ALGEBRA HOMOMORPHISMS FROM REAL WEIGHTED L^1 ALGEBRAS

PEDRO J. MIANA

Department of Mathematics, Universidad de Zaragoza, C/Pedro Cerbuna, 12-50009 Zaragoza, Spain (pjmiana@unizar.es)

(Received 13 April 2005)

Abstract We characterize algebra homomorphisms from the Lebesgue algebra $L^1_{\omega}(\mathbb{R})$ into a Banach algebra \mathcal{A} . As a consequence of this result, every bounded algebra homomorphism $\Phi: L^1_{\omega}(\mathbb{R}) \to \mathcal{A}$ is approached through a uniformly bounded family of fractional homomorphisms, and the Hille–Yosida theorem for C_0 -groups is proved.

Keywords: pseudo-resolvents; algebra homomorphisms; Weyl fractional calculus; integrated groups

2000 Mathematics subject classification: Primary 44A10; 47D62 Secondary 26A33; 46J25

1. Introduction

Let \mathbb{R} and \mathbb{R}^+ be the sets of real and positive real numbers. Widder's characterization of Laplace transforms of real-valued bounded functions states that, given $r \in C^{(\infty)}(0,\infty)$, there then exists $f \in L^{\infty}(0,\infty)$ such that

$$r(\lambda) = \int_0^\infty e^{-\lambda t} f(t) dt, \quad \lambda > 0,$$

if and only if

$$\sup\left\{\lambda^{n+1}\frac{|r^{(n)}(\lambda)|}{n!}:\lambda>0,\ n\in\mathbb{N}\right\}<\infty,$$

(see [17]). Vector-valued versions of this result have appeared recently (see [1,10,12]).

Let \mathcal{A} be a Banach algebra (with or without identity). For $\Omega \subset \mathbb{R}$, a family $(r_{\lambda})_{\lambda \in \Omega}$ of elements of \mathcal{A} is called a *pseudo-resolvent* if the equation $r_{\lambda} - r_{\mu} = (\mu - \lambda)r_{\lambda}r_{\mu}$ holds for $\lambda, \mu \in \Omega$. Take $\omega \in \mathbb{R}^+ \cup \{0\}$ and let $L^1_{\omega}(\mathbb{R}^+)$ be the usual Banach algebra with norm given by

$$||f||_w := \int_0^\infty |f(t)| \mathrm{e}^{\omega t} \, \mathrm{d}t < \infty,$$

and the convolution product $f * g(t) := \int_0^t f(t-s)g(s) \, \mathrm{d}s$ with $t \ge 0$ as its product. Then $(\varepsilon_{-\lambda})_{\lambda \in (\omega, +\infty)}$ with $\varepsilon_{-\lambda}(t) := \mathrm{e}^{-\lambda t}$, $\lambda, t \in \mathbb{R}^+$, is a pseudo-resolvent in $L^1_{\omega}(\mathbb{R}^+)$ such that

$$\|\underbrace{\varepsilon_{-\lambda} \ast \cdots \ast \varepsilon_{-\lambda}}_{n \text{ times}}\|_{\omega} = \frac{1}{(\lambda - \omega)^n}, \quad \lambda \in (\omega, \infty), \ n \in \mathbb{N}.$$

Moreover, the set $(\varepsilon_{-\lambda})_{\lambda \in (\omega, +\infty)}$ is linearly dense in $L^1_{\omega}(\mathbb{R}^+)$.

The Kisyński theorem shows the equivalence between algebra homomorphisms ϕ : $L^1_{\omega}(\mathbb{R}^+) \to \mathcal{A}$ and a class of pseudo-resolvents (see [5], and extended versions in [12, Theorem 5.1], [4, Theorem 3.1] and [7, Theorem 1.1]).

Theorem 1.1 (Kisyński). Let \mathcal{A} be a Banach algebra, $\omega \ge 0$, let $(r_{\lambda})_{\lambda \in (\omega, +\infty)}$ be a pseudo-resolvent in \mathcal{A} , and let

$$M = \sup\{(\lambda - \omega)^n \| r_{\lambda}^n \| : n \in \mathbb{N}, \ \lambda \in (\omega, \infty)\}.$$

The following conditions are then equivalent:

- (i) $M < \infty$;
- (ii) there exists a continuous homomorphism $\phi : L^1_{\omega}(\mathbb{R}^+) \to \mathcal{A}$ such that $\phi(\varepsilon_{-\lambda}) = r_{\lambda}$ for each $\lambda \in (\omega, \infty)$.

Furthermore, if a continuous homomorphism $\phi : L^1_{\omega}(\mathbb{R}^+) \to \mathcal{A}$ satisfying $\phi(\varepsilon_{-\lambda}) = r_{\lambda}$ for each $\lambda \in (\omega, \infty)$ exists, then it is unique and $\|\phi\| = M$.

This theorem has many interesting applications (see, for example, [6, 12]). It is equivalent to the Hille–Yosida theorem [5] and it may be proved by using the Yosida approximation [3].

A different vector-valued extension of Widder's characterization is given in [1, 10, 12]. These references use Lipschitz functions, integration theory and the vector-valued Laplace transform. The result is called an 'integrated version of Widder's theorem'. In fact, both versions are equivalent (see, for example, [12, Corollary 7.2]).

In this paper, we consider the Banach algebra $L^1_{\omega}(\mathbb{R})$ (in Theorem 1.1) and prove a similar result (Theorem 2.2). This point of view is closer to another interesting problem: let D be a convolution algebra of functions or measures on \mathbb{R} , let \mathcal{A} be a Banach algebra and let $\Phi: D \to \mathcal{A}$ be a continuous homomorphism of algebras (Φ is called a representation of D in the case when \mathcal{A} is the set of linear and bounded operators on a Banach space X). We investigate the conditions under which a decomposition

$$\Phi(F) = \phi_+(F_+) + \phi_-(F_-), \quad F_+(t) := F(t), \ F_-(t) := F(-t), \ t \ge 0,$$

is possible, where $\phi_{\pm}: D^+ \to \mathcal{A}$ are continuous homomorphisms of a suitable convolution algebra D^+ on $[0, \infty)$. In the cases $D = C_c(\mathbb{R})$ and $D^+ = C_c(\mathbb{R}^+)$ (sets of infinitely differentiable functions with compact support on \mathbb{R} and \mathbb{R}^+ , respectively), the decomposition of Φ is not always possible [13]. We solve the cases $D = L^1_{\omega}(\mathbb{R})$ and $D^+ = L^1_{\omega}(\mathbb{R}^+)$ (see Theorem 2.1).

As in the $L^1_{\omega}(\mathbb{R}^+)$ case [15], we show that a bounded homomorphism $\Phi: L^1_{\omega}(\mathbb{R}) \to \mathcal{A}$ is equivalent to a uniformly bounded family of algebra homomorphisms $\Phi_{\alpha}: AC^{(\alpha)}_{\omega}(\mathbb{R}) \to \mathcal{A}$ for any $\alpha > 0$ (Theorem 3.2). In [14, 15], Miana introduced some fractional algebras for functions defined in \mathbb{R}^+ . In [9], fractional Banach algebras for functions defined in \mathbb{R} are considered in the context of quasi-multipliers of a Banach algebra and integrated groups of linear and bounded operators in a Banach space. The algebras $AC^{(\alpha)}_{\omega}(\mathbb{R})$ are examples of these fractional Banach algebras. Integrated groups in a Banach algebra give the connection between the Kisyński theorem and the integrated version of Widder's theorem (Theorem 3.4). In the last section, we prove the Hille–Yosida theorem for C_0 -groups. In fact, both results are equivalent (see similar ideas in [5]).

2. The Kisyński theorem in $L^1_{\omega}(\mathbb{R})$

Let $\omega \in \mathbb{R}^+ \cup \{0\}$ and let $L^1_{\omega}(\mathbb{R})$ be the usual Banach algebra with the norm given by

$$||F||_w := \int_{-\infty}^{\infty} |F(t)| \mathrm{e}^{\omega|t|} \,\mathrm{d}t < +\infty,$$

and the convolution product

$$F * G(t) := \int_{-\infty}^{\infty} F(t-s)G(s) \, \mathrm{d}s$$

with $t \in \mathbb{R}$. Note that $(\varepsilon_{-\lambda})_{|\lambda| > \omega} \subset L^1_{\omega}(\mathbb{R})$ (where $\varepsilon_{-\lambda}(t) := e^{-\lambda t} \chi_{(0,\infty)}(t)$ for $\lambda > \omega$ and $\varepsilon_{-\lambda}(t) := e^{-\lambda t} \chi_{(-\infty,0)}(t)$ for $\lambda < -\omega$ and $t \in \mathbb{R}$). It is straightforward to check that $(\tilde{\varepsilon}_{-\lambda})_{|\lambda| > \omega}$ (where $\tilde{\varepsilon}_{-\lambda} := \varepsilon_{-\lambda}$ for $\lambda > \omega$ and $\tilde{\varepsilon}_{-\lambda} := -\varepsilon_{-\lambda}$ for $\lambda < -\omega$) is a pseudo-resolvent and is linearly dense in $L^1_{\omega}(\mathbb{R})$.

Take $F \in L^1_{\omega}(\mathbb{R})$, and we write $F_+, F_- \in L^1_{\omega}(\mathbb{R}^+)$ given by $F_+(t) := F(t)$ and $F_-(t) := F(-t)$ for $t \ge 0$. It is straightforward to prove that

$$F * G(t) = \begin{cases} (F_+ * G_+ + F_- \circ G_+ + G_- \circ F_+)(t), & t \ge 0, \\ (F_- * G_- + F_+ \circ G_- + G_+ \circ F_-)(-t), & t \le 0, \end{cases}$$
(2.1)

where $f \circ g \in L^1_\omega(\mathbb{R}^+)$, $f \circ g(t) := \int_t^\infty f(s-t)g(s) \,\mathrm{d}s$, for $t \ge 0$ and $f, g \in L^1_\omega(\mathbb{R}^+)$.

Theorem 2.1. Let \mathcal{A} be a Banach algebra, and let $\phi_1, \phi_2 : L^1_{\omega}(\mathbb{R}^+) \to \mathcal{A}$ be two continuous homomorphisms. We define $\Phi := L^1_{\omega}(\mathbb{R}) \to \mathcal{A}$ by $\Phi(F) := \phi_1(F_+) + \phi_2(F_-)$ with $F \in L^1_{\omega}(\mathbb{R})$. The following conditions are then equivalent:

- (i) Φ is a continuous algebra homomorphism;
- (ii) $\phi_1(f)\phi_2(g) = \phi_1(g \circ f) + \phi_2(f \circ g)$ for $f, g \in L^1_{\omega}(\mathbb{R}^+)$.

Proof. (i) \Rightarrow (ii). Since $\Phi(F)\Phi(G) = \Phi(F * G) = \phi_1((F * G)_+) + \phi_2((F * G)_-)$ for $F, G \in L^1_{\omega}(\mathbb{R})$, we apply (2.1) to obtain

$$\begin{split} \phi_2(F_-)\phi_1(G_+) + \phi_1(F_+)\phi_2(G_-) \\ &= \phi_1(F_- \circ G_+) + \phi_1(G_- \circ F_+) + \phi_2(F_+ \circ G_-) + \phi_2(G_+ \circ F_-). \end{split}$$

Take $f, g \in L^1_{\omega}(\mathbb{R}^+)$ and we define $F(t) := f(t)\chi_{(0,\infty)}(t)$ and $G(t) = g(t)\chi_{(-\infty,0)}(t)$ with $t \in \mathbb{R}$. Then

$$\phi_1(f)\phi_2(g) = \phi_1(g \circ f) + \phi_2(f \circ g).$$

(ii) \Rightarrow (i). It is clear that Φ is a linear and continuous map. Take $F, G \in L^1_{\omega}(\mathbb{R})$. Since

$$\phi_2(F_-)\phi_1(G_+) + \phi_1(F_+)\phi_2(G_-)$$

= $\phi_1(F_- \circ G_+) + \phi_1(G_- \circ F_+) + \phi_2(F_+ \circ G_-) + \phi_2(G_+ \circ F_-),$

we obtain $\Phi(F * G) = \Phi(F)\Phi(G)$.

Theorem 2.2. Let \mathcal{A} be a Banach algebra, $\omega \ge 0$, let $(r_{\lambda})_{|\lambda|>\omega}$ be a pseudo-resolvent in \mathcal{A} and let

$$M = \sup\{(|\lambda| - \omega)^n \|r_{\lambda}^n\| : n \in \mathbb{N}, \ |\lambda| > \omega\}.$$

Then the following conditions are equivalent:

- (i) $M < +\infty;$
- (ii) there exists a continuous algebra homomorphism

$$\Phi: L^1_{\omega}(\mathbb{R}) \to \mathcal{A}$$

such that $\Phi(\varepsilon_{-\lambda}) = r_{\lambda}$ for each $\lambda > \omega$ and $\Phi(\varepsilon_{-\lambda}) = -r_{\lambda}$ for each $\lambda < -\omega$.

If a continuous algebra homomorphism $\Phi : L^1_{\omega}(\mathbb{R}) \to \mathcal{A}$ satisfying $\Phi(\varepsilon_{-\lambda}) = r_{\lambda}$ for each $\lambda > \omega$ and $\Phi(\varepsilon_{-\lambda}) = -r_{\lambda}$ for each $\lambda < -\omega$ exists, then it is unique and $\|\Phi\| = M$.

Proof. We consider two pseudo-resolvents $(r_{\lambda})_{\lambda>\omega}$ and $(\tilde{r}_{\lambda})_{\lambda>\omega}$, where $\tilde{r}_{\lambda} = -r_{-\lambda}$ for $\lambda > \omega$.

(i) \Rightarrow (ii). By Theorem 1.1, there exist $\phi_1, \phi_2 : L^1_{\omega}(\mathbb{R}^+) \to \mathcal{A}$ such that $\phi_1(\varepsilon_{-\lambda}) = r_{\lambda}$ and $\phi_2(\varepsilon_{-\lambda}) = \tilde{r}_{\lambda}$ for $\lambda > \omega$. We define $\Phi(F) := \phi_1(F_+) + \phi_2(F_-)$ with $F \in L^1_{\omega}(\mathbb{R})$. By Theorem 2.1, it is sufficient to prove that

$$\phi_1(f)\phi_2(g) = \phi_1(g \circ f) + \phi_2(f \circ g), \tag{2.2}$$

for $f, g \in L^1_{\omega}(\mathbb{R}^+)$. Take $f = \varepsilon_{-\lambda}$ and $g = \varepsilon_{-\mu}$ with $\lambda, \mu > \omega$. Since $(r_{\lambda})_{|\lambda| > \omega}$ is a pseudoresolvent in \mathcal{A} , and

$$\varepsilon_{-\lambda} \circ \varepsilon_{-\mu} = \frac{1}{\lambda + \mu} \varepsilon_{\mu} \quad \text{for } \lambda, \mu > \omega,$$

we have

$$\phi_1(\varepsilon_{-\lambda})\phi_2(\varepsilon_{-\mu}) = -r_{\lambda}r_{-\mu} = \frac{1}{\lambda+\mu}(r_{\lambda}-r_{-\mu}) = \phi_1(\varepsilon_{-\mu}\circ\varepsilon_{-\lambda}) + \phi_2(\varepsilon_{-\lambda}\circ\varepsilon_{-\mu}).$$

Since $(\varepsilon_{-\lambda})_{\lambda>\omega}$ is linearly dense in $L^1_{\omega}(\mathbb{R}^+)$, equality (2.2) holds for any $f, g \in L^1_{\omega}(\mathbb{R}^+)$. Take $\lambda > \omega$. Then $\Phi(\varepsilon_{-\lambda}) = \phi_1(\varepsilon_{-\lambda}) = r_{\lambda}$ and if $\lambda < -\omega$, then $\Phi(\varepsilon_{-\lambda}) = \phi_2(\varepsilon_{-\lambda}) = -r_{\lambda}$.

(ii) \Rightarrow (i). We consider $\phi_1, \phi_2 : L^1_{\omega}(\mathbb{R}^+) \rightarrow \mathcal{A}$ defined by $\phi_1(f) := \Phi(F_1)$ and $\phi_2(f) := \Phi(F_2)$, where $F_1(t) := f(t)\chi_{(0,\infty)}(t)$ and $F_2(t) := f(-t)\chi_{(-\infty,0)}(t)$ for $t \in \mathbb{R}$. By Theorem 1.1,

$$M_1 = \sup\{(\lambda - \omega)^n \|r_\lambda^n\| : n \in \mathbb{N}, \ |\lambda| > \omega\} < \infty,$$

$$M_2 = \sup\{(\lambda - \omega)^n \|\tilde{r}_\lambda^n\| : n \in \mathbb{N}, \ |\lambda| > \omega\} < \infty.$$

We define $M := \max(M_1, M_2)$ and obtain (i). Again using $\Phi(F) := \phi_1(F_+) + \phi_2(F_-)$, $\|\Phi\| = \max(\|\phi_1\|, \|\phi_2\|)$ and, by Theorem 1.1, $\max(\|\phi_1\|, \|\phi_2\|) = \max(M_1, M_2) = M$, we finish the proof.

3. Fractional homomorphisms and integrated groups

In this section we recall some definitions and properties of Weyl fractional calculus. The reader will find a nice introduction and comments in the monograph [16].

Let \mathcal{D} be the set of functions of compact support on \mathbb{R} and infinitely differentiable and take $F \in \mathcal{D}$. Weyl fractional integrals of F of order $\alpha > 0$, $W_{+}^{-\alpha}F$, $W_{-}^{-\alpha}F$, are defined by

$$W_{+}^{-\alpha}F(t) := \frac{1}{\Gamma(\alpha)} \int_{t}^{\infty} (s-t)^{\alpha-1}F(s) \,\mathrm{d}s,$$
$$W_{-}^{-\alpha}F(t) := \frac{1}{\Gamma(\alpha)} \int_{-\infty}^{t} (t-s)^{\alpha-1}F(s) \,\mathrm{d}s,$$

with $t \in \mathbb{R}$ (see, for example, [16]). Weyl fractional derivatives of F of order $\alpha > 0$, $W^{\alpha}_{+}F$, $W^{\alpha}_{-}F$, are given by

$$W^{\alpha}_{+}F := (-1)^n \frac{\mathrm{d}^n}{\mathrm{d}t^n} W^{-(n-\alpha)}_{+}F, \qquad W^{\alpha}_{-}F := \frac{\mathrm{d}^n}{\mathrm{d}t^n} W^{-(n-\alpha)}_{-}F,$$

with $n \in \mathbb{N}$ and $n > \alpha$ [16]. In the case $\alpha = n$, we have

$$(-1)^n W^n_+ F := \frac{\mathrm{d}^n}{\mathrm{d}t^n} F = W^n_- F.$$

Note that $W^{\alpha}_{+}(\varepsilon_{-\lambda})(t) = \lambda^{\alpha}\varepsilon_{-\lambda}(t)$ with $\lambda, t > 0$ and $W^{\alpha}_{-}(\varepsilon_{-\lambda})(t) = (-\lambda)^{\alpha}\varepsilon_{-\lambda}(t)$ for $\lambda, t < 0$.

We define the function $W_0^{\alpha}(F)$ for $\alpha > 0$ by

$$W_0^{\alpha}F(t) := \begin{cases} W_-^{\alpha}F(t), & t < 0, \\ \mathrm{e}^{\mathrm{i}\pi\alpha}W_+^{\alpha}F(t), & t \ge 0, \end{cases}$$

for $f \in \mathcal{D}$. Note that, for $\alpha = n$, $e^{i\pi\alpha} = (-1)^n$ and the function $W_0^n F$ is continuous at t = 0. Now we consider some fractional Banach algebras that were introduced in [9].

https://doi.org/10.1017/S0013091505000520 Published online by Cambridge University Press

Theorem 3.1. Suppose $\alpha > 0$ and $\omega \ge 0$. If $F \in \mathcal{D}$, then the formula

$$\|F\|_{(\alpha,\omega)} := \frac{1}{\Gamma(\alpha+1)} \int_{-\infty}^{\infty} |t|^{\alpha} \mathrm{e}^{\omega|t|} |W_0^{\alpha} F(t)| \,\mathrm{d}t$$

defines a norm in \mathcal{D} such that

$$||F * G||_{(\alpha,\omega)} \leq (2^{\alpha+1}+1)||F||_{(\alpha,\omega)}||G||_{(\alpha,\omega)},$$

with $F, G \in \mathcal{D}$. We denote by $AC_{\omega}^{(\alpha)}(\mathbb{R})$ the Banach algebra obtained by the completion of \mathcal{D} in this norm; $AC_{\omega}^{(\alpha)}(\mathbb{R}) \hookrightarrow L_{\omega}^{1}(\mathbb{R})$ and

$$||F||_{\omega} \leqslant ||F||_{(\alpha,\omega)}, \quad F \in AC_{\omega}^{(\alpha)}(\mathbb{R}).$$

Proof. See the proofs of [9, Theorem 1.8] and [15, Theorem 2.1] to obtain the constant $2^{\alpha+1} + 1$. Note that

$$\begin{split} \int_0^\infty \mathrm{e}^{\omega t} |F(t)| \, \mathrm{d}t &\leqslant \frac{1}{\Gamma(\alpha)} \int_0^\infty \int_0^s (s-t)^{\alpha-1} \mathrm{e}^{\omega t} |W_+^\alpha F(s)| \, \mathrm{d}t \, \mathrm{d}s \\ &\leqslant \frac{1}{\Gamma(\alpha+1)} \int_0^\infty s^\alpha \mathrm{e}^{\omega s} |W_+^\alpha F(s)| \, \mathrm{d}s, \end{split}$$

where we use the Fubini theorem and $\omega \ge 0$. Working in the same way on $(-\infty, 0]$ we may obtain the inequality $||F||_{\omega} \le ||F||_{(\alpha,\omega)}$ for $F \in AC_{\omega}^{(\alpha)}(\mathbb{R})$.

For $\alpha = 0$, $AC_{\omega}^{(0)}(\mathbb{R}) = L_{\omega}^{1}(\mathbb{R})$ and $AC_{\omega}^{(\beta)}(\mathbb{R}) \hookrightarrow AC_{\omega}^{(\alpha)}(\mathbb{R})$ holds with $0 \leq \alpha \leq \beta$. Functions $(\varepsilon_{-\lambda})_{|\lambda|>\omega}$ belong to $AC_{\omega}^{(\alpha)}(\mathbb{R})$ with $\alpha \geq 0$ (see the similar result [2, Lemma II.2]) and

$$\|\varepsilon_{-\lambda}\|_{(\alpha,\omega)} = \frac{|\lambda|^{\alpha}}{(|\lambda| - \omega)^{\alpha+1}}, \quad |\lambda| > \omega.$$

Note that $\|\varepsilon_{-\lambda}\|_{(\alpha,\omega)} \to \|\varepsilon_{-\lambda}\|_{\omega}$ when $\alpha \to 0^+$ and $|\lambda| > \omega$,

$$\underbrace{\varepsilon_{-\lambda} \ast \cdots \ast \varepsilon_{-\lambda}}_{n \text{ times}} \in AC^{(\alpha)}_{\omega}(\mathbb{R})$$

and

$$\|\underbrace{\varepsilon_{-\lambda} \ast \cdots \ast \varepsilon_{-\lambda}}_{n \text{ times}}\|_{(\alpha,\omega)} \leqslant (2^{\alpha+1}-1)^{n-1} \|\varepsilon_{-\lambda}\|_{(\alpha,\omega)}^n = (2^{\alpha+1}-1)^{n-1} \frac{|\lambda|^{n\alpha}}{(|\lambda|-\omega)^{n(\alpha+1)}},$$

for $|\lambda| > \omega$ (see the constant $(2^{\alpha+1}-1)^{n-1}$ in [15, Theorem 2.1]).

Theorem 3.2. Let \mathcal{A} be a Banach algebra and let $\omega \ge 0$.

(i) If $\Phi: L^1_{\omega}(\mathbb{R}) \to \mathcal{A}$ is a continuous homomorphism of Banach algebras, then for every $\alpha > 0$ the restriction $\Phi_{\alpha} := \Phi|_{AC^{(\alpha)}_{\omega}(\mathbb{R})} : AC^{(\alpha)}_{\omega}(\mathbb{R}) \to \mathcal{A}$ is a continuous homomorphism of Banach algebras such that $\|\Phi_{\alpha}\| \leq \|\Phi\|$.

(ii) Conversely, if for each $\alpha > 0$ there exist continuous homomorphisms Φ_{α} : $AC_{\omega}^{(\alpha)}(\mathbb{R}) \to \mathcal{A}$ of Banach algebras such that $\Phi_{\alpha}(\varepsilon_{-\lambda})$ does not depend on α for each $|\lambda| > \omega$ and $\limsup_{\alpha \to 0^+} ||\Phi_{\alpha}|| < \infty$, then there exists a unique continuous homomorphism $\Phi : L^1_{\omega}(\mathbb{R}) \to \mathcal{A}$ such that $\Phi(\varepsilon_{-\lambda}) = \Phi_{\alpha}(\varepsilon_{-\lambda})$ for each $|\lambda| > \omega$ and $||\Phi|| \leq \limsup_{\alpha \to 0^+} ||\Phi_{\alpha}||.$

Proof. (i) Take $F \in AC_{\omega}^{(\alpha)}(\mathbb{R})$. Since $AC_{\omega}^{(\alpha)}(\mathbb{R}) \hookrightarrow L_{\omega}^{1}(\mathbb{R})$ and $||F||_{\omega} \leq ||F||_{(\alpha,\omega)}$ (see Theorem 3.1) we have

$$\|\Phi_{\alpha}(F)\| = \|\Phi(F)\| \leq \|\Phi\| \|F\|_{\omega} \leq \|\Phi\| \|F\|_{(\alpha,\omega)}.$$

Then $\|\Phi_{\alpha}\| \leq \|\Phi\|$.

(ii) We define $r_{\lambda} := \Phi_{\alpha}(\varepsilon_{-\lambda})$ for $\lambda > \omega$ and $r_{\lambda} := -\Phi_{\alpha}(\varepsilon_{-\lambda})$ for $\lambda < -\omega$. The family $(r_{\lambda})_{|\lambda|>\omega}$ is well defined, a pseudo-resolvent in \mathcal{A} and

$$\|r_{\lambda}^{n}\| \leqslant \|\varPhi_{\alpha}\| \|\underbrace{\varepsilon_{-\lambda} \ast \cdots \ast \varepsilon_{-\lambda}}_{n \text{ times}}\|_{(\alpha,\omega)} \leqslant \|\varPhi_{\alpha}\| (2^{\alpha+1}-1)^{n-1} \frac{|\lambda|^{n\alpha}}{(|\lambda|-\omega)^{n(\alpha+1)}},$$

for $n \in \mathbb{N}$ and $|\lambda| > \omega$. Taking $\alpha \to 0^+$, we obtain

$$\sup\{(|\lambda|-\omega)^n \|r_{\lambda}^n\| : n \in \mathbb{N}, \ |\lambda| > \omega\} \leqslant \limsup_{\alpha \to 0^+} \|\Phi_{\alpha}\| < \infty.$$

By Theorem 2.2, there exists a unique homomorphism $\Phi: L^1_{\omega}(\mathbb{R}) \to \mathcal{A}$ such that

$$\Phi(\varepsilon_{-\lambda}) = r_{\lambda} = \Phi_{\alpha}(\varepsilon_{-\lambda}) \quad \text{for } |\lambda| > \omega$$

and $\|\Phi\| \leq \limsup_{\alpha \to 0^+} \|\Phi_\alpha\|.$

Remark. Note that $\|\Phi\| = \limsup_{\alpha \to 0^+} \|\Phi_\alpha\| = \sup_{\alpha > 0} \|\Phi_\alpha\|$ since $\|\Phi_\beta\| \le \|\Phi_\alpha\|$ with $\beta \ge \alpha > 0$.

A different extension of the Widder theorem was taken by Arendt *et al.* [1] and Hieber [11]. To find a vector-valued version of Widder's theorem on arbitrary Banach space, they consider Lipschitz functions which are integrated from bounded functions in some sense. Then integrated semigroups and groups appear (see [1,11]). Recall that an α -times integrated semigroup $s_{\alpha}(\cdot) : [0, \infty) \to \mathcal{A}$ is a continuous mapping with $s_{\alpha}(0) = 0$ and

$$s_{\alpha}(t)s_{\alpha}(s) = \frac{1}{\Gamma(\alpha)} \left(\int_{t}^{t+s} (t+s-r)^{\alpha-1}s_{\alpha}(r) \,\mathrm{d}r - \int_{0}^{s} (t+s-r)^{\alpha-1}s_{\alpha}(r) \,\mathrm{d}r \right),$$

with $t, s \ge 0$.

Definition 3.3. For any $\alpha > 0$, an α -times integrated group $s_{\alpha}(\cdot) : \mathbb{R} \to \mathcal{A}$ is a continuous mapping with $s_{\alpha}(0) = 0$, $s_{\alpha}(\cdot) : [0, \infty) \to \mathcal{A}$, $\tilde{s}_{\alpha}(\cdot) : [0, \infty) \to \mathcal{A}$, where $\tilde{s}_{\alpha}(t) := s_{\alpha}(-t)$ for $t \ge 0$ are α -times integrated semigroups and, if t < 0 < s,

$$s_{\alpha}(t)s_{\alpha}(s) = \frac{1}{\Gamma(\alpha)} \left(\int_{t+s}^{s} (r-s-t)^{\alpha-1}s_{\alpha}(r) \,\mathrm{d}r + \int_{t}^{0} (t+s-r)^{\alpha-1}s_{\alpha}(r) \,\mathrm{d}r \right)$$

with $t + s \ge 0$, and

$$s_{\alpha}(t)s_{\alpha}(s) = \frac{1}{\Gamma(\alpha)} \left(\int_{t}^{t+s} (t+s-r)^{\alpha-1}s_{\alpha}(r) \,\mathrm{d}r + \int_{0}^{s} (r-t-s)^{\alpha-1}s_{\alpha}(r) \,\mathrm{d}r \right)$$

with $t + s \leq 0$.

The set of Bocher–Riesz functions $(R_t^{\alpha})_{t \in \mathbb{R}}, R_0^{\alpha} = 0$ and

$$R_t^{\alpha}(s) := \begin{cases} \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} \chi_{(0,t)}(s), & t > 0, \\ \frac{(s-t)^{\alpha-1}}{\Gamma(\alpha)} \chi_{(t,0)}(s), & t < 0, \end{cases}$$

for $\alpha > 0$ is a canonical example of an α -times integrated group in $L^1_{\omega}(\mathbb{R})$ and

$$\|R_t^{\alpha}\|_{\omega} \leqslant \frac{|t|^{\alpha} \mathrm{e}^{|t|\omega}}{\Gamma(\alpha+1)}, \quad t \in \mathbb{R}.$$

Now we can add more conditions to the Kisyński theorem in $L^1_{\omega}(\mathbb{R})$.

Theorem 3.4. Let \mathcal{A} be a Banach algebra, $\omega \ge 0$, let $(r_{\lambda})_{|\lambda|>\omega}$ be a pseudo-resolvent in \mathcal{A} , and let

$$M = \sup\{(|\lambda| - \omega)^n \| r_{\lambda}^n\| : n \in \mathbb{N}, \ |\lambda| > \omega\}.$$

Then the following conditions are equivalent:

(i) $M < \infty$;

- (ii) there exists a continuous algebra homomorphism $\Phi : L^1_{\omega}(\mathbb{R}) \to \mathcal{A}$ such that $\Phi(\varepsilon_{-\lambda}) = r_{\lambda}$ for each $\lambda > \omega$ and $\Phi(\varepsilon_{-\lambda}) = -r_{\lambda}$ for each $\lambda < -\omega$;
- (iii) for any $\alpha > 0$ there exists an α -times integrated group $(s_{\alpha}(t))_{t \in \mathbb{R}} \subset \mathcal{A}$ and C > 0 such that

$$||s_{\alpha}(t)|| \leq \frac{C}{\Gamma(\alpha+1)} |t|^{\alpha} e^{\omega|t|} \quad \text{with } t \in \mathbb{R}$$

and

$$\begin{aligned} r_{\lambda} &= \lambda^{\alpha} \int_{0}^{\infty} \mathrm{e}^{-\lambda t} s_{\alpha}(t) \,\mathrm{d}t & \text{with } \lambda > \omega, \\ r_{\lambda} &= -(-\lambda)^{\alpha} \int_{-\infty}^{0} \mathrm{e}^{-\lambda t} s_{\alpha}(t) \,\mathrm{d}t & \text{with } \lambda < -\omega; \end{aligned}$$

(iv) if for each $\alpha > 0$ there exists a continuous homomorphisms $\Phi_{\alpha} : AC_{\omega}^{(\alpha)}(\mathbb{R}) \to \mathcal{A}$ of Banach algebras such that $\Phi_{\alpha}(\varepsilon_{-\lambda}) = r_{\lambda}$ for $\lambda > \omega$, $\Phi_{\alpha}(\varepsilon_{-\lambda}) = -r_{\lambda}$ for $\lambda < -\omega$ and $\sup_{\alpha>0} \|\Phi_{\alpha}\| < \infty$.

Furthermore, if a continuous algebra homomorphism $\Phi : L^1_{\omega}(\mathbb{R}) \to \mathcal{A}$ such that $\Phi(\varepsilon_{-\lambda}) = r_{\lambda}$ for $\lambda > \omega$ and $\Phi(\varepsilon_{-\lambda}) = -r_{\lambda}$ for $\lambda < -\omega$ exists, then it is unique, $\Phi(F) = \Phi_{\alpha}(F)$ for $F \in AC^{(\alpha)}_{\omega}(\mathbb{R})$ and

$$M = \|\Phi\| = \sup_{\alpha>0} \|\Phi_{\alpha}\| = \inf \left\{ C : \|s_{\alpha}(t)\| \leqslant C \frac{|t|^{\alpha} e^{\omega|t|}}{\Gamma(\alpha+1)}, \ t \in \mathbb{R} \right\}.$$

Proof. This is similar to the proof in [15, Theorem 4.2].

4. The Hille–Yosida theorem

Let \mathcal{A} be a Banach algebra and let $\operatorname{Mul}(\mathcal{A})$ be the set of linear and bounded operators on \mathcal{A} , $T : \mathcal{A} \to \mathcal{A}$, which verify T(ab) = aT(b) for $a, b \in \mathcal{A}$. These operators are called *multipliers* of \mathcal{A} (for more details see [6]).

Take X, a Banach space, and $\mathcal{B}(X)$, the algebra of linear and bounded operators on X. A homomorphism from \mathcal{A} into $\mathcal{B}(X)$ is called a *representation*. Suppose that \mathcal{A} is commutative and has a bounded approximate identity $\{e_n\}_{n\in\mathbb{N}}$. Given $\Phi: \mathcal{A} \to \mathcal{B}(X)$, a continuous representation, the *regularity space* \mathcal{R}_{Φ} is the closed linear span of $\{\Phi(a)x \mid a \in \mathcal{A}, x \in X\}$ and [6]

$$\mathcal{R}_{\Phi} = \Big\{ x \in X \ \Big| \ \lim_{n \to \infty} \Phi(e_n) x = x \Big\}.$$

By the Cohen theorem, $\mathcal{R}_{\Phi} = \{ \Phi(a)x \mid a \in \mathcal{A}, x \in X \}$, and there exists a unique representation $\hat{\Phi} : \operatorname{Mul}(\mathcal{A}) \to \mathcal{B}(\mathcal{R}_{\Phi})$ such that

$$\Phi(L_a)x = \Phi(a)x, \quad x \in \mathcal{R}_\Phi$$

where $L_a(b) := ab$ for $a, b \in \mathcal{A}$ (see [6, Theorem 2.4]).

Take the case $\mathcal{A} = L^1_{\omega}(\mathbb{R})$ and $\operatorname{Mul}(L^1_{\omega}(\mathbb{R})) = M_{\omega}(\mathbb{R})$ $(M_{\omega}(\mathbb{R}))$ is the collection of all Borel measures μ on \mathbb{R} for which

$$\int_{-\infty}^{\infty} e^{\omega|t|} \, \mathrm{d}|\mu|(t) < \infty,$$

where $|\mu|$ denotes the total variation of μ). The Dirac measure is a one-parameter C_0 group $(\delta_t)_{t\in\mathbb{R}}$ of convolution operators on $L^1_{\omega}(\mathbb{R})$ (i.e. $\delta_t * \delta_s = \delta_{t+s}$ for $t, s \in \mathbb{R}$ and $\delta_t f \to f$ in $L^1_{\omega}(\mathbb{R})$ when $t \to 0$). The next theorem is well known (see the case \mathbb{R}^+ in [6, Theorem 3.3]).

Theorem 4.1. Let X be a Banach space and let $\Phi : L^1_{\omega} \to \mathcal{B}(X)$ be a continuous representation. For each $t \in \mathbb{R}$, set $S(t) := \hat{\Phi}(\delta_t)$. Then (S(t)) is a C_0 -group on \mathcal{R}_{ϕ} such that

$$||S(t)|| \leq ||\hat{\Phi}||e^{\omega|t|}, \quad t \in \mathbb{R}$$

and, for $\mu \in M_{\omega}(\mathbb{R})$,

$$\hat{\varPhi}(\mu) = \int_{-\infty}^{\infty} S(t) x \,\mathrm{d}\mu(t), \quad x \in \mathcal{R}_{\varPhi}.$$

Let $R \equiv (R_{\lambda})_{|\lambda|>\omega}$ be a pseudo-resolvent on $\mathcal{B}(X)$. It is easy to check that the kernel and the range of R_{λ} are independent of λ (we denote them by ker(R) and Im(R)). Note that $(R_{\lambda})_{|\lambda|>\omega}$ is the resolvent of a densely defined closed operator (A, D(A))(i.e. $R_{\lambda} = (\lambda - A)^{-1}$) if and only if ker(R) = {0} and $\overline{\text{Im}(R)} = X$ [8, Proposition III.4.6].

The Hille–Yosida theorem for C_0 -groups can be found in [8, p. 79] (definitions of the infinitesimal generator, C_0 -groups and properties can be also be found therein).

Remark (the Hille–Yosida theorem). Let $\omega \ge 0$ and M > 0. For a linear operator (A, D(A)) on a Banach space X, the following properties are equivalent:

- (i) (A, D(A)) generates a C_0 -group $(S(t))_{t \in \mathbb{R}}$ such that $||S(t)|| \leq M e^{\omega|t|}$ with $t \in \mathbb{R}$;
- (ii) (A, D(A)) is closed, densely defined and, for every $\lambda \in \mathbb{R}$ with $|\lambda| > \omega$, we have $\lambda \in \rho(A)$ and

$$\|(|\lambda| - \omega)^n R(\lambda, A)^n\| \le M,$$

for all $n \in \mathbb{N}$.

Proof. (i) \Rightarrow (ii). We define $\Phi : L^1_{\omega}(\mathbb{R}) \to \mathcal{B}(X)$,

$$\Phi(F)x = \int_{-\infty}^{\infty} F(t)S(t)x \,\mathrm{d}t, \quad x \in X.$$

Since $\Phi(\varepsilon_{-\lambda}) = R(\lambda, A)$ with $\lambda > \omega$ and $\Phi(\varepsilon_{-\lambda}) = -R(\lambda, A)$ with $\lambda < -\omega$, we apply Theorem 2.2 to obtain (ii).

(ii) \Rightarrow (i). By Theorem 2.2 there exists $\Phi : L^1_{\omega}(\mathbb{R}) \to \mathcal{B}(X)$ such that $\Phi(\varepsilon_{-\lambda}) = R(\lambda, A)$ with $\lambda > \omega$ and $\Phi(\varepsilon_{-\lambda}) = -R(\lambda, A)$ with $\lambda < -\omega$. Since $(n\varepsilon_{-n})_{n>\omega}$ is a bounded approximate identity, then $\mathcal{R}_{\Phi} = \overline{\mathrm{Im}(R_{\lambda})} = X$. By Theorem 4.1, there exists a C_0 -group on X such that $\|S(t)\| \leq M \mathrm{e}^{\omega|t|}$ for $t \in \mathbb{R}$. It is straightforward to check that (A, D(A)) is the infinitesimal generator of $(S(t))_{t \in \mathbb{R}}$.

Acknowledgements. This work was partly supported by Project MTM2004-03036, DGI-FEDER, of the MCYT, Spain, and Project no. E-64, D. G. Aragón, Spain.

The author is grateful to the referee for a careful reading of this paper and valuable suggestions, comments and ideas that led to its improvement.

References

- 1. W. ARENDT, C. J. K. BATTY, M. HIEBER AND F. NEUBRANDER, Vector-valued Laplace transforms and Cauchy problems, Monographs in Mathematics, Volume 96 (Birkhäuser, Basel, 2001).
- M. BALABANE AND H. A. EMAMIRAD, Smooth distribution group and Schrödinger equation in L^p(R), J. Math. Analysis Applic. 70 (1979), 61–71.
- 3. A. BOBROWSKI, On the Yosida approximation and the Widder-Arendt representation theorem, *Studia Math.* **124** (1997), 281–290.
- 4. A. BOBROWSKI, Inversion of the Laplace transform and generation of Abel summable semigroups, *J. Funct. Analysis* **186** (2001), 1–24.
- W. CHOJNACKI, On the equivalence of a theorem of Kisyński and the Hille–Yosida generation theorem, Proc. Am. Math. Soc. 126 (1998), 491–497.

- W. CHOJNACKI, Multipliers algebras, Banach bundles, and one-parameter semigroups, Ann. Scuola Norm. Sup. Pisa 28 (1999), 287–322.
- 7. W. CHOJNACKI, A generalization of the Widder–Arendt theorem, *Proc. Edinb. Math. Soc.* **45** (2002), 161–179.
- 8. K.-J. ENGEL AND R. NAGEL, One-parameter semigroups for linear evolution equations (Springer, 2000).
- 9. J. E. GALÉ AND P. J. MIANA, One parameter groups of regular quasimultipliers, J. Funct. Analysis 237 (2006), 1–53.
- 10. B. HENNIG AND F. NEUBRANDER, On representations, inversions, and approximations of Laplace transforms in Banach space, *Applic. Analysis* **49** (1993), 151–170.
- 11. M. HIEBER, Laplace Transforms and α -times integrated semigroups, Forum Math. 3 (1991), 595–612.
- J. KISYŃSKI, Around Widder's characterization of the Laplace transform of an element of L[∞], Ann. Polon. Math. 74 (2000), 161–200.
- 13. J. KISYŃSKI, Representations of the convolution algebra D(R) and distribution semigroups, Institute of Mathematics of the Polish Academy of Science, preprint no. 644 (IMPAN, 2003).
- 14. P. J. MIANA, α -times integrated semigroups and fractional derivation, Forum Math. 14 (2002), 23–46.
- P. J. MIANA, Uniformly bounded limit of fractional algebra homomorphisms, Proc. Am. Math. Soc. 133 (2005), 2569–2575.
- 16. K. S. MILLER AND B. ROSS, An introduction to the fractional calculus and fractional differential equations (Wiley, 1993).
- 17. D. V. WIDDER, The Laplace transform (Princeton University Press/McGraw-Hill, 1946).