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1. Introduction

Let R and R
+ be the sets of real and positive real numbers. Widder’s characterization of

Laplace transforms of real-valued bounded functions states that, given r ∈ C(∞)(0,∞),
there then exists f ∈ L∞(0,∞) such that

r(λ) =
∫ ∞

0
e−λtf(t) dt, λ > 0,

if and only if

sup
{

λn+1 |r(n)(λ)|
n!

: λ > 0, n ∈ N

}
< ∞,

(see [17]). Vector-valued versions of this result have appeared recently (see [1,10,12]).
Let A be a Banach algebra (with or without identity). For Ω ⊂ R, a family (rλ)λ∈Ω

of elements of A is called a pseudo-resolvent if the equation rλ − rµ = (µ − λ)rλrµ holds
for λ, µ ∈ Ω. Take ω ∈ R

+ ∪ {0} and let L1
ω(R+) be the usual Banach algebra with norm

given by

‖f‖w :=
∫ ∞

0
|f(t)|eωt dt < ∞,

725

https://doi.org/10.1017/S0013091505000520 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091505000520


726 P. J. Miana

and the convolution product f ∗g(t) :=
∫ t

0 f(t−s)g(s) ds with t � 0 as its product. Then
(ε−λ)λ∈(ω,+∞) with ε−λ(t) := e−λt, λ, t ∈ R

+, is a pseudo-resolvent in L1
ω(R+) such that

‖ ε−λ ∗ · · · ∗ ε−λ︸ ︷︷ ︸
n times

‖ω =
1

(λ − ω)n
, λ ∈ (ω, ∞), n ∈ N.

Moreover, the set (ε−λ)λ∈(ω,+∞) is linearly dense in L1
ω(R+).

The Kisyński theorem shows the equivalence between algebra homomorphisms φ :
L1

ω(R+) → A and a class of pseudo-resolvents (see [5], and extended versions in [12,
Theorem 5.1], [4, Theorem 3.1] and [7, Theorem 1.1]).

Theorem 1.1 (Kisyński). Let A be a Banach algebra, ω � 0, let (rλ)λ∈(ω,+∞) be a
pseudo-resolvent in A, and let

M = sup{(λ − ω)n‖rn
λ‖ : n ∈ N, λ ∈ (ω, ∞)}.

The following conditions are then equivalent:

(i) M < ∞;

(ii) there exists a continuous homomorphism φ : L1
ω(R+) → A such that φ(ε−λ) = rλ

for each λ ∈ (ω, ∞).

Furthermore, if a continuous homomorphism φ : L1
ω(R+) → A satisfying φ(ε−λ) = rλ

for each λ ∈ (ω, ∞) exists, then it is unique and ‖φ‖ = M .

This theorem has many interesting applications (see, for example, [6,12]). It is equiv-
alent to the Hille–Yosida theorem [5] and it may be proved by using the Yosida approx-
imation [3].

A different vector-valued extension of Widder’s characterization is given in [1,10,12].
These references use Lipschitz functions, integration theory and the vector-valued Laplace
transform. The result is called an ‘integrated version of Widder’s theorem’. In fact, both
versions are equivalent (see, for example, [12, Corollary 7.2]).

In this paper, we consider the Banach algebra L1
ω(R) (in Theorem 1.1) and prove a

similar result (Theorem 2.2). This point of view is closer to another interesting problem:
let D be a convolution algebra of functions or measures on R, let A be a Banach algebra
and let Φ : D → A be a continuous homomorphism of algebras (Φ is called a represen-
tation of D in the case when A is the set of linear and bounded operators on a Banach
space X). We investigate the conditions under which a decomposition

Φ(F ) = φ+(F+) + φ−(F−), F+(t) := F (t), F−(t) := F (−t), t � 0,

is possible, where φ± : D+ → A are continuous homomorphisms of a suitable convolution
algebra D+ on [0,∞). In the cases D = Cc(R) and D+ = Cc(R+) (sets of infinitely differ-
entiable functions with compact support on R and R

+, respectively), the decomposition
of Φ is not always possible [13]. We solve the cases D = L1

ω(R) and D+ = L1
ω(R+) (see

Theorem 2.1).
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As in the L1
ω(R+) case [15], we show that a bounded homomorphism Φ : L1

ω(R) → A is
equivalent to a uniformly bounded family of algebra homomorphisms Φα : AC

(α)
ω (R) → A

for any α > 0 (Theorem 3.2). In [14,15], Miana introduced some fractional algebras for
functions defined in R

+. In [9], fractional Banach algebras for functions defined in R are
considered in the context of quasi-multipliers of a Banach algebra and integrated groups
of linear and bounded operators in a Banach space. The algebras AC

(α)
ω (R) are examples

of these fractional Banach algebras. Integrated groups in a Banach algebra give the
connection between the Kisyński theorem and the integrated version of Widder’s theorem
(Theorem 3.4). In the last section, we prove the Hille–Yosida theorem for C0-groups. In
fact, both results are equivalent (see similar ideas in [5]).

2. The Kisyński theorem in L1
ω(R)

Let ω ∈ R
+ ∪ {0} and let L1

ω(R) be the usual Banach algebra with the norm given by

‖F‖w :=
∫ ∞

−∞
|F (t)|eω|t| dt < +∞,

and the convolution product

F ∗ G(t) :=
∫ ∞

−∞
F (t − s)G(s) ds,

with t ∈ R. Note that (ε−λ)|λ|>ω ⊂ L1
ω(R) (where ε−λ(t) := e−λtχ(0,∞)(t) for λ > ω and

ε−λ(t) := e−λtχ(−∞,0)(t) for λ < −ω and t ∈ R). It is straightforward to check that
(ε̃−λ)|λ|>ω (where ε̃−λ := ε−λ for λ > ω and ε̃−λ := −ε−λ for λ < −ω) is a pseudo-
resolvent and is linearly dense in L1

ω(R).
Take F ∈ L1

ω(R), and we write F+, F− ∈ L1
ω(R+) given by F+(t) := F (t) and F−(t) :=

F (−t) for t � 0. It is straightforward to prove that

F ∗ G(t) =

{
(F+ ∗ G+ + F− ◦ G+ + G− ◦ F+)(t), t � 0,

(F− ∗ G− + F+ ◦ G− + G+ ◦ F−)(−t), t � 0,
(2.1)

where f ◦ g ∈ L1
ω(R+), f ◦ g(t) :=

∫ ∞
t

f(s − t)g(s) ds, for t � 0 and f, g ∈ L1
ω(R+).

Theorem 2.1. Let A be a Banach algebra, and let φ1, φ2 : L1
ω(R+) → A be two

continuous homomorphisms. We define Φ := L1
ω(R) → A by Φ(F ) := φ1(F+) + φ2(F−)

with F ∈ L1
ω(R). The following conditions are then equivalent:

(i) Φ is a continuous algebra homomorphism;

(ii) φ1(f)φ2(g) = φ1(g ◦ f) + φ2(f ◦ g) for f, g ∈ L1
ω(R+).

Proof. (i) ⇒ (ii). Since Φ(F )Φ(G) = Φ(F ∗ G) = φ1((F ∗ G)+) + φ2((F ∗ G)−) for
F, G ∈ L1

ω(R), we apply (2.1) to obtain

φ2(F−)φ1(G+) + φ1(F+)φ2(G−)

= φ1(F− ◦ G+) + φ1(G− ◦ F+) + φ2(F+ ◦ G−) + φ2(G+ ◦ F−).
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Take f, g ∈ L1
ω(R+) and we define F (t) := f(t)χ(0,∞)(t) and G(t) = g(t)χ(−∞,0)(t) with

t ∈ R. Then
φ1(f)φ2(g) = φ1(g ◦ f) + φ2(f ◦ g).

(ii) ⇒ (i). It is clear that Φ is a linear and continuous map. Take F, G ∈ L1
ω(R). Since

φ2(F−)φ1(G+) + φ1(F+)φ2(G−)

= φ1(F− ◦ G+) + φ1(G− ◦ F+) + φ2(F+ ◦ G−) + φ2(G+ ◦ F−),

we obtain Φ(F ∗ G) = Φ(F )Φ(G). �

Theorem 2.2. Let A be a Banach algebra, ω � 0, let (rλ)|λ|>ω be a pseudo-resolvent
in A and let

M = sup{(|λ| − ω)n‖rn
λ‖ : n ∈ N, |λ| > ω}.

Then the following conditions are equivalent:

(i) M < +∞;

(ii) there exists a continuous algebra homomorphism

Φ : L1
ω(R) → A

such that Φ(ε−λ) = rλ for each λ > ω and Φ(ε−λ) = −rλ for each λ < −ω.

If a continuous algebra homomorphism Φ : L1
ω(R) → A satisfying Φ(ε−λ) = rλ for each

λ > ω and Φ(ε−λ) = −rλ for each λ < −ω exists, then it is unique and ‖Φ‖ = M .

Proof. We consider two pseudo-resolvents (rλ)λ>ω and (r̃λ)λ>ω, where r̃λ = −r−λ for
λ > ω.

(i) ⇒ (ii). By Theorem 1.1, there exist φ1, φ2 : L1
ω(R+) → A such that φ1(ε−λ) = rλ

and φ2(ε−λ) = r̃λ for λ > ω. We define Φ(F ) := φ1(F+) + φ2(F−) with F ∈ L1
ω(R). By

Theorem 2.1, it is sufficient to prove that

φ1(f)φ2(g) = φ1(g ◦ f) + φ2(f ◦ g), (2.2)

for f, g ∈ L1
ω(R+). Take f = ε−λ and g = ε−µ with λ, µ > ω. Since (rλ)|λ|>ω is a pseudo-

resolvent in A, and

ε−λ ◦ ε−µ =
1

λ + µ
εµ for λ, µ > ω,

we have

φ1(ε−λ)φ2(ε−µ) = −rλr−µ =
1

λ + µ
(rλ − r−µ) = φ1(ε−µ ◦ ε−λ) + φ2(ε−λ ◦ ε−µ).

Since (ε−λ)λ>ω is linearly dense in L1
ω(R+), equality (2.2) holds for any f, g ∈ L1

ω(R+).
Take λ > ω. Then Φ(ε−λ) = φ1(ε−λ) = rλ and if λ < −ω, then Φ(ε−λ) = φ2(ε−λ) = −rλ.
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(ii) ⇒ (i). We consider φ1, φ2 : L1
ω(R+) → A defined by φ1(f) := Φ(F1) and

φ2(f) := Φ(F2), where F1(t) := f(t)χ(0,∞)(t) and F2(t) := f(−t)χ(−∞,0)(t) for t ∈ R.
By Theorem 1.1,

M1 = sup{(λ − ω)n‖rn
λ‖ : n ∈ N, |λ| > ω} < ∞,

M2 = sup{(λ − ω)n‖r̃n
λ‖ : n ∈ N, |λ| > ω} < ∞.

We define M := max(M1, M2) and obtain (i). Again using Φ(F ) := φ1(F+) + φ2(F−),
‖Φ‖ = max(‖φ1‖, ‖φ2‖) and, by Theorem 1.1, max(‖φ1‖, ‖φ2‖) = max(M1, M2) = M ,
we finish the proof. �

3. Fractional homomorphisms and integrated groups

In this section we recall some definitions and properties of Weyl fractional calculus. The
reader will find a nice introduction and comments in the monograph [16].

Let D be the set of functions of compact support on R and infinitely differentiable and
take F ∈ D. Weyl fractional integrals of F of order α > 0, W−α

+ F , W−α
− F , are defined

by

W−α
+ F (t) :=

1
Γ (α)

∫ ∞

t

(s − t)α−1F (s) ds,

W−α
− F (t) :=

1
Γ (α)

∫ t

−∞
(t − s)α−1F (s) ds,

with t ∈ R (see, for example, [16]). Weyl fractional derivatives of F of order α > 0,
Wα

+F , Wα
−F , are given by

Wα
+F := (−1)n dn

dtn
W

−(n−α)
+ F, Wα

−F :=
dn

dtn
W

−(n−α)
− F,

with n ∈ N and n > α [16]. In the case α = n, we have

(−1)nWn
+F :=

dn

dtn
F = Wn

−F.

Note that Wα
+(ε−λ)(t) = λαε−λ(t) with λ, t > 0 and Wα

−(ε−λ)(t) = (−λ)αε−λ(t) for
λ, t < 0.

We define the function Wα
0 (F ) for α > 0 by

Wα
0 F (t) :=

{
Wα

−F (t), t < 0,

eiπαWα
+F (t), t � 0,

for f ∈ D. Note that, for α = n, eiπα = (−1)n and the function Wn
0 F is continuous at

t = 0. Now we consider some fractional Banach algebras that were introduced in [9].
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Theorem 3.1. Suppose α > 0 and ω � 0. If F ∈ D, then the formula

‖F‖(α,ω) :=
1

Γ (α + 1)

∫ ∞

−∞
|t|αeω|t||Wα

0 F (t)| dt

defines a norm in D such that

‖F ∗ G‖(α,ω) � (2α+1 + 1)‖F‖(α,ω)‖G‖(α,ω),

with F, G ∈ D. We denote by AC
(α)
ω (R) the Banach algebra obtained by the completion

of D in this norm; AC
(α)
ω (R) ↪→ L1

ω(R) and

‖F‖ω � ‖F‖(α,ω), F ∈ AC(α)
ω (R).

Proof. See the proofs of [9, Theorem 1.8] and [15, Theorem 2.1] to obtain the constant
2α+1 + 1. Note that∫ ∞

0
eωt|F (t)‖ dt � 1

Γ (α)

∫ ∞

0

∫ s

0
(s − t)α−1eωt|Wα

+F (s)| dt ds

� 1
Γ (α + 1)

∫ ∞

0
sαeωs|Wα

+F (s)| ds,

where we use the Fubini theorem and ω � 0. Working in the same way on (−∞, 0] we
may obtain the inequality ‖F‖ω � ‖F‖(α,ω) for F ∈ AC

(α)
ω (R). �

For α = 0, AC
(0)
ω (R) = L1

ω(R) and AC
(β)
ω (R) ↪→ AC

(α)
ω (R) holds with 0 � α � β. Func-

tions (ε−λ)|λ|>ω belong to AC
(α)
ω (R) with α � 0 (see the similar result [2, Lemma II.2])

and

‖ε−λ‖(α,ω) =
|λ|α

(|λ| − ω)α+1 , |λ| > ω.

Note that ‖ε−λ‖(α,ω) → ‖ε−λ‖ω when α → 0+ and |λ| > ω,

ε−λ ∗ · · · ∗ ε−λ︸ ︷︷ ︸
n times

∈ AC(α)
ω (R)

and

‖ ε−λ ∗ · · · ∗ ε−λ︸ ︷︷ ︸
n times

‖(α,ω) � (2α+1 − 1)n−1‖ε−λ‖n
(α,ω) = (2α+1 − 1)n−1 |λ|nα

(|λ| − ω)n(α+1) ,

for |λ| > ω (see the constant (2α+1 − 1)n−1 in [15, Theorem 2.1]).

Theorem 3.2. Let A be a Banach algebra and let ω � 0.

(i) If Φ : L1
ω(R) → A is a continuous homomorphism of Banach algebras, then for every

α > 0 the restriction Φα := Φ|
AC

(α)
ω (R) : AC

(α)
ω (R) → A is a continuous homomor-

phism of Banach algebras such that ‖Φα‖ � ‖Φ‖.

https://doi.org/10.1017/S0013091505000520 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091505000520


Algebra homomorphisms from real weighted L1 algebras 731

(ii) Conversely, if for each α > 0 there exist continuous homomorphisms Φα :
AC

(α)
ω (R) → A of Banach algebras such that Φα(ε−λ) does not depend on α for

each |λ| > ω and lim supα→0+ ‖Φα‖ < ∞, then there exists a unique continuous
homomorphism Φ : L1

ω(R) → A such that Φ(ε−λ) = Φα(ε−λ) for each |λ| > ω and
‖Φ‖ � lim supα→0+ ‖Φα‖.

Proof. (i) Take F ∈ AC
(α)
ω (R). Since AC

(α)
ω (R) ↪→ L1

ω(R) and ‖F‖ω � ‖F‖(α,ω) (see
Theorem 3.1) we have

‖Φα(F )‖ = ‖Φ(F )‖ � ‖Φ‖ ‖F‖ω � ‖Φ‖ ‖F‖(α,ω).

Then ‖Φα‖ � ‖Φ‖.

(ii) We define rλ := Φα(ε−λ) for λ > ω and rλ := −Φα(ε−λ) for λ < −ω. The family
(rλ)|λ|>ω is well defined, a pseudo-resolvent in A and

‖rn
λ‖ � ‖Φα‖ ‖ ε−λ ∗ · · · ∗ ε−λ︸ ︷︷ ︸

n times

‖(α,ω) � ‖Φα‖(2α+1 − 1)n−1 |λ|nα

(|λ| − ω)n(α+1) ,

for n ∈ N and |λ| > ω. Taking α → 0+, we obtain

sup{(|λ| − ω)n‖rn
λ‖ : n ∈ N, |λ| > ω} � lim sup

α→0+
‖Φα‖ < ∞.

By Theorem 2.2, there exists a unique homomorphism Φ : L1
ω(R) → A such that

Φ(ε−λ) = rλ = Φα(ε−λ) for |λ| > ω

and ‖Φ‖ � lim supα→0+ ‖Φα‖. �

Remark. Note that ‖Φ‖ = lim supα→0+ ‖Φα‖ = supα>0 ‖Φα‖ since ‖Φβ‖ � ‖Φα‖ with
β � α > 0.

A different extension of the Widder theorem was taken by Arendt et al . [1] and
Hieber [11]. To find a vector-valued version of Widder’s theorem on arbitrary Banach
space, they consider Lipschitz functions which are integrated from bounded functions in
some sense. Then integrated semigroups and groups appear (see [1,11]). Recall that an
α-times integrated semigroup sα(·) : [0,∞) → A is a continuous mapping with sα(0) = 0
and

sα(t)sα(s) =
1

Γ (α)

( ∫ t+s

t

(t + s − r)α−1sα(r) dr −
∫ s

0
(t + s − r)α−1sα(r) dr

)
,

with t, s � 0.

Definition 3.3. For any α > 0, an α-times integrated group sα(·) : R → A is a
continuous mapping with sα(0) = 0, sα(·) : [0,∞) → A, s̃α(·) : [0,∞) → A, where
s̃α(t) := sα(−t) for t � 0 are α-times integrated semigroups and, if t < 0 < s,

sα(t)sα(s) =
1

Γ (α)

( ∫ s

t+s

(r − s − t)α−1sα(r) dr +
∫ 0

t

(t + s − r)α−1sα(r) dr

)

https://doi.org/10.1017/S0013091505000520 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091505000520


732 P. J. Miana

with t + s � 0, and

sα(t)sα(s) =
1

Γ (α)

( ∫ t+s

t

(t + s − r)α−1sα(r) dr +
∫ s

0
(r − t − s)α−1sα(r) dr

)

with t + s � 0.

The set of Bocher–Riesz functions (Rα
t )t∈R, Rα

0 = 0 and

Rα
t (s) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(t − s)α−1

Γ (α)
χ(0,t)(s), t > 0,

(s − t)α−1

Γ (α)
χ(t,0)(s), t < 0,

for α > 0 is a canonical example of an α-times integrated group in L1
ω(R) and

‖Rα
t ‖ω � |t|αe|t|ω

Γ (α + 1)
, t ∈ R.

Now we can add more conditions to the Kisyński theorem in L1
ω(R).

Theorem 3.4. Let A be a Banach algebra, ω � 0, let (rλ)|λ|>ω be a pseudo-resolvent
in A, and let

M = sup{(|λ| − ω)n‖rn
λ‖ : n ∈ N, |λ| > ω}.

Then the following conditions are equivalent:

(i) M < ∞;

(ii) there exists a continuous algebra homomorphism Φ : L1
ω(R) → A such that

Φ(ε−λ) = rλ for each λ > ω and Φ(ε−λ) = −rλ for each λ < −ω;

(iii) for any α > 0 there exists an α-times integrated group (sα(t))t∈R ⊂ A and C > 0
such that

‖sα(t)‖ � C

Γ (α + 1)
|t|αeω|t| with t ∈ R

and

rλ = λα

∫ ∞

0
e−λtsα(t) dt with λ > ω,

rλ = −(−λ)α

∫ 0

−∞
e−λtsα(t) dt with λ < −ω;

(iv) if for each α > 0 there exists a continuous homomorphisms Φα : AC
(α)
ω (R) → A of

Banach algebras such that Φα(ε−λ) = rλ for λ > ω, Φα(ε−λ) = −rλ for λ < −ω

and supα>0 ‖Φα‖ < ∞.
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Furthermore, if a continuous algebra homomorphism Φ : L1
ω(R) → A such that

Φ(ε−λ) = rλ for λ > ω and Φ(ε−λ) = −rλ for λ < −ω exists, then it is unique,
Φ(F ) = Φα(F ) for F ∈ AC

(α)
ω (R) and

M = ‖Φ‖ = sup
α>0

‖Φα‖ = inf
{

C : ‖sα(t)‖ � C
|t|αeω|t|

Γ (α + 1)
, t ∈ R

}
.

Proof. This is similar to the proof in [15, Theorem 4.2]. �

4. The Hille–Yosida theorem

Let A be a Banach algebra and let Mul(A) be the set of linear and bounded operators
on A, T : A → A, which verify T (ab) = aT (b) for a, b ∈ A. These operators are called
multipliers of A (for more details see [6]).

Take X, a Banach space, and B(X), the algebra of linear and bounded operators
on X. A homomorphism from A into B(X) is called a representation. Suppose that A is
commutative and has a bounded approximate identity {en}n∈N. Given Φ : A → B(X), a
continuous representation, the regularity space RΦ is the closed linear span of {Φ(a)x |
a ∈ A, x ∈ X} and [6]

RΦ =
{

x ∈ X
∣∣∣ lim

n→∞
Φ(en)x = x

}
.

By the Cohen theorem, RΦ = {Φ(a)x | a ∈ A, x ∈ X}, and there exists a unique
representation Φ̂ : Mul(A) → B(RΦ) such that

Φ̂(La)x = Φ(a)x, x ∈ RΦ,

where La(b) := ab for a, b ∈ A (see [6, Theorem 2.4]).
Take the case A = L1

ω(R) and Mul(L1
ω(R)) = Mω(R) (Mω(R) is the collection of all

Borel measures µ on R for which∫ ∞

−∞
eω|t| d|µ|(t) < ∞,

where |µ| denotes the total variation of µ). The Dirac measure is a one-parameter C0-
group (δt)t∈R of convolution operators on L1

ω(R) (i.e. δt ∗ δs = δt+s for t, s ∈ R and
δtf → f in L1

ω(R) when t → 0). The next theorem is well known (see the case R
+

in [6, Theorem 3.3]).

Theorem 4.1. Let X be a Banach space and let Φ : L1
ω → B(X) be a continuous

representation. For each t ∈ R, set S(t) := Φ̂(δt). Then (S(t)) is a C0-group on Rφ such
that

‖S(t)‖ � ‖Φ̂‖eω|t|, t ∈ R,

and, for µ ∈ Mω(R),

Φ̂(µ) =
∫ ∞

−∞
S(t)xdµ(t), x ∈ RΦ.
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Let R ≡ (Rλ)|λ|>ω be a pseudo-resolvent on B(X). It is easy to check that the kernel
and the range of Rλ are independent of λ (we denote them by ker(R) and Im(R)).
Note that (Rλ)|λ|>ω is the resolvent of a densely defined closed operator (A, D(A))
(i.e. Rλ = (λ − A)−1) if and only if ker(R) = {0} and Im(R) = X [8, Proposition III.4.6].

The Hille–Yosida theorem for C0-groups can be found in [8, p. 79] (definitions of the
infinitesimal generator, C0-groups and properties can be also be found therein).

Remark (the Hille–Yosida theorem). Let ω � 0 and M > 0. For a linear operator
(A, D(A)) on a Banach space X, the following properties are equivalent:

(i) (A, D(A)) generates a C0-group (S(t))t∈R such that ‖S(t)‖ � Meω|t| with t ∈ R;

(ii) (A, D(A)) is closed, densely defined and, for every λ ∈ R with |λ| > ω, we have
λ ∈ ρ(A) and

‖(|λ| − ω)nR(λ, A)n‖ � M,

for all n ∈ N.

Proof. (i) ⇒ (ii). We define Φ : L1
ω(R) → B(X),

Φ(F )x =
∫ ∞

−∞
F (t)S(t)xdt, x ∈ X.

Since Φ(ε−λ) = R(λ, A) with λ > ω and Φ(ε−λ) = −R(λ, A) with λ < −ω, we apply
Theorem 2.2 to obtain (ii).

(ii) ⇒ (i). By Theorem 2.2 there exists Φ : L1
ω(R) → B(X) such that Φ(ε−λ) = R(λ, A)

with λ > ω and Φ(ε−λ) = −R(λ, A) with λ < −ω. Since (nε−n)n>ω is a bounded approx-
imate identity, then RΦ = Im(Rλ) = X. By Theorem 4.1, there exists a C0-group on X

such that ‖S(t)‖ � Meω|t| for t ∈ R. It is straightforward to check that (A, D(A)) is the
infinitesimal generator of (S(t))t∈R. �
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