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CONVEXITY CONDITIONS ON/-RINGS 

SUZANNE LARSON 

Introduction. Let n be a positive integer. An /-ring A is said to satisfy 
the left n{ -convexity property if for any w, v e A such that v ^ 0 and 
0 ^ u ^ vn, there exists a w e A such that u = ,wv. The right nl -
convexity property is defined similarly and an /-ring is said to satisfy 
the n{ -convexity property if it satisfies both the left and the right 
n{ -convexity property. In this paper, we study arbitrary /-rings which 
satisfy one of the convexity properties. 

Those/r ings which satisfy one or more of these properties have been 
studied by several authors. In [3, ID], L. Gillman and M. Jerison note that 
any C(X) satisfies the nx -convexity property for all n ^ 2, and in 
[3, 14.25], they give several properties that in C(X) are equivalent to the 
lst-convexity property. M. Henriksen proves some results about the ideal 
theory of an / r i n g satisfying the 2nd-convexity property in [5] and 
S. Steinberg studies left quotient rings of / r i ngs satisfying the 
left lst-convexity property in [13]. In [7, Section 3.4], C. Huijsmans and 
B. de Pagter use the 2n -convexity property to prove some results about 
the ideal theory of uniformly complete archimedean /-algebras and in [7, 
Section 6], [8], [9] and [12], they give several properties that in 
archimedean /-algebras with identity element are equivalent to the 
lst-convexity property. 

In Section 2, we derive some basic facts about such/-rings. In Section 3 
we give some conditions under which / r ings satisfying a convexity 
property are guaranteed to have an identity element or to be embeddable 
in an/-ring with an identity element. Section 4 is concerned with the ideal 
theory of an/-ring satisfying a convexity property, and in Section 5, we 
study the relationships between the various convexity properties. 

1. Preliminaries. Much of the material given here can also be found in 

Given an/-ring A and an element x e A, we let 

A+ = {a e A:a ^ 0}, x + = x V 0, JC" = ( - J C ) V 0 

and |JC| = x V ( — x). 
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Then x = x^~ — x~ and \x\ = x^ + x~. Recall that the Riesz 
decomposition property states that if 0 ^ a ^ bx + b2 + . . . + bm 

with bh . . . 9bm G A^ then there exists xx,. . . , xm G A^ such that 

a = xx + x2 + . . . + xm and x,- ^ bt for / = 1, 2, . . . , m. 

By an ideal in A we always mean a ring ideal. Suppose A is a ring and / 
an ideal of A. Then / is called semiprime (prime) if whenever J(Jl,J2) is an 
ideal such that J2 c / ( J ^ c / ) , / c 7(/j c / or / 2 c / ) . The ring ,4 is 
called semiprime (prime) if {0} is a semiprime (prime) ideal. We call / 
pseudoprime if a, b ^ A and ab = 0 implies a G / or Z> G / . A subset M of 
yl is called an m-system if whenever a, b Œ M there exists an x G A such 
that #x/> G M. In [11, Section 18] it is shown that / is semiprime if and 
only if / = {a G A:every m-system in A which contains a has nonempty 
intersection with / } . 

An ideal / of an/-ring A is said to be an /-ideal if \x\ ^ | y\, y G / implies 
x E / . It is well known that the sum of two /-ideals in A is again an /-ideal. 
Given an /-ring A and an element x G A there is a smallest (left) 
/-ideal containing x, and we will denote this by ( (x)l)(x). The (left) ideal 
generated by x G A is denoted by ( (x)7), (x). The following may be found 
in [2] or in [1]. 

1.1) If / is an /-ideal, then / is semiprime (prime) if and only if a G / 
(ab G / ) implies a G / (Û G / or b G / ) . 

An element « > 0 of an /-ring is called a sw/?er idempotent if a tk a , 
called a wa / : order wmï if a A w = 0 implies w = 0, and called a swper 
wwï (left super unit) if ax ^ x and xa ^ x (ax = x) for all x ^ 0. An 
/-ring is said to be l-simple if A2 ¥- {0} and A has no proper /-ideals. Then 
as can be found in [1]: 

1.2) A super idempotent in a totally ordered ring is not contained in any 
proper left or right /-ideal. 

1.3) If a is a super idempotent which is also a weak order unit, then a is 
not contained in any proper /-ideal. 

1.4) If A is /-simple, then A is totally ordered and prime, A contains a 
super unit and has no proper left or right /-ideals. 

An/-ring A is called infinitesimal if a2 ^ \a\ for every a G A. Now not 
every /-ring can be embedded in an /-ring with identity element. The 
following is established in [1]. 

1.5) If a totally ordered ring is embeddable in an/-ring with identity 
element, then it is embeddable in a totally ordered ring with identity. 

1.6) An/-ring is embeddable in an/-ring with identity if and only if it is 
a subdirect product of totally ordered rings embeddable in/-rings with 
identity. 
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1.7) Every infinitesimal or prime/-ring is embeddable in an/-ring with 
identity. 

1.8) A totally ordered ring is embeddable in an/-ring with identity if 
and only if every super idempotent is a super unit. 

1.9) If an/-ring is embeddable in an/-ring with identity, its idempotent 
elements are in its center. 

The following is probably well known, and a proof is given for the sake 
of completeness. 

1.10) Let A be an/-ring with an identity and a e A. Then a left inverse 
of a is also a right inverse of a. 

Proof. Suppose b is a left inverse of a. Then {ab) = ab and so ab is in 
the center of A. Then ab = abba = baba = 1. 

2. In this section, we will define some convexity conditions on an/-ring 
and look at some of the basic properties of an/-ring which satisfies one of 
these conditions. 

Definition. Let n ^ 1. An/-ring is said to satisfy the left nx -convexity 
property if for any w, v e A such that v ^ 0 and 0 ^ u ^ vn, there exists a 
w e A such that u = wv. The right «th-convexity property is defined 
similarly. An/-ring is said to satisfy the nl -convexity property if it satisfies 
both the left and the right nx -convexity property. If A satisfies the 
left nl -convexity property, then we may assume that the element w 
satisfies 0 ^ w ^ vn~x (by replacing the element w, if necessary, by 
(w A vn~x) V0). 

Examples of /-rings satisfying the nx -convexity property for n ^ 2 
include a totally ordered division ring, and C(X), the /-ring of all 
real-valued continuous functions defined on a topological space. C. 
Huijsmans and B. de Pagter have shown that a uniformly complete 
/-algebra with identity element satisfies the nx -convexity property for all 
n ^ 2 [7, 3.11]. 

The next result has been proved for uniformly complete/-algebras with 
identity element in [7, 3.11]. The proof is similar and therefore omitted. 

2.1 LEMMA. Let n = 2. If A is a semiprime f-ring satisfying the left 
n{ -convexity property, then the w of the previous definition is unique. 

The condition that A be semiprime cannot be dropped, as shown 
next. 

2.2 Example. Let n ^ 2 and Rr[x] denote the ring of polynomials with 
real coefficients and zero constant term. Order Rr[x] by defining 
p(x) = pxx + . . . + pmxm > 0 if the first non-zero coefficient of p(x) (i.e., 
the coefficient of the least power of JC) is greater than 0. Let 
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A = R'[JC]/(JC">. 

Then A is a totally ordered ring satisfying the nl -convexity property. 
Inv4, 

0 g u = 0 ^ (x)n = 0; 

0 ^ w = 0 ^w' = xn~x ^ xn~x and 

w = wx = w'x. 

So w and W both satisfy the result in Lemma 2.1. 

2.3 THEOREM. Le/ « = 1 and A be an f-ring which satisfies the left 
nx -convexity property. Any l-homomorphic image of A satisfies the 
left n{ -convexity property. 

Proof. Suppose <j>:A —» B is an /-homomorphism onto B, <f>(v) ^ 0 and 
0 ^ <f>(u) ^ [<Hv) f in B. Then 

0 ^ (0 V u) A (0 V vf ^ (0 V v)" 

in A. Then there is w e 4̂ such that 

(0 V u) A (0 V v f = w(0 V v). 

Thus, 

<j>[ ( 0 V w ) A ( 0 V v)w] = <t>[w(0 V v) ]. 

So <f>(w) = <J>(w)<f>(v). 

2.4 THEOREM. Let A be an f-ring satisfying the left ls1-convexity property. 
Then 

(1) For each f e A, there is an r e A such that f = r\f\ and \f\ = rf 
(2) Every left ideal I in A is a left l-ideal. 
(3) For allf, g e A, (/, g), = ( | / | + \g\ ),. 
(4) i w a///, geA, (f, g), = ( l/l V |g| ),. 
(5) If A is semiprime, then every left ideal I is an intersection of 

pseudoprime left ideals. 
If A also contains a left super unit a, then (2), (3) and (4) are equivalent to 

the left ls1-convexity property. 

Before proving this, we note that (1) through (4) have been shown for 
C(X) in [3, 14.25] and subsequently shown for an archimedean/-algebra 
with identity element in [7, 6.3, 6.5]. Part (5) has been shown for C(X) in 
[4, 4.7 and 6.2]. S. Steinberg gives a related result in [13, 3.2]. The proofs 
mimic the proofs given in [7] and [4], so we confine ourselves to showing 
the last statement. 

Proof We show that (2), (3) and (4) imply the left lst-convexity property 
under the additional hypothesis that A contains a left super unit a. 

https://doi.org/10.4153/CJM-1986-003-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1986-003-6


52 SUZANNE LARSON 

Suppose 0 ^ u ^ v. Then 0 ^ u ^ av. 
(2). Now av G v4v and 4̂v is a left /-ideal. Hence u ^ Av. 
(3). By (3), 

(«, av — u)i = (w + av — u){ = (av)l c Av. 

So w G ylv. 
(4). By (4), 

(w, #v)/ = (w V m>)/ = (ÛV)/ c ^4v. 

Sow e ylv. 

Part (1) and (5) of this theorem are not equivalent to the left 
lst-convexity property (even when an identity element is present) since 
every totally ordered prime ring with identity element satisfies (1) and 
(5). 

2.5 THEOREM. Let n = 2. If A is an f-ring with the left nl -convexity 
property, then for every v ^ 0, (vn)l c (v){. If A has a left super unit a, then 
these properties are equivalent. 

Proof Let u G (V")/. Then \u\ â sv11 + lvn for some s G A +, l G N. It is 
easily seen that 

0 ^ u+ ^ (sv + (/V l)vf. 

So there is w G 4̂ such that 

w+ = w(sv + (/V l)v). 

Thus w+ G (v)7. Similarly, w~ G (V)7. 
Suppose now that a is a left super unit and that for every v ^ 0, 

(v"), c (v)z. Assume v ^ 0 and 0 ^ w ^ vn. Then 

0 ^ w ^ (av)11 and u G ( (av)">, c (av)/ c 4v. 

3. We now consider two general questions: under what conditions are 
we assured that an /-ring satisfying one of the convexity conditions 
contains an identity element, and what can be said about/-rings with one 
of the convexity conditions and having an identity element? 

The following has also been proven by Steinberg in [13, 3.1(d) ]. 

3.1 THEOREM. If A is a prime f-ring satisfying the left ls1-convexity 
property, then A has an identity element. 

Proof Let u > 0. Then 0 < u ^ u and there exists w G A such that 
u = wu. Now, (w — w)u = 0. Since A is prime, w = w. This implies that 
w is a right identity element for Aw and a left identity element for 
wA. Also, by 1.7 and 1.9, w is in the center of A. Hence Aw = wA and 
w is an identity element for Aw = wA. We now show A = Aw. Note w 
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is a weak order unit in A. Also, by 2.4.2, Aw is an /-ideal. So 1.3 implies 
Aw = wA = A. 

By considering the direct sum of an infinite number of copies of R, we 
see that the condition that our/-ring be prime cannot be omitted from this 
theorem. The condition that A satisfy the left lst-convexity property 
cannot be weakened to the condition that A satisfy the left nx -convexity 
property for any n ^ 2 as shown next. 

3.2 Example. Totally order R[x] by defining 

m 

2 apé > 0 if am > 0. 

In the quotient ring of R[x], define 

d e g — - = deg/?(x) - deg q(x). 
q(x) 

Now let A be the subring 

P(*).-,^ „ / - x r i*r. . i _ j i^P(X) ^ Q \ A = \ -—:p(x), q(x) e R[x] and deg-—- < 
lq(x) q(x) 

Order A so that 

^ - ^ 0 if p(x)q(x) ^ 0 in R[x]. 
q(x) 

Then A is a totally ordered prime /-ring satisfying the «th-convexity 
property for all n ^ 2 but without identity element. 

3.3 THEOREM. Le/ « ^ 1 and A be a totally ordered ring satisfying the 
nl -convexity property. If A contains a super idempotent a, then A contains 
an identity element. 

Two portions of the proof will be separated out and stated as a 
lemma. 

3.4 LEMMA. Let n ^ 1 and A be an f-ring satisfying the n{ -convexity 
property. If A has a super idempotent a, then 

(1) The left ideal Aa has a right identity element and the right ideal aA has 
a left identity element. 

(2) Aa is a left l-ideal and aA is a right l-ideal. 

Proof (1) If n = 1, then 0 < a ^ a and if n > 1, then 0 ^ a ^ a2 ^ an. 
In either case, there exist W,W'ŒA such that a = wa and a = awf. Then 
w' is a right identity for Aa and w a left identity for aA. 

(2) In order to show that Aa is a left /-ideal it is sufficient to prove that 
0 ^ u ^ |èa| for some Z? G A implies that u e Aa. If 0 ^ w ̂  \ba\ = \b\a, 
then 
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0 ^ il ^ ( \b\a + af. 

So there i s i G i such that 

u = x( \b\a + a). 

Hence w e .4a. Similarly, <3L4 is a right /-ideal. 

We proceed to the proof of Theorem 3.3. 

Proof. By the lemma, Aa and aA have a right and left identity element, 
and are left and right /-ideals respectively. By 1.2, a is not contained 
in any proper left or right /-ideal of A. But, a e Aa and a e aA. So 
Aa = aA = A and A has a right and a left identity element. 

At least for n ^ 2, the hypothesis that A contain a super idempotent 
cannot be omitted from this theorem since the totally ordered/-ring A of 
Example 3.2 satisfies the «th-convexity property for all n ^ 2 and does not 
contain a super idempotent or identity element. The hypothesis that A 
satisfy the n -convexity property cannot be weakened to the hypothesis 
that it satisfy the left or right nl -convexity property, as shown by the 
following example. 

3.5 Example. Let A = {ae + bz\a, b G R}. Carry out addition co-
ordinatewise and multiplication using the rules e2 = e, ze = z and 
z2 = ez = 0. Order A lexicographically so that 

ae + bz = ce + dz if a > c or a = c, b â d. 

Then A is a totally ordered/-ring satisfying the left nx -convexity property 
for all n = 2, but not the right nl -convexity property for any n. It even 
has an idempotent (namely e + z), but not an identity element. Moreover, 
in [10, III 3.4], D. Johnson shows that A is not even embeddable in a 
totally ordered ring with identity element. 

3.6 COROLLARY. Let n ^ 1 and A be an f-ring satisfying the n{ -convexity 
property. Then 

(1) A is a subdirect sum of totally ordered rings, each of which is either 
infinitesimal or contains an identity element. 

(2) A is embeddable in an fring with identity element. 

Proof. A is a subdirect sum of totally ordered rings, say Ai9 each of 
which is either infinitesimal or contains a super idempotent. The latter 
implies that At has an identity element. The former implies Ai is 
embeddable in a totally ordered ring with identity by 1.7. 

Example 3.5 illustrates that the condition that A satisfy the nl -
convexity property cannot be weakened to satisfy the left or right 
nl -convexity property. 
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3.7 THEOREM. Let n â 1 and A be an f-ring satisfying the n{ -convexity 
property. If A contains a left or a right super unit a, then A has an identity 
element. 

Proof. Suppose A is a left super unit. By Lemma 3.4, Aa and aA possess 
a right and left identity element respectively. We will show Aa = aA = A. 
To that end, we first show a is a right super unit. Suppose A is a subdirect 
product of the totally ordered rings At. By Theorems 2.3 and 3.3, each At 

has an identity element \t. Since a is a left super unit, lt = ai\i = at for 
each / (where ai denotes the projection of a onto At). Then for each x ^ 0 
and each i, xt = xi\i ^ xiai and hence x ^ xa. So a is a right as well as a 
left super unit. Now Aa and aA is a left and right /-ideal respectively, by 
Lemma 3.4. For any b ^ 0, 0 ^ Z> ^ ba and Z># G ^4a. So b e ^4a. Thus 
A = Aa. Similarly, aA = A. 

Again Example 3.5 shows that the hypothesis in this theorem cannot be 
weakened to include "A satisfies the left nl -convexity property." 

The previous theorem is the key to the proof of the following. 

3.8 THEOREM. Let n = 1 and A be an f ring satisfying the nl -convexity 
property. If A is I-simp le, then A is a division ring. 

Proof By 1.4, A contains a super unit and so the previous theorem 
implies A has an identity element 1. Also by 1.4, A is totally ordered and 
has no proper left or right /-ideals. Let v > 0. Then (v)l = A. In 
particular, 1 e (V), and so 1 ^ av for some a <E A. Thus, 0 ^ 1 ^ (av)n, 
and so there is w ^ A such that 1 = wav. So wa is a left inverse for v. By 
1.10, wa is also a right inverse. 

Next we show that an /-ring satisfying a convexity property is what 
M. Henriksen and D. Johnson have called closed under bounded in
version [6]. 

3.9 THEOREM. Let n i^ 1 and A be an f-ring satisfying the left 
nx -convexity property. If A has an identity element and ifO^u^v and 
u~ exists in A, then v~ exists in A. 

Proof. If 0 ^ u ^ v and u~ exists, then 0 ^ 1 ^ u~lv and so 0 ^ 1 ^ 
(u~lv)n. There is a w E v4 such that 1 = wu v. Hence wu is a left 
inverse for v. Then 1.10 implies wu~l is the inverse for v. 

4. Ideals and /-ideals in an/-ring satisfying a convexity condition will be 
considered in this section. Recall that Theorem 2.4 states that in an/-ring 
satisfying the left lst-convexity property, every (left) ideal is a (left) /-ideal. 
In light of this, most of the content of this chapter will be redundant in 
case the lst-convexity property is satisfied. We will be most concerned 
with ideals in /-rings satisfying the (left) «th-convexity property for some 
/i â 2. 
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C. Huijsmans and B. de Pagter have proved the following for uniformly 
complete semiprime/-algebras [7, 4.7, 4.9]. 

4.1 THEOREM. Let n ^ 1 and A be an f-ring satisfying the left 
n{ -convexity property. Then 

(1) If I is an idempotent left ideal, I is a left 14deal 
(2) If I is a semiprime ideal, then I is an l-ideal 

Proof (1) Suppose 0 ^ u ^ |v| and v e / . Since I = I2 = I2n, 

m 

v = 2s r\,kr2,k • • • r2n,k 
k = \ 

for some rx h r2 k, . . . , r2n k ^ L® = k fk m. Then 

m 

k=\ 

By the Riesz decomposition property, 

m 

U = 2 (pUk + Pl,k + • • • + Pln,k) 

for some px k,. . . 9p2n^ 0 = ^ = m w i t n 0 = p x k = rlk
2n,..., 

0 = P2n,k = r 2« ,^" - T h e n t h e r e e x i s t a\,h • • - a2n,k SUCh'that 

_ 2 _ 2 
/M,* — Q\,kr\,k >-• • • >/>2«,A: — Qln,kr2n,k • 

Hence 

m 

W = 2 (?U>*U
2 + • • • + a2n,kr2n,k2) G 7 ' 

A : — 1 

(2) Suppose 0 ^ « ^ |v| and v e / , and let M be an ra-system in A 
which contains u. We will show M n I ¥= <f>. There is some xx e A such 
that wxjw e M. There also is some x2 ^ A such that (uxxu)x2u e M. 
Continuing this, we find jcl5 . . . , JC2„ e 4̂ such that 

uxxux2 . . . ux2nu e M. 

Then 

0 ^ (wxjW^ . . . ux2nu)+ ^ |v| |xj| |v| \x2\ . . . |v| |x2J |v|. 

For / = 1, 3 , . . . , In — 1, 

|v| |JC,.| |v| ^ v2|x,-| +\x,\v2 

since on each totally ordered coordinate of A, the projection of |v| \xt\ is 
less than or equal to that of \xt\ |v|, or vice versa. Thus, 
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0 ^ (ux\ux2 •. . ux2nu) 

^ (v 2 | x , | + I J C ^ I ^ K V V S I + \x3\v
2)\x4\ 

...(V2\X2„_X\ + I^2„-,|V2) |^2„| JV| 

^ [ (v2|x,| + |x,|v2) \x2\ + (v2\x3\ + |x3|v
2) |x4| + . . . 

+ (vV-J + U2n-.iv2)u2jMr. 
So there exists a w e A such that 

(uxiux2 ... ux2nu) 

= w[(v2\xx\ + |x,|v2)|x2| + . . . 

+ (v2|*2„-il + U 2 „ - l l v 2 ) M l v | ] . 

Therefore 

(uxlux2 . . . ux2nu) e / . 

Similarly 

(uxxux2 . . . ux2nu)~ e / . 

We have shown that any m-system M which contains u meets / . 
Therefore, u e / . 

As an easy consequence of part (2), we can characterize semiprime and 
prime ideals in an/-ring with a convexity condition in the same way that 
D. Johnson has characterized semiprime and prime /-ideals in/-rings (1.1 
or [10, 1.4]) and in the same way that they are characterized in 
commutative rings. 

4.2 THEOREM. Let n = 1 and A be an f-ring satisfying the left 
nx -convexity property. If I is an ideal then I is {semiprime) prime if and only 
if (a1 e / ) a t G / implies (a e I) a Œ I or b e I. 

Proof Suppose / is prime. By the last theorem, / is an /-ideal. So by 
1.1 ab e / implies Û G / or i G / . Now suppose / is an ideal satisfy
ing ab G / implies o G / o r i G / . Using 1.1, we need only show / is an 
/-ideal. Suppose 0 ^ u ^ |v| and v e / . Then 0 ^ u2n ^ v2n. So there is w 
e A such that u2n = wv2. Thus u2n

 G / . S O M G / . 

Remark. Let A be an/-ring. The fact that if / is an /-ideal in A, then / is 
prime if and only if / is pseudoprime and semiprime, has been proved 
by H. Subramanian [14] for commutative /-rings with identity element 
and by C. Huijsmans and B. de Pagter [7] for archimedean /-rings. How
ever, the proof that is given by Huijsmans and de Pagter does not 
require the archimedean condition. So, a direct consequence of this and of 
Theorem 4.1 (2) might be stated as: if / is an ideal in an/-ring satisfying 
the left nl -convexity property for some n i^ 1, then / is a prime ideal if 

https://doi.org/10.4153/CJM-1986-003-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1986-003-6


58 SUZANNE LARSON 

and only if / is pseudoprime and semiprime. Examples do exist showing 
that the left nx -convexity property is necessary here. 

Next, we use M. Henriksen's notion of a square dominated ideal [5] to 
show a relationship between semiprime and idempotent ideals. An ideal / 
of an /-ring A is called square dominated whenever the /-ideal ( / ) 
generated by / satisfies 

(/> = {a G A:\a\ ^ x for some x G A such that x2 G / } . 

Let / be an /-ideal of a semiprime/-ring A. In [5, 3.4], M. Henriksen proves 
/ = ( / ) if and only if / is semiprime and square dominated. 

4.3 THEOREM. Let n = 1 and A be a semiprime f-ring satisfying the left 
n{ -convexity property. An ideal I is idempotent if and only if I is semiprime 
and square dominated. 

Proof. Since an / r ing satisfying the left lst-convexity property also 
satisfies the left 2n -convexity property, we may assume « ^ 2. Suppose 
1 = 1. Then / is an /-ideal by 4.1 and so by Henriksen's result, / is 
semiprime and square dominated. 

Now suppose / is semiprime and square dominated. Again / is an /-ideal 
and so 

/ = ( / ) = {a G A:\a\ ^ x2 for some x G A such that x2 G / } . 

Let a G / . Let m be the largest integer such that 2m ^ n. Now 
0 ^ a = x^ for some xx G A with xx G / . Since / is semiprime, 
xx G /. As before, 0 ^ xx ^ x2 for some x2 G A+ with x\ G /. Again 
X2 G / . SO 

0 ^ a+ ^ x\ ^ x\. 

Continuing this, we get 

0 = ^ = *m = X2ml\ With Xm9 *m + 1 G J + . 

If 2m = n, then 0 ^ a + ^ xn
m and there is a w G A such that 

0 % w ^ x^"1 and a + = wxm. 

Then since / is an /-ideal, w G / and so <2+ G 72. If 2m ^ w, then 
I ^m i^m + X m 

0 ^ a ^ X = X -nn-2m 

< Y 2 ~n 2n-2 < / w y* 

So there is w G 4̂ such that 

0 â iv â (JCW V *lfI + 1 ) , , ~ 1 and a+ = w(xm V * w + 1). 

Thus a+ G 72. Similarly, a " G 72. 

We now consider products and sums of ideals. The product theorems 
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and corresponding example will reflect a difference between the 2n -
convexity condition and the n -convexity condition for n ^ 3. 

4.4 THEOREM. Let A be an f-ring and /, J l-ideals of A. Then 
(1) If A satisfies the left 2 -convexity property, then I is also an 

l-ideal. 
(2) If A satisfies the 2 -convexity condition, then I J is also an l-ideal 

Proof. (1) Suppose 0 ^ u ^ |v| and v e I2. Then |v| ^ p2 for some 
p e / + . Hence 0 ^ u ^ p2, and there is w e A such that w = wp and 
0 ^ w ^ /?. Now w G / and therefore u = wp e / . 

(2) Suppose 0 ^ w ^ |v| with v e. / / . Then there is p <E 7 + , q ^ J+ such 
that |v| ^ ;?#. So 

0 ^ u ^ (/? V q)2 ^ / + tf2. 

The Riesz decomposition property implies u = r + s for some r, 5 such 
that 0 t== r ^ p2 and 0 ^ s ^ #2. So there are wu w2 = 0 such that r = pwx 

and s = w2q. Hence 

u = pw\ + w2q. 

Let rl = Wj A q and r2 = w2 A /?. Then ^ Œ J, r2 Œ I and pr± + r2g G 
/ / . Now, 

/""l + ^ = P(w\ A ?) + O2 A Z7)? 

= /?Wj A pq + w2# A /?#. 

But /Wj ^ u ^ pq and w2g = /?#. So 

/7ri + r2# = /7Wi + ^2^ = u-

SOW G / / . 

Part (2) has been shown by C. Huijsmans and B. de Pagter [7, 4.13] 
under more restricted circumstances, and our proof mimics theirs. 

This result need not hold in case A satisfies the (left) nl -convexity 
property for n ^ 3. In this case, no power of / larger than 1 need be an 
/-ideal as shown by the following (inspired by [7, 3.13] ). 

4.5 Example. Let n ^ 3 and A be the set of all real-valued functions 
defined on [0, 1] of the form rin~2, where r e C( [0, 1] ) and i(x) = x for 
all x G [0, 1]. With respect to the usual pointwise operations A is an/-ring 
satisfying the nl -convexity property, but does not satisfy the m1 -
convexity property for any m < n. For m < n, A does not satisfy the 
mth-convexity property since u:[0, 1] —> R defined by 

U(x) = xn~x . 1 
sin -
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is in A, and O ^ M ^ im, but u ¥= wi for any w & A. Now A is an /-ideal in 
itself and for any m > 1, v4m is not an /-ideal since 

0 ^ i 

•m(n — 2) 

m(n-2) . 1 
sin -

x 

g ^ ( n - 2 ) ^ ( n - 2 ) e ^ m ^ 

. 1 
sin - « ,4m 

The next example shows that the conclusion of part (2) of this theorem 
is not valid under the weaker hypothesis that A satisfy the left 
2 -convexity property. 

4.6 Example. Let 

A = {axx + bx2 + cx3\a, b, c e R}. 

Carry out addition coordinatewise and multiplication using the rules 

x~\ == Xi, x2xx
 =:: •̂ 1*̂ 2 == "̂ 2> -^3^i == -̂ 3 and 

2 2 
.X1.X3 = X2

 = = X ^ X T = = X9-X3 = = ^ 3 = = vJ. 

Order A lexicographically by defining 

axx + bx2 + 0*3 ^ 0 

if either a > 0, or a = 0, b > 0, or a = b = 0 and c ^ 0. It is easily seen 
that A is a totally ordered ring. The ring A satisfies the left but not the 
right 2 -convexity property. Let 

/ = {axx + bx2 + cx3 G A:a = 0}. 

Then / is an /-ideal. But 

AI = {axx + bx2 + CJC3 G v4:« = c = 0} 

is not an /-ideal in ^4. 

Let A be an/-ring. In [5, 3.10, 3.11], it is proved that the sum of two 
square dominated semiprime /-ideals is semiprime, and if one of the ideals 
is prime, then the sum is also prime. Recall that an/-ring is said to be 
square-root closed if for every a e A there is an x e A such that x = \a\. 
Under more restricted conditions, part (2) of the following theorem has 
also been shown in [7]. 

4.7 THEOREM. Let n ^ 1 and A be an f-ring satisfying the left 
nl -convexity property. Then 

(1) The sum of two idempotent ideals is idempotent. 
(2) If A is square-root closed, then the sum of any two semiprime ideals is 

semiprime, and if one of the summands is prime, then the sum is also 
prime. 
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Proof. (1) We may assume « ^ 2. Suppose /, J are idempotent ideals. 
Then / = F and J = F and both are /-ideals. Let a G / + / . We will 
show a G (/ + J)1. Now a = b + c lor some beI = F,ceJ = F. 
Also, |6| = />" for some/? G 7 + and |c| = q" for some # G J+. So 

a + S />" + f â (/> + qf. 

So there is w G yl such that 

0 ^ w ^ (p + # ) " _ 1 and a + = w(/? + #). 

Since / + / is an /-ideal, w G / + / and hence a G (/ + / ) . Similarly, 
a " G (/ + J) 2 . 

(2) Suppose / and / are semiprime ideals. Then they are /-ideals. Any 
semiprime /-ideal in a square-root closed/ring is square dominated and so 
the theorem follows from Henriksen's result. 

When A satisfies the left n -convexity property for some n ^ 3, the 
hypothesis that A is square-root closed in part (2) cannot be weakened to 
the hypothesis that A is square dominated, as shown next. We will make 
use of the following example which also appears in [7, 4.16]. 

4.8 Example. In C( [0, 1] ), denote by / the function i(x) = JC, by e the 
function e(x) = 1, and let w = y7. Let 

A = {f G C( [0, 1] ) : / = ae + bw + g; g G (/>, a, b G R} 

with the point wise operations. A tedious but straightforward calculation 
shows that A satisfies the nl -convexity property for all n = 3. Moreover, 
A is square dominated, as every/ G A satisfies \f\ ^ a2e for appropriate 
a G R. Since \Av £ ^4, the /-ring A is not square-root closed. Let 

/ = { / e ^ : / ( ^ - j - ) = 0 f o r « = 1 , 2 , . . . } and 

/ = { /^^^)=0for« = l,2,...}. 

Then / and / are semiprime /-ideals, but as is shown in [7, 4.16], / + J is 
not semiprime. 

5. Some of our examples and theorems have shown that there is a 
difference between the various convexity conditions, and at least the 1st 

and 2nd-convexity conditions are significantly stronger than the other 
convexity conditions. In this section, we give some relationships between 
these conditions. 

First, note that any/-ring A satisfying the left lst-convexity condition 
also satisfies the left nl -convexity condition for all n ^ 2. 
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5.1 THEOREM. Let n â 2 and A be an f-ring satisfying the left 
n{ -convexity property. If A is infinitesimal or if A has a left super unit, then 
A also satisfies the left ml -convexity property for every m > n. 

Proof Suppose v è 0 and 0 ^ u ^ vm. If A is infinitesimal, then 
0 ^ u ^ vm ^ vn and so by the left nx -convexity property, there is a 
w e A such that u = wv. Now assume A has a left super unit a > 0. If n 
divides m, then 

0 ^ u ^ (vm/n)n 

implies that 

u = (wv{m/n)~])v 

for appropriate w e A. If not, then 

0 ^ u ^ ( (v V a ) v L w / " Y 

and so there is a w e yl such that 

u = w(v V a)vLm/"J. 

5.2 THEOREM. Le/ A be a semiprime f-ring with identity element. Then A 
satisfies the left ls1[-convexity property {and hence the left ml -convexity 
property for all m ^ 1) if and only if A satisfies the left or right nl -con
vexity property for some n ^ 1 and every finitely generated left ideal in A is 
principle. 

Proof Necessity follows from Theorem 2.4. Now suppose A satisfies 
the left nl -convexity property for some n ^ 1 and that every finitely 
generated left ideal is principal. Suppose also that 0 ^ u ^ v and v ¥= 0. 
For some d ¥= 0, (w, v)7 = (d)t. So there are/?, q, r, s e A such that u = pd, 
v = qd and ru + sv = d. Then 

[(rp + sq)- \\d = 0. 

Let 

/ = {feA:fd = 0} 

= { / e ,4:|/| A \d\ = 0} = {f e A:df = 0}. 

Then / is a semiprime /-ideal by 4.2. Note that AI I satisfies the left 
nx -convexity property by 2.3. Now 

( (rp + sq) - 1) + / = 0 + / 

and hence 

(rp + sq) + I = I + I. 

Now \p\ - \p\ A \q\ e / . So 

\p\+I= \p\ A \q\ + / = ( |/>| 4- / ) A ( M + / ) . 
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Hence \p\ + I ^ \q\ 4- / . Thus 

1 + / = (rp + sq) + / ^ ( \r\ + \s\ ) |9 | + / . 

Therefore [ ( \r\ 4- | j | )|#| 4 7 ] _ 1 exists in All by 3.9. Hence 

[ (H 4 \s\)\q\ 4 /J-VOH 4 \s\) 4 7) 

is a left inverse of \q\ 4 I in ^4/7. Then there is a g' G i such that 

</' 4 / = [ ( H + \s\)\q\ 4 / ] - 1 ( ( I H + |s|) 4 7) 

and 

{qf 4 7)( |9 | 4 7) = 1 4 7. 

Then 

(\p\q> = \p\q'\qd\ = \p\(l 4 d)\d\ 

for some a G. I. Thus 

( \p\q')v = 1̂ 1 (1 4 a) \d\ = \p\ ( \d\ 4 a|J| ) = \p\ \d\ = «. 

Not both of the conditions that A be semiprime and have an identity 
element can be left out of the hypothesis of this theorem as shown next. 

5.3 Example. Let A — {ae 4 bz:a, b e Q}, with addition, multi
plication and ordering defined as in Example 3.5. Then A satisfies the left 
n{ -convexity property for all n i^ 2, and every finitely generated left ideal 
is principal. But A does not satisfy the left lst-convexity property. 

Example 4.8 shows that the condition that every finitely generated left 
ideal be principal is not redundant. 
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