity element can be left out of the hypothesis of this theorem as shown next.

5.3 Example. Let $A = \{ae + bz:a, b \in \mathbf{Q}\}\)$, with addition, multiplication and ordering defined as in Example 3.5. Then A satisfies the left n^{th} -convexity property for all $n \ge 2$, and every finitely generated left ideal is principal. But A does not satisfy the left 1^{st} -convexity property.

Example 4.8 shows that the condition that every finitely generated left ideal be principal is not redundant.

Acknowledgement. This paper is a portion of the author's doctoral dissertation written under the supervision of Professor Melvin Henriksen. The author wishes to thank Professor Henriksen for his valuable advice and encouragement.

References

- 1. A. Bigard, K. Keimel and S. Wolfenstein, *Groups et anneaux reticules*, Lecture Notes in Mathematics 608 (Springer-Verlag, 1977).
- 2. L. Fuchs, Partially ordered algebraic systems (Pergamon, Oxford, 1963).
- 3. L. Gillman and M. Jerison, Rings of continuous functions (Springer Verlag, 1960).
- L. Gillman and C. Kohls, Convex and pseudoprime ideals in rings of continuous functions, Math. Zeit. 72 (1960), 399-409.
- 5. M. Henriksen, Semiprime ideals of f-rings, Symposia Math. 21 (1977), 401-409.
- 6. M. Henriksen and D. Johnson, On the structure of a class of Archimedean lattice-ordered algebras, Fund. Math. 50 (1961), 73-94.
- 7. C. Huijsmans and B. de Pagter, Ideal theory in f-algebras, Trans. Amer. Math. Soc. 269 (1982), 225-245.
- On z-ideals and d-ideals in Riesz spaces I, (Proc. Nederl. Akad. Wetensch. A83) Indag. Math. 42 (1980), 183-195.

SUZANNE LARSON

- 9. —— On z-ideals and d-ideals in Riesz spaces II, (Proc. Nederl. Akad. Wetensch. A83) Indag. Math. 42 (1980), 391-408.
- **10.** D. Johnson, A structure theory for a class of lattice-ordered rings, Acta Math. 104 (1960), 163-215.
- 11. N. McCoy, The theory of rings (Chelsea Publ. Co., Bronx, New York, 1973).
- 12. B. de Pagter, On z-ideals and d-ideals in Riesz spaces III, (Proc. Nederl. Akad. Wetensch. A84) Indag. Math. 43 (1981), 409-422.
- 13. S. Steinberg, Quotient rings of a class of lattice-ordered rings, Can. J. Math. 25 (1973), 627-645.
- 14. H. Subramanian, *l-prime ideals in f-rings*, Bull. Soc. Math. France 95 (1967), 193-203.

Marquette University, Milwaukee, Wisconsin

64