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Abstract We characterize algebra homomorphisms from the Lebesgue algebra LL(R) into a Banach
algebra A. As a consequence of this result, every bounded algebra homomorphism & : LL(R) — A is
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theorem for Cp-groups is proved.
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1. Introduction

Let R and R™ be the sets of real and positive real numbers. Widder’s characterization of
Laplace transforms of real-valued bounded functions states that, given 7 € C(°)(0, 00),
there then exists f € L>°(0, 00) such that

r(\) = / e Mf(t)dt, A>0,
0
if and only if
™\
sup{)\”+1|r|() A>0, ne N} < 00,
n!

(see [17]). Vector-valued versions of this result have appeared recently (see [1,10,12]).

Let A be a Banach algebra (with or without identity). For £2 C R, a family (rx)req
of elements of A is called a pseudo-resolvent if the equation ry —r, = (1 — A)rar, holds

for A\, € 2. Take w € RT U {0} and let L. (R™") be the usual Banach algebra with norm
given by

1l = / F(B)le dt < oo,
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and the convolution product fx*g(t) := fot f(t—s)g(s)ds with ¢ > 0 as its product. Then
(E—A)ae(w,400) With 5 (£) := €™ At € RT, is a pseudo-resolvent in L}, (R™) such that

1

_—, A N.
(A_w)nv E(OJ,OO), ne

||€_>\*...*5_>\||w:
~—_————

n times

Moreover, the set (€_x)xe(w,to0) 18 linearly dense in LL(R™).

The Kisynski theorem shows the equivalence between algebra homomorphisms ¢ :
LL(RT) — A and a class of pseudo-resolvents (see [5], and extended versions in [12,
Theorem 5.1], [4, Theorem 3.1] and [7, Theorem 1.1]).

Theorem 1.1 (Kisynski). Let A be a Banach algebra, w > 0, let (7x) e (w,+00) b€ @
pseudo-resolvent in A, and let

M =sup{(A —w)"||r}|| : n € N, X € (w,00)}.
The following conditions are then equivalent:
(i) M < oo;

(ii) there exists a continuous homomorphism ¢ : LL(R*) — A such that ¢(e_y) = 7
for each \ € (w, ).

Furthermore, if a continuous homomorphism ¢ : LL(R*) — A satisfying ¢p(e_») = rx
for each A € (w,0) exists, then it is unique and ||¢|| = M.

This theorem has many interesting applications (see, for example, [6,12]). It is equiv-
alent to the Hille-Yosida theorem [5] and it may be proved by using the Yosida approx-
imation [3].

A different vector-valued extension of Widder’s characterization is given in [1,10,12].
These references use Lipschitz functions, integration theory and the vector-valued Laplace
transform. The result is called an ‘integrated version of Widder’s theorem’. In fact, both
versions are equivalent (see, for example, [12, Corollary 7.2]).

In this paper, we consider the Banach algebra L. (R) (in Theorem 1.1) and prove a
similar result (Theorem 2.2). This point of view is closer to another interesting problem:
let D be a convolution algebra of functions or measures on R, let A be a Banach algebra
and let @ : D — A be a continuous homomorphism of algebras (& is called a represen-
tation of D in the case when A is the set of linear and bounded operators on a Banach
space X ). We investigate the conditions under which a decomposition

B(F) = 6 (Fu) + _(F_), Fi(t) := F(t), F_(t) = F(~1), ¢ >0,

is possible, where ¢4 : DT — A are continuous homomorphisms of a suitable convolution
algebra DT on [0, 00). In the cases D = C.(R) and D™ = C.(R") (sets of infinitely differ-
entiable functions with compact support on R and R*, respectively), the decomposition
of @ is not always possible [13]. We solve the cases D = LL(R) and Dt = L. (R") (see
Theorem 2.1).
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As in the L1 (RT) case [15], we show that a bounded homomorphism & : L} (R ( ) — Alis
equivalent to a uniformly bounded family of algebra homomorphisms @, : ACY )( R)— A
for any o > 0 (Theorem 3.2). In [14,15], Miana introduced some fractional algebras for
functions defined in R*. In [9], fractional Banach algebras for functions defined in R are
considered in the context of quasi-multipliers of a Banach algebra and integrated groups
of linear and bounded operators in a Banach space. The algebras Act) (R) are examples
of these fractional Banach algebras. Integrated groups in a Banach algebra give the
connection between the Kisyriski theorem and the integrated version of Widder’s theorem
(Theorem 3.4). In the last section, we prove the Hille-Yosida theorem for Cy-groups. In
fact, both results are equivalent (see similar ideas in [5]).

2. The Kisynski theorem in L} (R)

Let w € RT U {0} and let L. (R) be the usual Banach algebra with the norm given by

(| F[| :=/ |F(t)]e! dt < 400,

and the convolution product
FxG(t) := / F(t —s)G(s)ds,

with ¢ € R. Note that (e_x)|xj>w C LL(R) (where e_x(t) := e x(0,00) (t) for A > w and
ea(t) = e MY(Loo0)(t) for A < —w and ¢ € R). It is straightforward to check that
(E-A)a|>w (Where € ) :=¢e_y for A > w and £_) := —e_, for A < —w) is a pseudo-
resolvent and is linearly dense in L} (RR).

Take F € LL(R), and we write F,, F_ € LL(R") given by F. (t) := F(t) and F_(t) :=
F(—t) for t > 0. It is straightforward to prove that

FixGi+F_ oGy +G_oFy)(t), t=0,
F*G(t):{( +*G4 oLy o Iy )(t) (2.1)
<

0
(F, v G+ F oG +GyoF )(—t), t<0,
where fog e LL(RT), f = [ f(s—t)g(s)ds, for t > 0 and f,g € LL(RT).

Theorem 2.1. Let A be a Banach algebra, and let ¢1,¢2 : LL(R") — A be two
continuous homomorphisms. We define @ := LL(R) — A by ®(F) := ¢1(F.) + ¢o(F_)
with F € LL(R). The following conditions are then equivalent:

(i) @ is a continuous algebra homomorphism;

(il) ¢1(f)p2(9) = d1(go f) + ¢a(fog) for f,g € LL(RT).

Proof. (i) = (ii). Since @(F)P(G) = &(F * G) = ¢1((F * G)1) + ¢o((F x G)_) for
F,G € LL(R), we apply (2.1) to obtain

G2(F-)01(G ) + ¢1(F4)92(G-)
=01(F_0Gy) + ¢1(G_ o Fy) + ¢a(Fr o G_) 4 ¢2(G o F).

https://doi.org/10.1017/50013091505000520 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091505000520

728 P. J. Miana

Take f,g € LL(R") and we define F(t) := f(t)x(0,00)(t) and G(t) = g(t)X(—oo,0)(t) with
t € R. Then
P1(f)2(9) = ¢1(go f) + ¢2(f o g).

(ii) = (i). It is clear that @ is a linear and continuous map. Take F,G € L. (R). Since
G2(F-)01(G+) + o1(F4)92(G-)
=1(F_0Gy) + d1(G_ o Fy) + do(Fr 0 G) + ¢2(G4 o F-),
we obtain @(F x G) = ¢(F)P(G). O

Theorem 2.2. Let A be a Banach algebra, w > 0, let (r))|x|>. be a pseudo-resolvent
in A and let
M =sup{(|A| = w)"|lrX]| : n € N, |A| > w}.

Then the following conditions are equivalent:
(i) M < +oo;
(ii) there exists a continuous algebra homomorphism
P:LL(R)— A
such that ®(e_y) = ry for each A > w and P(e_)) = —r) for each A < —w.

If a continuous algebra homomorphism @ : L1 (R) — A satisfying ®(e_y) = ry for each
A >w and P(e_)) = —ry for each \ < —w exists, then it is unique and ||P|| = M.

Proof. We consider two pseudo-resolvents (r))a>, and (7x)x>w, where 7y = —r_, for
A > w.

(i) = (ii). By Theorem 1.1, there exist ¢1,do : LL(RT) — A such that ¢1(c_y) =y
and ¢o(e_y) =7y for A > w. We define &(F) := ¢1(F.) + ¢o(F_) with F € LL(R). By
Theorem 2.1, it is sufficient to prove that

&1(f)p2(9) = d1(go f) + ¢2(fog), (2.2)

for f,g € LL(RT). Take f =e_y and g = e_, with A, u > w. Since (r3)|x>w I8 a pseudo-
resolvent in A, and

1
E_NO0E_, = )\+MEH for \, u > w,
we have
1
Pr(e-N)pa(e—p) = —rar—p = m(U —ru) = d1(e—poe )+ 2(e-roey).

Since (_))a>w is linearly dense in L. (R"), equality (2.2) holds for any f,g € LL(R").
Take A > w. Then @(e_)) = ¢p1(e_x) = ry and if A\ < —w, then P(e_y) = Pa(e_)) = —7ra.
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(ii) = (i). We consider ¢1,¢2 : LL(RT) — A defined by ¢i(f) = @®(Fy) and
$2(f) = P(F2), where Fi(t) := f(£)X(0,00)(t) and Fa(t) := f(—1)X(—c0,0)(t) for ¢ € R.

By Theorem 1.1,
My = sup{(A— )" 73] s n € N, A > w} < o,

My =sup{(A —w)"[|F}]| : n € N, || > w} < 0.

We define M := max(M;, Mz) and obtain (i). Again using ®(F) := ¢1(F}) + ¢2(FL),
2] = max(||¢1]l, [|¢2]) and, by Theorem 1.1, max([[¢1 ], [[¢2]]) = max(My, My) = M,
we finish the proof. O

3. Fractional homomorphisms and integrated groups

In this section we recall some definitions and properties of Weyl fractional calculus. The
reader will find a nice introduction and comments in the monograph [16].

Let D be the set of functions of compact support on R and infinitely differentiable and
take F' € D. Weyl fractional integrals of F' of order oo > 0, W *F, W-“F, are defined

by
WoOF(t) = ﬁ /f (s — )1 F(s) ds,
WoR(t) = ﬁ/_ (t — 5)°~1F(s) ds,

with ¢ € R (see, for example, [16]). Weyl fractional derivatives of F of order o > 0,
WE, W2F, are given by

L d”
dtn

WOF = (=)' — W, " F,  WeF:=

with n € N and n > « [16]. In the case o« = n, we have

)W =

Note that W(e_x)(t) = A%e_\(t) with A\, > 0 and W (e_x)(t) = (—=A)*e_x(t) for
At <.
We define the function W§*(F') for a > 0 by

WeF(t), t <0,

WSF(t) =<
o F () {elmng(t), £>0,

for f € D. Note that, for « = n, €™ = (—1)" and the function W}'F is continuous at
t = 0. Now we consider some fractional Banach algebras that were introduced in [9].

https://doi.org/10.1017/50013091505000520 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091505000520

730 P. J. Miana

Theorem 3.1. Suppose a >0 and w > 0. If F' € D, then the formula

1 >~ [ePNY) (o3
1Pl = Frams | e Vs F(o)

defines a norm in D such that
”F * G”(a,w) < (2a+1 + 1)HF||(oc,w)||GH(a,w)7

with F,G € D. We denote by ACU(JO‘)(R) the Banach algebra obtained by the completion
of D in this norm; ACLE,O‘)(R) — LL(R) and

1Fllo < 1Fll(aw) F € ACK(R).

Proof. See the proofs of [9, Theorem 1.8] and [15, Theorem 2.1] to obtain the constant
29+ 4 1. Note that

(o) 1 o0 S
et |F(t dtg—/ /s—ta_le”tWan) dtds
| erolas g [ [ e-oetetwere)
1 o0

< a(—u’SWO(F d’
T [ IR as

where we use the Fubini theorem and w > 0. Working in the same way on (—oo,0] we
may obtain the inequality || F|l, < [|F|/(a.0) for F € ACSY(R). O

For a = 0, AC” (R) = LL(R) and ACY”(R) — AC{™(R) holds with 0 < a < 3. Func-
tions (€_x)|a|>w belong to Act) (R) with o > 0 (see the similar result [2, Lemma II.2])

and
|A[

lle-all(aw) = Wa Al > w.

Note that |[e_x[[(aw) = le=rllo When o — 0T and [A] > w,

e a*---%e_y € AC(R)
—_———

n times
and

|>\|na

. a+l n—1 n _ a+1l n—1
|| E_X* *E_N ||(047W) < (2 ]') ||€*)\H(a,w) - (2 1) (|)\| _ w)n(a+1)7

n times
for [A] > w (see the constant (2271 — 1)"~! in [15, Theorem 2.1]).

Theorem 3.2. Let A be a Banach algebra and let w > 0.

(i) If® : LL(R) — A is a continuous homomorphism of Banach algebras, then for every
a > 0 the restriction ®q := P| , 1(@) g ACLEO‘)(R) — A is a continuous homomor-
phism of Banach algebras such that || D, | < ||2||.
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(ii) Conversely, if for each o > 0 there exist continuous homomorphisms P,
AC’(E,“)(]R) — A of Banach algebras such that ®,(e_») does not depend on « for
each |\ > w and limsup,_,g+ ||Pul| < o0, then there exists a unique continuous
homomorphism @ : LL(R) — A such that ®(e_,) = @, (c_») for each |A\| > w and
1] < lim supg_o- [[Ball

Proof. (i) Take F € ACS(R). Since ACSY (R) < LL(R) and || F|ly < || Fll(auw) (see
Theorem 3.1) we have

[Pa(F) | = [R(E)| < 2] 1F |l < 211l (er-
Then [[@q| < |||

(ii) We define 7y := @o(e_y) for A > w and ry := —P4(e_y) for A < —w. The family
(7A)|a|>w is well defined, a pseudo-resolvent in A and

A

n| < . < at+l _qyn-—1___ 1M
X< 1Pallflg-x - - % e-x [l(w) < [I1Pall(2 Vs

n times

for n € N and |A| > w. Taking o — 01, we obtain

sup{(|A| = w)™[|r}]| : m € N, |A] > w} < limsup || Py | < oo.

a—0t

By Theorem 2.2, there exists a unique homomorphism @ : LL (R) — A such that
D(e_r) =ry=Pu(e_y) for [N\ >w
and [|8]) < limsup, o+ |@all 0

Remark. Note that ||®| = limsup,_,¢+ ||Pa|l = sup,sg [|Pal since | D3] < ||Po || with
6>=a>0.

A different extension of the Widder theorem was taken by Arendt et al. [1] and
Hieber [11]. To find a vector-valued version of Widder’s theorem on arbitrary Banach
space, they consider Lipschitz functions which are integrated from bounded functions in
some sense. Then integrated semigroups and groups appear (see [1,11]). Recall that an
a-times integrated semigroup sq(-) : [0,00) — A is a continuous mapping with s,(0) =0
and

sa(t)sals) = F(1a)</tt+s(t+s—r)°‘1sa(r)dr—/s(t+s—r)a1sa(r)d7“>,

0
with ¢,s > 0.

Definition 3.3. For any a > 0, an a-times integrated group s,(-) : R — A is a
continuous mapping with s,(0) = 0, so(:) : [0,00) = A, §u(-) : [0,00) — A, where
5a(t) := sq(—t) for t > 0 are a-times integrated semigroups and, if t < 0 < s,

/ts (7‘—s—t)”‘_lsa(r)dr+/0(t+5_T)a—1sa(r)dr)

+s t

sa(t)sa(s) = F(la)(
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with t 4+ s > 0, and
t+s S
Sa(t)sq(s) = i </ (t+s—71)""tsu(r)dr + / (r—t—5)""ts,(r) d?">
t 0

with £+ s < 0.

The set of Bocher—Riesz functions (R{)icr, R = 0 and

) %X(o,t)(s)a t>0,
R{(s) := (s ot
TQ)XU,O)(S), t <0,

for @ > 0 is a canonical example of an a-times integrated group in L} (R) and

|t|ae\t|w

—, teR.
Tlatr1) '€

1Bl <

Now we can add more conditions to the Kisytiski theorem in L1 (R).

Theorem 3.4. Let A be a Banach algebra, w > 0, let (r))|x|>. be a pseudo-resolvent
in A, and let
M =sup{(|A| = w)"|lrX]| : n € N, |A| > w}.

Then the following conditions are equivalent:
(i) M < oo;

(ii) there exists a continuous algebra homomorphism ® : LL(R) — A such that
P(e_x) =1y for each A > w and (e_y) = —r)y for each A < —w;

(iii) for any o > 0 there exists an a-times integrated group (sq(t))ter C A and C' > 0

such that

llsa(t)]] < t|*e“™™  witht € R

I'a+1)

and
T\ = )\0‘/ e Ms, (1) dt with A > w,
0

0
e [ o <

— 00

(iv) if for each « > 0 there exists a continuous homomorphisms @, : AC’(E,O‘)(R) — A of
Banach algebras such that @,(e_)) = ry for A > w, @Pn(e_)) = —r) for A < —w
and sup,q || Pal| < 00.
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Furthermore, if a continuous algebra homomorphism ¢ : LL(R) — A such that
D(e_y)) = ry for A > w and P(e_)) = —ry for A < —w exists, then it is unique,
B(F) = &4(F) for F € ACY(R) and

) |t|o¢ew|t\ }
M = ||®] = sup ||®,]| = inf 3 C : ||sa ()] < C— teRY.
21 = sup | = inf { €'+ (0] < O35

Proof. This is similar to the proof in [15, Theorem 4.2]. O

4. The Hille—Yosida theorem

Let A be a Banach algebra and let Mul(.A) be the set of linear and bounded operators
on A, T : A — A, which verify T(ab) = aT'(b) for a,b € A. These operators are called
multipliers of A (for more details see [6]).

Take X, a Banach space, and B(X), the algebra of linear and bounded operators
on X. A homomorphism from A into B(X) is called a representation. Suppose that A is
commutative and has a bounded approximate identity {e, }nen. Given @ : A — B(X), a
continuous representation, the regularity space R¢ is the closed linear span of {&(a)z |
ac A, e X} and [6]

RQSZ{QSEX

lim &(e, )z = z}

n—oo

By the Cohen theorem, Rg = {P(a)x | a € A, x € X}, and there exists a unique
representation @ : Mul(A) — B(Rg) such that
)

(La xz=P(a)zr, x€Rq,

where L, (b) := ab for a,b € A (see [6, Theorem 2.4]).
Take the case A = LL(R) and Mul(L}(R)) = M, (R) (M, (R) is the collection of all
Borel measures p on R for which

[ el < o

where |u| denotes the total variation of ). The Dirac measure is a one-parameter Cy-
group (&¢)ter of convolution operators on LL(R) (i.e. & * 65 = 6445 for t,s € R and
S:f = f in LL(R) when ¢t — 0). The next theorem is well known (see the case R
in [6, Theorem 3.3]).

Theorem 4.1. Let X be a Banach space and let @ : L., — B(X) be a continuous
representation. For each t € R, set S(t) := &(8;). Then (S(t)) is a Cy-group on Ry such
that

IS@)I < 19!, ¢ R,

and, for p € M,(R),
b= [ SOzdut), x€Ra.

— 00
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Let R = (Rx)|\|>w be a pseudo-resolvent on B(X). It is easy to check that the kernel
and the range of Ry are independent of A (we denote them by ker(R) and Im(R)).
Note that (Rx)x>w is the resolvent of a densely defined closed operator (A, D(A))
(i.e. Ry = (A — A)71) if and only if ker(R) = {0} and Im(R) = X [8, Proposition I11.4.6].

The Hille-Yosida theorem for Cy-groups can be found in [8, p. 79] (definitions of the
infinitesimal generator, Cy-groups and properties can be also be found therein).

Remark (the Hille-Yosida theorem). Let w > 0 and M > 0. For a linear operator
(A, D(A)) on a Banach space X, the following properties are equivalent:

(i) (A, D(A)) generates a Co-group (S(t))ier such that ||S(t)|| < Me*!*l with t € R;

(ii) (A, D(A)) is closed, densely defined and, for every A € R with |[A| > w, we have
A€ p(A) and
I(Al = @) R(X, A)*[| < M,
for all n € N.

Proof. (i) = (ii). We define @ : LL(R) — B(X),

B(F)z = / FO)S(edt, =€ X,
Since P(e_y) = R(\, A) with A > w and ®(e_)) = —R(\, A) with A < —w, we apply
Theorem 2.2 to obtain (ii).

(ii) = (i). By Theorem 2.2 there exists @ : L. (R) — B(X) such that &(c_,) = R(), A)
with A > w and @(e_)) = —R(\, A) with A < —w. Since (ne_,)n>w is a bounded approx-
imate identity, then R¢ = Im(R)) = X. By Theorem 4.1, there exists a Cy-group on X
such that ||S(t)|| < Me*!!l for t € R. Tt is straightforward to check that (A, D(A)) is the
infinitesimal generator of (S(t))ter. O
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