Blood pressure regulation and micronutrients

Krishnamurti Dakshinamurti*1 and Shyamala Dakshinamurti2

1Department of Biochemistry and Medical Genetics and 2Department of Pediatrics and Child Health, Faculty of Medicine, University of Manitoba, Winnipeg, Canada R3E 0W3

This review attempts to delineate the underlying mechanisms leading to the development of hypertension as well as the function of vitamins and minerals in the regulation of blood pressure. Physiological processes that regulate cardiac output and systemic vascular resistance impact on the control of blood pressure. Metabolic abnormalities associated with the tetrad of hypertension, dyslipidaemia, glucose intolerance and obesity share insulin resistance, which might be organ or cell specific, as an underlying feature representing different tissue manifestation of a common cellular ionic defect. As Ca is at the centre of ionic regulation of cellular functions, vitamins involved in Ca regulation have a significant role in the control of blood pressure. The endothelium-dependent vasodilator, NO, is susceptible to oxidative damage. Hence, antioxidant vitamins and related factors regulate blood pressure through protection of NO. Robust evidence for the involvement of vitamin B6 (pyridoxine), vitamin C, vitamin D and vitamin E in the regulation of blood pressure have been reported. The well-known roles of Na, K, Ca, Mg and Cl have been explored further. The action of various vitamins on blood pressure regulation cannot always be explained on the basis of their conventionally recognised ‘vitamin function’. The non-traditional functions of vitamins and their derivatives can

Abbreviations: ACE, angiotensin-converting enzyme; AII, angiotensin II; ANP, atrial natriuretic peptide; DA, dopamine; DOCA, deoxycorticosterone acetate; 8-OH-DPAT, 8-hydroxy-2-(di-n-propylamino) tetralin; ED50, median effective dose; GABA, γ-aminobutyric acid; 5-HT, serotonin; IP3, inositol 1,4,5-triphosphate; IR, insulin resistance; MAP, mean arterial pressure; MRI, magnetic resonance imaging; MRS, magnetic resonance spectroscopy; NIDDM, type 2 diabetes; PHF, parathyroid hypertensive factor; PIH, pregnancy-induced hypertension; PLP, pyridoxal phosphate; PTH, parathyroid hormone; 25-(OH)D3, 25-hydroxycholecalciferol; 1,25-(OH)2 D3, 1,25-dihydroxycholecalciferol; 24,25-(OH)2D3, 24,25-dihydroxycholecalciferol; RAS, renin–angiotensin–aldosterone; SBP, systolic blood pressure; SHR, spontaneously hypertensive rats; SOD, superoxide dismutase; VSM, vascular smooth muscle; WKY, Wistar–Kyoto rat.

*Corresponding author: Dr K. Dakshinamurti, fax +1 204 896 3614, email dakshin@cc.umanitoba.ca
be exploited as an adjunct to available pharmacological modalities in the treatment of hypertension.

Hypertension mechanisms: Micronutrients: Vitamins: Ion channels: Calcium: Pyridoxal phosphate

Introduction

Hypertension is the sustained elevation of systemic arterial pressure. Under resting conditions the mean arterial pressure (MAP) is about 110 mmHg (with the systolic blood pressure (SBP) in the range 135–140 mmHg and the diastolic blood pressure not greater than 90 mmHg). MAP is normally tightly regulated such that tissue perfusion is maintained with minimum vascular trauma. A subject with a MAP elevated above the value of 110 mmHg on at least two measurements is considered to be hypertensive. In industrialized Western societies, about 20–30 % of the adult population have some degree of elevation of blood pressure. Hypertension is not a single disease entity with a single identifiable aetiology; it is a clinical condition brought on by a number of factors. It is generally recognized that stress, poor diet, lack of exercise and related features of our civilization contribute significantly to the development of hypertension. Age, heredity, racial proclivity, obesity and dietary intake of salt are considered to be among the main factors in the development of hypertension. There are, as yet, unknown contributors. The use of anti-hypertensive drugs in the last 40 years has resulted in a significant control of hypertension in about half of the patients so that mortality from stroke and cardiovascular disease in hypertensive subjects has dropped considerably. The Systolic Hypertension in the Elderly Program (SHEP) Cooperative Research Group (1991), the reports of the Joint National Committee on Detection, Evaluation and Treatment of High Blood Pressure (1993, 1997), the MRC/BHF Heart Protection Study (1999) and the Canadian Recommendations for the Management of Hypertension (1999) have indicated the effectiveness of various treatment programmes. However, as Reaven & Hoffman (1988) have pointed out, therapy has been based primarily on pharmacological approaches to lowering blood pressure, with little attention being paid to the underlying metabolic abnormalities. Recent research on the underlying pathophysiology of hypertension and on the roles played by environment and nutrients in the development or amelioration of hypertension will promote more effective treatment modalities.

This review delineates the underlying mechanisms leading to the development of hypertension as well as the function of micronutrients (vitamins and minerals) in blood pressure regulation. With regard to the vitamins, robust evidence for the involvement of vitamin B\textsubscript{6} (pyridoxine), vitamin C, vitamin D and vitamin E has been reported. In hypertensive patients, plasma homocysteine levels are strongly and independently correlated to arterial stiffness. Plasma levels of homocysteine are influenced by levels of folate, vitamin B\textsubscript{12} and vitamin B\textsubscript{6}. The well-known roles of Na, K, Ca, Mg and Cl have been extended further. Recent work has indicated the interrelationship among micronutrients in the control of blood pressure. With regard to the non-nutrient minerals, the toxic effects of As and Pb (which include the development of hypertension) are of particular public health significance.

Mechanisms that regulate cardiac output and systemic vascular resistance affect the control of blood pressure. Apart from the baroreceptor reflex, mechanisms involved in the renin–angiotensin–aldosterone (RAS) system and in the alteration of extracellular fluid volume
are the main players. Activation of the sympathetic nervous system, as well as the abnormal function of the vascular endothelium, have been recognized to contribute to the development of hypertension. The vast majority of hypertensive subjects who do not have a single identifiable cause for their hypertension are referred to as having ‘essential hypertension’; multiple factors contribute to their elevated blood pressure. The deleterious consequences of hypertension arise out of increased workload on the heart and damage to the arteries themselves due to the increased pressure; thus, it is a major cause of cardiovascular disease, stroke and renal failure. In this review, hypertension refers primarily to ‘essential hypertension’.

Hypertension and ‘syndrome X’

It has been known for quite some time that the abnormal plasma lipoprotein concentrations in untreated hypertensive subjects increase their risk of coronary artery disease (MacMahon et al. 1985). Epidemiological data have documented the association between obesity and hypertension (Widgren et al. 1992). Increases in plasma of both glucose and insulin following a load of glucose in hypertensive subjects indicate an insulin-resistant condition (Ferranni et al. 1987). It has been reported that, in hypercholesterolaemia, increased levels of VLDL and decreased levels of HDL are associated with hyperinsulinaemia (Stadler et al. 1981); this may be secondary to insulin resistance (IR). The term ‘syndrome X’ was used by Reaven & Hoffman (1988) to describe the association of what has been referred to as the ‘deadly quartet’ of obesity, hyperlipidaemia, hypertension and hyperinsulinaemia/IR. The term ‘insulin resistance syndrome’ was suggested (Haffner et al. 1992a) for this as the underlying pathology for this cluster of metabolic disorders (hypertension, dyslipidaemia, obesity and glucose intolerance) is IR. The San Antonio Heart Study indicates that the existence of hyperinsulinaemia is a predictor of the development of hypertension, hypertriacylglycerolaemia, type 2 diabetes (NIDDM) and abnormal lipoproteinemia (Morales et al. 1993).

Hypertension and associated metabolic abnormalities

Metabolic abnormalities associated with the tetrad of hypertension, dyslipidaemia, glucose intolerance and obesity can be understood by comparing the metabolic connections between hypertension, obesity and dyslipidaemia, on the one hand, with those between hypertension and glucose intolerance, on the other. IR is the common thread connecting these abnormalities. Alterations in intracellular Ca and its sequelae, vascular endothelial function and sympathetic nervous system activation, are other levels at which the tetrad of ‘syndrome X’ are connected.

Cross-sectional surveys provide much evidence relating obesity to hypertension. This evidence is further strengthened by longitudinal studies which show that obesity can be a predictor of hypertension (Haffner et al. 1992b; Widgren et al. 1992). Subjects in the San Antonio and Finnish studies, before the onset of hypertension had increased obesity, an adverse body-fat distribution, increased triacylglycerol levels and increased insulin concentration compared with those in subjects who remained normotensive at follow-up (Morales et al. 1993; Mykkanen et al. 1994; Haffner et al. 1996). There is a correlation between the degree of obesity and the level of circulating insulin. The incidence of hyperinsulinaemia is further increased in central obesity where the waist:hip ratio is high (Spangler et al. 1998). This relationship appears quite early in life, as prepubescent, obese, non-diabetic children show a positive correlation between hyperinsulinaemia and blood pressure (Kanai et al. 1990).
Independently, both obesity and hypertension, even when they do not coexist, are characterized by hyperinsulinaemia and insulin insensitivity. There is a positive correlation between hyperinsulinaemia and blood pressure in non-obese hypertensive subjects. Total insulin-mediated glucose uptake was suppressed in hypertensive subjects compared with normal controls: Ferrannini et al. (1987) showed that IR correlated with systolic and mean blood pressure. Hypertension is an insulin-resistant state with relative IR even in non-obese, non-glucose-intolerant hypertensive subjects compared with matched controls. There is selective IR primarily in skeletal and vascular smooth muscle while renal and sympathetic nervous system responses to insulin are maintained (Zemel, 1998). In obesity, on the other hand, IR is widespread with a decreased number of cell surface receptors as well as post-receptor defects (Ciarralde et al. 1981). When both obesity and hypertension coexist there is greater IR than in normotensive obese subjects (Manicardi et al. 1986; Istfan et al. 1992). The relationship between IR and hypertension has been described in a multicentre study (Ferrannini et al. 1987). There was correlation between IR and blood pressure even after adjusting for BMI. Increased fasting insulin predicted the development of hypertension across all strata of BMI (Haffner et al. 1992b; Shetterly et al. 1994).

Type 2 diabetes (non-insulin-dependent diabetes; NIDDM) is more common in incidence than type 1 (insulin-dependent diabetes). Patients with NIDDM are generally overweight; in fact, obesity is a risk factor for NIDDM. Subjects with NIDDM secrete decreased amounts of insulin following an oral load of glucose; in addition, they are resistant to the action of insulin. IR is due to defective binding to its receptor on the plasma membrane as well as to post-receptor defects in insulin action. IR is not unique to NIDDM; it is also observed in hypertension, microalbuminuria, dyslipidaemia and abnormal obesity (Groop et al. 1993, 1996, 1997; Nosadini et al. 1994).

Targets of insulin action

Insulin administration increases sympathetic nervous system activity (Rowe et al. 1981). In obese individuals, insulin infusion increases plasma noradrenaline (O’Hare et al. 1989). The obese retain normal insulin sensitivity to stimulation of the sympathetic nervous system while having a reduced sensitivity to glucose disposal. Selective IR leads to hyperinsulinaemia which, in turn, stimulates sympathetic nervous system activity and increases renal Na retention, thereby increasing peripheral resistance. Insulin exerts an anti-natriuretic effect; it also has a direct vasodilatory effect on vascular smooth muscle of several vascular beds in normal subjects but not in the obese (Anderson et al. 1991). The vasoconstrictor action of insulin through sympathetic nervous system activation is opposed by the direct effect of insulin as a vasodilator. In the obese, the vasodilatory effect of insulin is attenuated, tipping the balance in favour of vasoconstriction.

Insulin regulates vascular tone by regulating \([\text{Ca}^{2+}]_i\) of the vascular smooth muscle (Zemel, 1995). Insulin attenuates both voltage- and receptor-mediated \(\text{Ca}^{2+}\) influx in cultured vascular smooth muscle (VSM) cells (Standley et al. 1991). Physiological concentrations of insulin attenuate the \([\text{Ca}^{2+}]_i\) response of arginine vasopressin, angiotensin II and noradrenaline (Touyz et al. 1994). In addition, the attenuation of vasoconstriction in canine femoral artery cells has been shown to be dependent on the inhibition of \(\text{Ca}\) influx. This direct vasodilatory action of insulin is due to the stimulation of VSM \(\text{Ca}^{2+}\)-ATPase. In the insulin-resistant state, \(\text{Ca}\) efflux from VSM is attenuated, leading to vasoconstriction (Zemel et al. 1992a).
Activation of the sympathetic nervous system

A significant number of even borderline hypertensive individuals have increased autonomic drive, resulting in increase in heart rate and cardiac output (Julius, 1996). This was shown in young borderline hypertensive subjects; in such subjects, plasma noradrenaline (an index of sympathetic tone) was also increased. Plasma noradrenaline concentration increases with age, perhaps reflecting the increase in blood pressure with age. In hypertensive subjects, micro-neurography has shown enhanced muscle sympathetic nerve activity (Flora & Hara, 1993; Grassi et al. 1997; Mancia, 1997). There was progressive increase in sympathetic tone with increasing severity of essential hypertension. Patients with secondary hypertension did not show any increase in muscle sympathetic nerve activity compared with normotensive subjects. Muscle sympathetic nerve activity was also increased in obese subjects, whether hypertensive or normotensive. Sympathetic activation has been shown to be elevated in subjects with IR (Ferrannini et al. 1987). Sympathetic activation stimulates renin secretion and the resulting angiotension II further activates the sympathetic nervous system, both centrally and peripherally. The cause of sympathetic activation in essential hypertension is not yet known, although the phenomenon has been demonstrated repeatedly (Mancia, 1997; Rahn et al. 1999).

Impaired vascular endothelial function

The vascular endothelium is important for determining vascular tone through its production of vasoconstrictor and vasodilator factors which control the activity of the underlying smooth muscle layer (Vane et al. 1990). The term ‘endothelial function’ is used to refer to stimulated endothelium-dependent vasodilatation. Impaired endothelial function in human arterial hypertension and hypercholesterolaemia has been reviewed (Vanhoutte, 1999; John & Schmieder, 2000). NO, the most important vasodilator produced by the endothelium, is formed from arginine through the action of NO synthase. This enzyme is stimulated by shear stress caused by blood flow across the endothelium, as well as by chemical mediators such as acetylcholine which act on its receptors on the endothelial cell membrane. NO is produced and released both tonically and under stimulation by endothelial agonists. NO diffuses to the underlying smooth muscle cells and activates soluble guanylate cyclase to generate cGMP, which causes smooth muscle relaxation and, thence, endothelium-dependent vasodilatation (Vallance et al. 1989).

The plasma concentrations of the oxidative metabolites of NO such as nitrite and nitrate are reduced in patients with essential hypertension, indicating that both resting and stimulated production of NO are impaired in this condition (Forte et al. 1997). In hypercholesterolaemia, on the other hand, stimulated release of NO is impaired whereas the tonic release is unaffected. In patients with essential hypertension the release of NO is augmented by a reduction in blood pressure brought about by angiotension-converting enzyme (ACE) inhibitor or by Ca-channel antagonists (Lyons et al. 1994). Ca-channel antagonists are effective in reversing endothelial dysfunction in vessels in several vascular beds. Angiotension II increases the production of superoxide which is associated with impaired VSM relaxation stimulated by acetylcholine. Angiotension receptor (AT₁) antagonists are also effective in reversing the impairment of endothelial function in hypertensive subjects (Dijkhorst-Oei et al. 1999). In both hypertension and hypercholesterolaemia, oxidative stress is a major mechanism leading to impairment of endothelial function.

Impairment of vascular endothelial function due to decreased NO release not only affects vascular tone but also accelerates the pathogenetic processes in dyslipidaemic subjects leading
to atherosclerosis, such as platelet aggregation, VSM cell proliferation and migration, monocyte adhesion as well as expression of adhesion molecules (John & Schmieder, 2000). Lipid-lowering drugs are as effective in reversing the impairment of endothelial function as Ca-channel antagonists are in essential hypertensives.

Natriuretic peptides

Atrial natriuretic peptide (ANP), a member of the family of natriuretic peptides, regulates a variety of physiological processes including blood pressure, progesterone secretion, renin release and vasopressin release through its effect on the generation of second messengers cAMP or cGMP and through its effect on ion channels (Anand-Srivastava & Trachte, 1993). Functionally, ANP is antagonistic to the roles of vasopressin, endothelins and the RAS system. There is a decrease in ANP receptor binding in hypertensive subjects and animals. Sympathetic nervous system activation in the kidney results in the activation of the RAS system, leading to increased production of angiotension II (AII). AII increases aldosterone secretion; it causes vasoconstriction through an increase in Ca influx. Noradrenaline, through α-adrenoreceptor agonism, and AII, through activation of Na⁺K⁺-ATPase, profoundly decrease renal Na excretion. These actions are opposed by dopamine (DA) and ANP. ANP recruits silent DA D₁ receptors from the cell interior to the plasma membrane and DA acting through these receptors inhibits Na⁺K⁺-ATPase. These actions are mimicked by cGMP, the second messenger for ANP, and require DA binding to D₁ receptors (Holtback et al. 2000). ANP, through ANP–C-receptor binding, inhibits AII-mediated increase in adenyl cyclase. It also inhibits endothelin (vasoconstrictor) secretion and MAP kinase activity required for mitogenesis. DA itself is produced intrarenally from the precursor amino acid l-3,4-dihydroxyphenylalanine through the action of 3,4-dihydroxyphenylalanine decarboxylase, for which pyridoxal phosphate (PLP; the active form of vitamin B₆) is a cofactor. Thus, ANP antagonizes the anti-natriuretic actions of noradrenaline and the RAS System. The inhibition of adenylate cyclase by ANP is general. Heart and aorta from genetic models of hypertension, as well as from other animal models such as the deoxycorticosterone acetate (DOCA)–NaCl and the ‘one kidney–one clip’ hypertensive rats, all show this inhibition (Anand-Srivastava et al. 1993; Anand-Srivastava, 1997). There are significant gender-specific differences in the incidence of hypertension, indicating the protective action of oestrogen. In addition to its effect on lipoproteins, oestrogen appears to modulate the renin–angiotension system. Oestrogen directly affects natriuretic peptide gene expression and also affects the mediator mechanisms (de Bold, 1999). Oestrogen affects the RAS through modulating angiotensinogen gene expression, reduces ACE activity and also decreases gene expression and density of AT₁, the G-protein-coupled AII receptor. Oestrogen also diminishes vascular tone by increasing the production of endothelium-derived vasodilators.

Ion channels in the control of blood pressure

Resnick (1999α) has proposed a unifying ‘ionic’ hypothesis taking into consideration cytosolic free Ca and Mg concentrations in a variety of cells and tissues and in a variety of clinical conditions in relation to the concentrations of these ions in normal subjects. These ions contribute to the final common pathways mediating not only blood pressure but also the major metabolic processes in all cells. Resnick provides a cellular explanation for the heterogeneity of hypertension as well as the coexistence of several clinical conditions such as hypertension, obesity and...
NIDDM. Steady-state elevation of cytosolic free Ca is associated with a suppression of cytosolic free Mg in many tissues. These concomitant changes alter many cellular functions. In blood vessels, this causes vasoconstriction, arterial stiffness and hypertension. These ionic changes result in hypertrophy in the heart, aggregation and thrombosis in platelets, IR in skeletal muscle and fat tissue, hyperinsulinaemia in the pancreatic β-cells and activation of the central nervous system. The alterations in cellular ionic steady state become critical in defining the pathophysiology shared by hypertension, cardiac hypertrophy, dyslipidaemia including obesity, NIDDM and vascular disease. This would, as detailed later, also explain the heterogeneity of hypertension.

Vascular plasma membrane depolarization through decreased K+ channel activation or stretch produces opening of the voltage-dependent T and L Ca channels or ‘leak’ channels, with subsequent Ca current representing influx into the cytosol of extracellular Ca. This increase in intracellular Ca induces activation of specific ryanodine-sensitive Ca-release channels in the sarcoplasmic reticulum and magnifies the initial localized increase in [Ca2+]i more generally throughout the cytosol. At the contractile site, the increase in Ca initiates the cascade of molecular rearrangements of calmodulin and myosin light chain kinase (MLCK), resulting in myofilament shortening and vasoconstriction. Muscle relaxation is a reversal of the ionic balance through the sarcoplasmic reticulum-mediated reuptake of Ca into intracellular storage as well as the plasma membrane Ca-ATPase and Na/Ca exchange-mediated Ca egress from the cell. These would result in reducing [Ca2+]i.

In electrically non-excitable tissues, intracellular Ca is augmented primarily through stimulation of the phospholipase c-mediated inositol-1,4,5-triphosphate (IP3) pathway. Some tissues have both voltage/receptor-mediated as well as intracellular mobilization pathways to augment intracellular Ca. The end result of this would include processes such as hormone secretion and renal ion secretion.

The role of Ca in regulating cellular processes, including vascular tone, is dependent upon (and is modified by) cellular Mg. Mg is a cofactor for all phosphotransferase reactions, in all ATP-dependent reactions where Mg-ATP is the substrate and in all thiamine triphosphate-dependent reactions. As such, it participates in intermediate metabolism of lipids, carbohydrates and amino acids. Mg is required for (and modifies) Ca entry and egress and other processes that use plasma membrane or endoplasmic reticulum Ca-ATPase, Na+K+-ATPase, L-channel Ca current, Ca binding to calmodulin, Ca-activated K+ current as well as IP3-mediated Ca release from cellular stores. The steady-state concentrations of Ca and Mg are reciprocally related. The net result is to maintain ‘steady state cell metabolism’ (Resnick, 1999a) and buffer cell response to Ca-dependent stimuli. A cellular Mg deficiency, by decreasing the function of a wide range of enzymes, membrane pumps and ion pumps, would exaggerate Ca-induced cell stimulation in all cells and tissues. In the vasculature this would result in vasoconstriction. Elevation of [Ca2+]i, with a reciprocal decrease in [Mg2+]i, is consistently seen in subjects with hypertension, obesity and NIDDM. These same changes are also observed in cells from healthy elderly persons.

There is a strong correlation between cellular ionic steady state in individual subjects and the pathophysiological changes in the tissues of these individuals (Resnick et al. 1997). Procedures which exaggerate or minimize these ionic abnormalities have corresponding effects on the clinical condition. Aortic distensibility of hypertensive or normal subjects, as determined by magnetic resonance imaging (MRI), is closely related to concomitantly measured Mg levels in brain or skeletal muscle using 32P-NMR spectroscopy (MRS): the more depressed the Mg, the less distensible the aorta (Resnick et al. 1997).

The fasting steady-state [Ca2+]i values are higher in hypertension, obesity and NIDDM. Along with lower [Mg2+]i, they predict fasting insulin and insulinaemia after glucose load, as well as peripheral IR. The MRI-determined abdominal visceral fat mass, a major indicator of IR,
is inversely related to MRS-determined values for $[\text{Mg}^{2+}]_i$ (Resnick et al. 1997). The higher the $[\text{Ca}^{2+}]$ and, reciprocally, the lower the $[\text{Mg}^{2+}]_i$, the more severe was the hypertension. Thus, the various clinical abnormalities associated with syndrome X represent different tissue manifestations of a common cellular ionic defect (Julius et al. 1992; Rockstroh et al. 1997; Maier et al. 1998). The hypothesis of Resnick (1999a), although not specifying the origin of the ionic defect, unifies the cellular defects in a variety of related clinical abnormalities. This would also indicate that, for any given extracellular concentration of calcium, states characterized by a high $[\text{Ca}^{2+}]_i$ (e.g. hypertension/obesity/NIDDM) will exhibit a blunted cellular and tissue response (e.g. IR).

Calcium and renin in hypertension

Subjects with essential hypertension are classified as having low or high levels of plasma renin activity. Those with low renin activity have lower levels of serum Ca than normotensive subjects; this is biologically relevant, as these subjects have high levels of serum parathyroid hormone (PTH) and 1,25-dihydroxycholecalciferol (1,25-(OH)$_2$D$_3$) and low levels of calcitonin compared with normotensive individuals. The hormone distribution is consistent with a perceived extracellular deficit of Ca (Resnick et al. 1993); they are salt sensitive and their MAP is inversely proportional to the concentration of extracellular free Ca. The increased $[\text{Ca}^{2+}]_i$ of these subjects presumably comes from an extracellular source and hence the extracellular concentration of free Ca is low.

Subjects with essential hypertension and a high plasma concentration of renin belong to the category with a high extracellular free Ca concentration compared with normotensive subjects. The source of their $[\text{Ca}^{2+}]_i$ is intracellular stores. The serum distribution of the Ca-regulatory hormones in these subjects (low levels of PTH and 1,25-(OH)$_2$D$_3$ and high levels of calcitonin) is opposite to that seen in those with hypertension and low renin, and reflects the high concentration of extracellular free Ca. The RAS system mobilizes calcium from the IP$_3$-dependent endoplasmic reticulum sources. The high extracellular Ca results from the plasma membrane compensating for increased $[\text{Ca}^{2+}]_i$ by Ca extrusion from the cell interior and by inhibiting Ca influx into the cell. In hypertensive subjects with high renin, the MAP is directly proportional to the concentration of free Ca in serum. The lack of response of this hypertensive subset to Ca-channel blockers reflects only the source of their increased $[\text{Ca}^{2+}]_i$ as through the IP$_3$-dependent mobilization from the endoplasmic reticulum and not from Ca influx from extracellular sources.

The ability of dietary salt (NaCl) to increase blood pressure in hypertensive subjects is proportional to the ability of NaCl to increase $[\text{Ca}^{2+}]_i$ and decrease $[\text{Mg}^{2+}]_i$. Ca-channel blockers are able to ameliorate hypertension in these low-renin hypertensive subjects. NaCl-induced rise in $[\text{Ca}^{2+}]_i$ is due to increased influx of Ca from extracellular space and exceeds the compensatory ability of the plasma membrane to extrude Ca. NaCl-induced increases in Ca-regulatory hormones and the parathyroid hypertensive factor (Resnick et al. 1993), NaCl-induced increase in peripheral noradrenaline (Campese et al. 1982) or arginine vasopressin level (Huang & Leenen, 1996), or increased sympathetic flow (Chen et al. 1988) contribute to the augmentation of extracellular Ca entry into the cell in this hypertensive subset.

Sodium overload

The relationship between dietary NaCl and hypertension has been studied extensively. About half the population with essential hypertension is NaCl sensitive (Weinberger, 1996). The
African-American population with a high incidence of hypertension belongs to the low-renin NaCl-sensitive group. Na intake has also been linked to the rise in blood pressure in older individuals. Exclusive Na intake leads to extracellular volume expansion and consequent increase in cardiac output. Chronic increase in NaCl intake has been related to increase in vascular resistance. A genetic predisposition toward impaired renal handling of a Na load has been suggested (Weinberger, 1996). Activation of the sympathetic nervous system as well as abnormalities in ion transport have been linked to Na overload-induced hypertension. Chronic Na overload has been reported to increase the levels of an endogenous ouabain-like compound, a Na⁺K⁺-ATPase inhibitor, which inhibits the cell membrane Na pump resulting in an increase in intracellular Na. As a result of decreased activity of Na/Ca exchanger, there is an increase in [Ca²⁺], with an increase in vascular tone.

Toxic minerals: lead and arsenic

Exposure to high levels of Pb is known to cause nephropathy. Prolonged exposure to low levels of Pb has been shown to cause hypertension in man and animals (Nowack et al. 1993; Khalil-Manesh et al. 1994; Gonic et al. 1997). A significant increase in plasma malondialdehyde, a lipid peroxidation product, has been reported. Vaziri et al. (1999) postulate that the increase in reactive oxygen species in Pb-treated animals, through inactivating endothelially produced vasodilator NO, might lead to hypertension. Treatment of Pb-exposed rats with des-methyltirilazad resulted in amelioration of the hypertensive condition and reduction to near normal of plasma malondialdehyde levels without any reduction of the Pb concentration in blood.

The consumption of As-contaminated artesian-well water has been reported to cause hypertension in a study from Taiwan (Chen et al. 1995). As is leached from naturally occurring minerals into drilled wells. Rahman et al. (1999) have reported an unfolding devastating health crisis in Bangladesh in populations consuming As-contaminated well water. Pump sets were installed extensively in rural areas of this country to provide people with a safe water supply. The prevalence of hypertension in people consuming As-contaminated water confirms the earlier Taiwan experience. As is known to cause black foot disease, a peripheral vascular disease. The recent epidemiological studies point to hypertension as an additional hazard of As contamination of drinking water. The toxicity of As is probably through its direct effect on the atherosclerotic process involving endothelial cells, smooth muscle cells, platelets and macrophages (Ross, 1986). Renal insufficiency, impairment of the endothelial barrier in the vascular system and initiation of atherosclerotic plaque formation have been reported following chronic As exposure (Taylor, 1996). These mechanisms could also contribute to the development of hypertension in the exposed population.

Micronutrients in the amelioration of hypertension

The goal of treatment of hypertension is to reduce blood pressure to less than 140/90 or even lower levels. The (JNC VI) US National Recommendations for the Pharmacological Treatment of High Blood Pressure (1997) have been reviewed (Moser, 1999). A variety of drugs with diverse modes of action have been added over the years to the armamentarium for the pharmacological treatment of hypertension. These include diuretics, β-blockers, ACE inhibitors, Ca-channel blockers (both dihydropyridine and non-dihydropyridine compounds) and αII receptor blockers. More recently, long-acting dihydropyridine Ca-channel blockers have been
added to this list. Combination therapy, usually starting with a diuretic and a β-blocker, is generally the first choice and, depending on the clinical condition, specific additions or deletions are recommended. As suggested by the JNC VI, the inclusion of a diuretic is necessary in whatever combination regimen is required to achieve the desired blood-pressure values in hypertensive patients. Despite the clear benefits of pharmacological treatment, adequate blood pressure control is achieved in only half of the treated patients (Nurminen et al. 1998). Data from various epidemiological observations, intervention trials and observations on experimental animal models of hypertension have provided a large body of evidence establishing the beneficial effects of various dietary components in lowering the elevated blood pressure. These interventions could be very useful as definitive or adjunct treatment modalities. Apart from regulating the intake of macronutrients to produce weight reduction in overweight subjects, and the avoidance of excessive alcohol consumption, various normal dietary components (at recommended daily amount levels or at increased levels of intake) have been shown to reduce blood pressure. Four mineral micronutrients (Na, K, Ca and Mg) have been shown to have a direct effect on blood pressure based on epidemiological, laboratory and clinical investigations (Reusser & McCarron, 1994).

The relationships among hypercholesterolaemia, hypertension and CHD are well known. The development of atherosclerosis is related to the generation of reactive oxygen species, lipid peroxidation and the oxidation of LDL. The production of free radicals is a normal cellular process. However, the cell normally possesses very efficient protective antioxidants and their generating mechanisms to prevent the accumulation of free radicals and consequent injury. These include α-tocopherol, ascorbic acid, β-carotene, glutathione, metal-binding proteins such as transferrin and ceruloplasmin and enzymes such as manganese superoxide dismutase, Cu-Zn superoxide dismutase (SOD), the selenoenzyme glutathione peroxidase and the Fe-containing catalase. In spite of this, the cellular protective mechanisms may be overwhelmed and severe free radical-mediated injury might ensue. In vitro experiments indicate that LDL oxidation is accentuated when antioxidants are depleted. For instance, under conditions of Cu deficiency there is increased LDL peroxidation due to a reduction in Cu, Zn SOD and an increase in body Fe stores due to the antagonistic relation between Cu and Fe. Fe is a strong oxidant and catalyses LDL oxidation in vitro (Fields, 1999). Rats fed a high-Fe diet deficient in antioxidants such as α-tocopherol and β-carotene exhibited increased lipid peroxidation and hypercholesterolaemia (Fields et al. 1993). The median intake of Cu in food is lower than the estimated safe and adequate dietary intake values for most population groups (Third Report on Nutrition Monitoring in the United States, 1995). An analysis of the National Diet and Nutrition Survey in the UK (Bates et al. 1999) indicates that, for people aged 65 years and over, intakes of vitamin D, Mg, K and Cu are low; there is biochemical evidence of vitamin D deficiency in this group. The deterioration of micronutrient status with age is an additional risk factor for chronic diseases in this age group. It has been reiterated that specific modifications of human diet can exert positive effects on several chronic conditions including hypertension (Trials of Hypertension Prevention Collaborative Research Group, 1992; Geleijnse et al. 1994; Sacks et al., 1995 (DASH trial); McCarron et al. 1997). McCarron et al. (1998) have reported that improving the overall diet in persons with mild to moderate hypertension yielded benefits far beyond improved arterial pressure control. Most of the subjects in this study were on prescribed anti-hypertensive medication and their hypertension was considered well controlled at the beginning of this study. However, the dietary intervention produced further clinically significant reductions in blood pressure, suggesting that some component of blood pressure dysregulation in the hypertensive subjects was beyond the control of the anti-hypertensive drugs used but responded to nutritional factors.
The anti-hypertensive effectiveness of non-pharmacological manipulation is a hotly debated area. Resnick (1999b) has pointed out the problems that distort scientific inquiry. He states that the exclusivity given to the process of epidemiological analysis in a uniform manner to hypertension which is an inherently non-uniform phenomenon in identifying ‘evidence-based medicine’ is a major hurdle. Meta-analysis is the primary tool of this process. As long as hypertension is treated as a single disease entity in primary clinical trials, meta-analysis of clinical trials can be carried out ad infinitum with the same inconclusive and inconsistent conclusions (Drueke, 1999; Griffith et al. 1999). Resnick (1999a) has analysed the cellular ionic basis of hypertension and pointed out the heterogeneity of this disease process in terms of its aetiology. In view of this, all human essential hypertension cannot be treated as a single entity: available clinical and laboratory parameters must be employed to categorize this disease process into identifiable clinical subgroups; only then will clinical trials make any scientific sense.

In succeeding sections the effects of selected single nutrients on essential hypertension in man or in appropriate animal models are described to provide a biochemical basis for the nutrient action. This list includes the minerals Ca, Mg and K as well as vitamins and antioxidants such as vitamins D, B₆, C and E and β-carotene.

Calcium

The relationship between pregnancy-induced hypertension (PIH) and Ca was reported over 20 years ago. Pre-eclampsia appears in late gestation in nulliparous pregnant women as hypertension, oedema and proteinuria. Belizan & Villar (1980) attributed the low incidence of PIH in women in Central American countries (compared with Western Europe and North America), in spite of poor prenatal care and nutrition, to their high Ca intake, which resulted from their practice of soaking maize in lime water. Belizan et al. (1991) hypothesized that the lowering of blood pressure through changes in Ca metabolism prevented PIH. Pregnancy is characterized by enhanced Ca absorption, physiological hypercalciuria and an enhanced demand for Ca deposition in the fetal skeleton. There is a progressive decrease in the concentration of serum Ca up to the middle of the third trimester during pregnancy. In subjects with PIH the level of serum Ca is much lower. There are corresponding changes in the Ca-regulatory hormones with high levels of PTH. Ca supplementation has been reported to lower blood pressure in pregnant as well as non-pregnant women: the largest reduction in blood pressure occurred in those with low pretreatment serum Ca levels (Repke et al. 1989). Ca supplementation during gestation may lower PTH levels which, in turn, may reduce intracellular Ca concentration in vascular smooth muscle and decrease its responsiveness to pressor stimuli. Changes in renal Na handling could also be affected by Ca (Belizan et al. 1991).

Other than in women at risk for PIH, Ca supplementation has also been shown to decrease blood pressure in hypertensive patients (McCarron, 1985; Saito et al. 1989) and in animal models of hypertension (Hatton & McCarron, 1994; Sallinen et al. 1996). Hypertensive subjects manifest a number of disturbances of Ca metabolism that are consistent with increased bone resorption and bone loss, such as elevated PTH and increased urinary Ca excretion. Rat models of hypertension are also associated with increased bone loss and reduced levels of bone mineral mass compared with normotensive controls (Wang et al. 1993). Metz et al. (1999) have reported findings in human subjects that support the concept that elevated blood pressure varies inversely with bone mass and density, known predictors of osteoporotic fractures. McCarron & Reusser (1999) have collected a large body of evidence based on clinical studies and analyses which seem unequivocally to point to a beneficial influence of dietary Ca on blood pressure.
They have noted that the most impact of Ca supplementation on blood pressure was on persons who had consumed low levels of dietary Ca. Of significance is the analysis by Griffith et al. (1999), which included a meta-analysis of sixty-six randomized trials which showed a distinct beneficial effect of adequate dietary Ca intake. There were significant reductions in systolic blood pressure of 1·3 and 4·3 mmHg in the general population and in hypertensive subjects respectively. The corresponding Ca supplement-induced reductions in diastolic blood pressure were 0·2 and 1·5 mmHg respectively. They have also pointed out that groups at high risk for hypertension, such as African-Americans, NaCl-sensitive persons and pregnant women, were particularly sensitive to the effect of increased Ca intake. McCarron (1998) has pointed out the striking agreement between the blood pressure findings in the DASH study (Appel et al. 1997) and his own prediction of the relationship between dietary Ca and systolic blood pressure (McCarron et al. 1984). It is to be noted that, in the DASH study, very significant reductions in systolic and diastolic blood pressures (of 5·5 and 3·0 mmHg respectively) were achieved on the DASH diet. Although this diet had a low level of fat, the considerable increase in dietary Ca should be kept in mind (Appel et al. 1997). The physiological relevance of the decrease in urinary Ca on this diet is supported by a decrease in circulating PTH levels, suggesting that blood pressure reduction was mediated through a Ca-sparing mechanism.

Although experimental animal work and results of clinical trials point to the role of a deficit of extracellular ionized Ca in the aetiology of hypertension in some subjects, this hypothesis has met with strong resistance for several reasons. The very well recognized increased incidences of hypertension among persons with hypercalcaemia of primary hyperparathyroidism, and of hypotension associated with hypocalcaemia (Kesteloot & Geboers, 1982), have left a strong impression that hypertension is a disease associated with excess Ca. The other major reason was the well-entrenched concept supported by numerous observations that excess NaCl intake is directly responsible for the development of essential hypertension in human subjects. Although these observations are quite valid, what has not been recognized is what circumscribes these observations. Much of the credit for focusing attention on the ‘Ca deficiency’ and ‘the heterogeneity of Ca relationship to hypertension’ theories is shared by Resnick and McCarron for their perseverance.

Resnick (1999b) has provided an integrated view of Ca metabolism in hypertension and how Ca deficiency and Ca excess both contribute to the development of hypertension. The steady-state cell activity has a central role in determining the influence of environmental stimuli on tissue and organ function through the respective hormonal systems. The RAS system determines the homoeostasis of Na and K. Ca-regulating hormones PTH, the metabolically active vitamin D derivative and parathyroid hypertensive factor, regulate Ca homoeostasis. Insulin regulates carbohydrate and fat metabolism. Growth hormone, glucocorticoids and catecholamines mediate responses to environmental stress. Excess cytosolic free Ca and reciprocal decrease in intracellular free Mg have roles in the final common pathways which regulate metabolic, cardiovascular, neural, renal and thrombotic activities and, as such, in the development of disease processes such as hypertension, left ventricular hypertrophy, atherosclerosis and IR. Resnick et al. (1983) recognized that, for subjects with the same level of urinary Na excretion, serum ionized Ca levels were suppressed in low-renin hypertensive subjects and were correspondingly increased in those hypertensive subjects with high plasma renin activity. Serum ionized Ca levels were even more decreased in patients with primary aldosteronism than in low-renin hypertensive patients. These subjects had a further decrease in their plasma renin activity (Resnick & Laragh, 1985). Low-renin essential hypertensive subjects had a significant increase in serum PTH and 1,25-(OH)2 D3 levels compared with normotensive subjects, and patients with primary aldosteronism had a further increase in circulating PTH levels. The Ca
and Ca-regulating hormone profile of high-renin hypertensive subjects was exactly opposite to that seen in those with low renin.

NaCl overload stimulates Ca-regulating hormones, whereas Ca supplementation has the opposite effect on these hormones (Zemel et al. 1986). The ability of NaCl loading to elevate blood pressure and of Ca supplements to decrease blood pressure was found to be proportional to the NaCl- or Ca-induced changes in Ca metabolism (Resnick, 1999b,c). As pointed out earlier (p. 8), cytosolic free Ca has a role in stimulus–contraction coupling in the muscle and stimulus–secretion coupling in neurohormone secretion. The action of catecholamines to increase vascular tone, of AII to constrict peripheral and renal vasculature and stimulate aldosterone secretion, and of other pressor factors are all mediated by their ability to increase cytosolic free Ca levels. This discussion emphasizes the heterogeneity of human essential hypertension based on the physiological differences among the subjects in regulating Ca homeostasis.

Magnesium

A negative correlation between Mg content (hardness) of drinking water and hypertension and stroke as well as IHD was reported quite early (Schroeder, 1960). Resnick et al. (1984) described a strong inverse relationship between erythrocyte free Mg and diastolic blood pressure. Using ion-selective probes and NMR spectroscopy, others have confirmed the low levels of Mg in VSM and in erythrocytes of subjects with essential hypertension compared with normotensive controls. More recent prospective studies of the relationship of nutrient intake to subsequent changes in blood pressure are the Nurses’ Health Study (Witte et al. 1989) and the Health Professionals Study (Ascherio et al. 1992, 1998). Both these studies have reported a significant inverse relationship between Mg intake and the development of hypertension. A significant protective effect of Mg and Ca intake on the risk of cerebrovascular disease was reported (Yang, 1998). Magnesium sulfate is widely used as a routine therapy to prevent eclamptic seizures. The collaborative eclampsia trial (The Eclampsia Trial Collaborative Group, 1995) has provided incontrovertible evidence for the use of magnesium sulfate in preference to diazepam or phenytoin in the treatment of eclampsia (Lucas et al. 1995). Other epidemiological studies have also reported an inverse relationship between dietary Mg intake and blood pressure (Kawano et al. 1998; Mizushima et al. 1998). The inverse relationship between Mg status and the related disease processes (hypertension, diabetes and dyslipidaemia) have been reported (Altura & Altura, 1995; Paolisso & Barbagallo, 1997). Cytosolic free Mg has been reported to be low in hypertensive and diabetic subjects. Mg deficiency exacerbates insulin resistance and predisposes diabetics to early onset of cardiovascular diseases. Mg deficiency in experimental animals leads to dyslipidaemia, including atherosclerosis and vascular damage. Mg supplementation improves the control of diabetes in human subjects (Paolisso et al. 1992a) and lowers serum cholesterol and triacylglycerols and also attenuates the development of atherosclerotic lesions in experimental animals (Altura & Altura, 1995; Nasir et al. 1995). The infusion of Mg at pharmacological concentrations produces vasodilatation of systemic vasculature and coronary arteries. It also protects the myocardium against ischaemia–reperfusion injury in experimental animals. The second Leicester Intravenous Magnesium Intervention trial has demonstrated that intravenous Mg has a protective effect during the treatment of acute myocardial infarction (Woods & Fletcher, 1994).

Laboratory investigations have underlined the relationship between Mg deficiency and hypertension (Altura et al. 1984, 1992). The elevation of blood pressure was directly related to
the severity of Mg deficiency in animals. In the spontaneously hypertensive rat (SHR), Mg deficiency accelerated the development of hypertension (Berthelot & Esposito, 1983) although, once hypertension was established, a deficiency of Mg did not increase the blood pressure further (Overback et al. 1987). However, there are reports that pharmacological Mg supplementation of SHR results in attenuation of the hypertension. In a reinvestigation of the effects of Mg deficiency in Wistar rats, Laurant et al. (1999) have reported that Mg deficiency induced a transient hypotension about 2 weeks after the rats were on the Mg-deficient diet. However, this was followed by sustained hypertension in rats after about 15 weeks on the deficient diet. During the early transient hypotensive phase of Mg deficiency, hyperaemia was observed. This corresponded to the increased production and release of circulatory inflammatory agents such as cytokines, prostacyclin and histamine, which are all vasodilators and reduce blood pressure. The sustained hypertensive second phase of Mg deficiency is associated with activation of the sympathetic nervous system.

As pointed out earlier (p. 8), there is a reciprocal relationship between intracellular Ca and Mg concentrations. The role of Ca in regulating vascular tone is dependent on (and is also modified by) Mg. An intracellular Mg deficiency, by decreasing the activities of a variety of cellular processes (including phosphotransferases, membrane pumps and ion channels), exaggerates Ca-induced stimulation. Such cellular ionic abnormalities are characteristic of hypertension, obesity, NIDDM and hyperlipidaemia. Mg deficiency increases the susceptibility of lipoproteins to peroxidation (Rayssiguier et al. 1993a, b). A low intracellular concentration of Mg results in a high rate of free-radical formation (Weglicki et al. 1996). Free radicals inactivate the endothelium-derived relaxation factor, NO. Increased degradation of NO by superoxide anions could contribute to the enhancement of the arterial contractile response (Yang, 1998), resulting in the development and maintenance of sustained hypertension during chronic Mg deficiency.

Observations from distinct lines of investigation including experimental animal work, epidemiological studies and therapeutic studies, as well as clinical intervention trials, all point to the contribution of Mg deficiency in the development of hypertension. However, an intracellular deficiency of Mg is not an isolated event but is related to cellular ionic homoeostasis of Ca, as pointed out by Resnick (1999b). In a recent critical review, Suter (1998) has pointed out that K, Mg and fibre have been identified as modulators of the risk of vascular diseases including stroke. The protective effects of these nutrients were particularly pronounced in hypertensive subjects. However, in a consensus statement to provide an evidence-based recommendation, Burgess et al. (1999) on the basis of a MEDLINE search of reports of trials, meta-analyses and review articles, have concluded that Mg supplementation is not recommended as a treatment for hypertension.

Potassium

A protective effect of K on the risk for stroke based on epidemiological studies was reported (Tobian et al. 1984; Khaw & Barrett-Connor, 1987). Ascherio et al. (1998) examined the association of K and related nutrients with the risk of stroke and concluded that the results were consistent with the hypothesis that diets rich in K, Mg and cereal fibre reduced the risk of stroke and that supplements of K alone may also be beneficial. They found that the protective effect was particularly pronounced in hypertensive subjects. A similar inverse relationship between K intake and blood pressure, as well as a direct association between urinary Na:K and blood pressure, has been reported (Krishna, 1990, 1994; Linas, 1991). A negative correlation
between blood pressure and K intake has also been reported in the Intersalt Study (The Intersalt Cooperative Research Group, 1988) and in the Health Professionals’ Follow-up Study (Ascherio et al. 1992). These studies represent an association rather than a cause–effect relationship, but they do indicate a strong correlation. Although many studies indicate a beneficial effect of K on hypertension, some reports do not support this, or find the correlation weak (Grimm et al. 1990). However, still other studies indicate that K intake is inversely related to a risk of fatal thromboembolic stroke (Lee et al. 1988) or that high K intake causes a modest reduction in blood pressure of hypertensive subjects (Sacks et al. 1998).

In experimental animal studies, Dahl et al. (1972) showed the hypotensive potential of K in NaCl-sensitive hypertension. A similar beneficial effect of K in hypertensive rats was reported by Tobian et al. (1984) and Tobian (1986). K has been shown to ameliorate hypertension in other animal models of hypertension, both NaCl-sensitive and NaCl-insensitive (Linas, 1991).

The protective effect of K against the development of vascular diseases might primarily be due to its effect on blood pressure regulation, although other mechanisms have been suggested (Suter, 1998). The direct effect of K on blood pressure regulation would be through its effect on natriuresis, baroreceptor sensitivity, the RAS system, vasodilatation, and sympathetic nervous system activation. Alternate mechanisms include the role of K in inhibition of free-radical formation (McCabe et al. 1994; Young et al. 1995), VSM proliferation (McCabe & Young, 1994) and arterial thrombosis (Lin & Young, 1994).

Vitamins and blood pressure control

Some vitamins have been identified as having a role in blood pressure regulation. As Ca is at the centre of ionic regulation of cellular activities (Resnick, 1999a), it is conceivable that vitamins involved in intracellular Ca regulation would have a significant role. Thus, vitamin D seems to be involved indirectly through its effect on cellular Ca homoeostasis and also through direct mechanisms. The role of stress and cellular oxidative damage through the formation of free radicals is well recognized as contributing to several chronic conditions. Free radicals have an effect on LDL oxidation and hence in atherogenesis, which is associated with hypertension. Also, the most important endothelium-dependent vasodilator, NO, is susceptible to oxidative damage and is protected by mechanisms inhibiting the formation of free radicals. Vitamin C (ascorbic acid) and vitamin E are the antioxidant vitamins in the aqueous and membrane regions of the cell respectively and, hence, indirectly affect blood pressure regulation. Other mechanisms have also been suggested in this protective action. The reported beneficial role of β-carotene is not through its being a provitamin for vitamin A but through its effect as an antioxidant.

Apart from these vitamins, the most consistent and significant effect of a vitamin on blood pressure regulation is that of vitamin B6. Investigations in the past have established that even a moderate deficiency of vitamin B6 could lead to hypertension. The hypertensive effect is through both central and peripheral mechanisms. Centrally, the stimulation of the central nervous system is under control of monoamine neurotransmitters, which are products of PLP (active form of vitamin B6)-dependent decarboxylation of amino acid derivatives. The key role of Ca in maintaining vascular tone is well known. PLP has a role in intracellular Ca transport: it is an antagonist of both the voltage-mediated L-type Ca-channel receptor and the ATP-mediated purinergic receptor-mediated influx of Ca intracellularly. Thus, vitamin B6 plays a significant role in Ca transport and blood pressure regulation. Another aspect of vitamin B6 function to be noted is that it is not just vitamin B6 deficiency that is implicated in generation of hypertension:
non-physiological doses of vitamin B₆ appear to decrease the high blood pressure associated with both genetic and non-genetic animal models of hypertension. The following sections describe various reports based on experimental and epidemiological observations.

Vitamin D

There is a close association between Ca metabolism and vitamin D. It is well known that Ca absorption and whole-body Ca metabolism are regulated by vitamin D, through much clinical evidence based on studies of rickets, osteomalacia and osteoporosis. The active form of vitamin D is 1,25-(OH)₂D₃. This is considered to be a hormone as it is formed in the kidney and has its sites of action in various organs and cell types. A decrease in serum Ca triggers a series of events which result in the restoration of Ca homoeostasis. This starts with the parathyroids: the decrease in serum ionized Ca is a trigger for the release of PTH from the parathyroids by the activation of an extracellular Ca receptor. PTH stimulates osteoclasts and osteocytes and also enhances renal tubular Ca reabsorption; thus, it increases serum Ca. PTH is also a stimulator of a hydroxylase which converts 25-hydroxycholecalciferol (25-(OH)D₃) to 1,25-(OH)₂D₃. 25-(OH)D₃ itself is formed from calciferol through a hydroxylase in the liver. In renal and intestinal epithelial cells, 1,25-(OH)₂D₃ increases the synthesis of vitamin D-dependent Ca-binding proteins, which are active in the intestinal absorption and renal reuptake of Ca. In addition to PTH and 1,25-(OH)₂D₃ there is another Ca-regulating hormone, calcitonin, which is synthesized and secreted by the C cells of the thyroid. Calcitonin acts as a Ca-lowering agent by decreasing Ca mobilization through inhibition of osteoclast activity. The manner of regulation of calcitonin is opposite to that of PTH. The net effect of the orchestrated responses of these three calcitropic hormones is the homoeostasis of Ca²⁺. In view of its intimate relationship to Ca homoeostasis through the hormonal form (1,25-(OH)₂D₃) and the knowledge of the central role played by cellular ionized Ca in the process of blood pressure regulation, a role for vitamin D in blood pressure regulation is a natural extension.

On the basis of much clinical evidence, PTH has been related to hypertension. In primary and secondary hyperparathyroidism there are elevated serum PTH and Ca levels. These patients are hypertensive; hence, it was assumed that the increased blood pressure seen in essential hypertensive subjects and in animal models of hypertension such as the SHR is also associated with increased PTH secretion. This was confirmed by the beneficial effects of parathyroidectomy in hyperparathyroid subjects, as well as in the animal models (Schleiffer et al. 1986; Bukoski et al. 1995). Essential hypertension was considered to be a clinical condition related to Ca excess. There was considerable resistance to acceptance of evidence from experimental and epidemiological sources that suggested that hypertension is not a single disease entity and that some hypertensive situations are associated with a decrease in serum ionized Ca. Resnick and McCarron have been persistent in emphasizing these observations and Resnick (1999b) has provided an ionic basis for the hormonal roles of 1,25-(OH)₂D₃ and PTH in intracellular Ca regulation. The distinction between low-renin and NaCl-sensitive and other types of hypertension has been emphasized.

The prevalence of hypertension in a population increases with the distance north or south of the equator (Rostand, 1997). Vitamin D status has been shown to relate inversely to the severity of hypertension in Caucasian populations both with and without vitamin deficiency (Lind et al. 1989; Barger-Lux & Heaney, 1994; Boucher, 1998). Serum 25-(OH) D₃ is used as an indicator of vitamin D status and has been shown to be inversely related to the severity of hypertension (Krause et al. 1998). A direct relationship between serum 25-(OH) D₃ and HDL-
cholesterol has also been reported (Auwerx et al. 1992). An increased prevalence of myocardial infarction has been reported in northern compared with southern European communities in populations with vitamin D deficiency (Balarajan et al. 1987). The seasonal variations of blood pressure and the finding that the incidence of IHD increases with increasing altitude where u.v. radiation is increased are suggestive that the vitamin D status of the population may be important in determining the long-term circulatory risk in these populations (Boucher, 1998).

Clinical evidence would indicate that PTH is a prime candidate for development of hypertension and that it would have a pressor action on vasculature. However, PTH, when infused or added to vascular preparations, is a vasodilator (Pang et al. 1987; Bukoski & Kremer, 1991). An explanation had to be found for the antihypertensive effects of the ablation of the parathyroids.

Studies of the vascular effects of the hormone form of vitamin D (1,25-(OH)₂ D₃) strongly indicate a modulator role in Ca metabolism, contractile activity and growth of VSM. There are 1,25-(OH)₂ D₃-specific receptors on VSM cell membrane (Kawashima, 1987). Both acute and chronic treatment with 1,25-(OH)₂ D₃ results in vasoconstriction. It stimulates ⁴⁵Ca uptake by primary cultures of mesenteric artery myocytes from SHR and Wistar–Kyoto (WKY) rats through a process dependent on protein synthesis. Treatment of SHR or WKY rats for 3 d with 1,25-(OH)₂ D₃ leads to generation of contractile force in subsequently isolated resistance arteries, possibly through the same protein-synthetic events that are responsible for the increased Ca uptake (Bukoski et al. 1990). Short-term infusion of 1,25-(OH)₂ D₃ potentiated the in vivo pressor response to noradrenaline in SHR but not in WKY rats. It also potentiated the contractile response to serotonin and noradrenaline in isolated resistance arteries (Bukoski et al. 1989) and increased constriction in renal circulation in normotensive rats. The vitamin D hormone also stimulated the growth of cultured mesenteric myocytes (Bukoski et al. 1989). Xue et al. (1991) reported that resistance artery segments in culture lose stress-generating capacity in response to noradrenaline; this was completely protected by 1,25-(OH)₂ D₃. As the loss of contractile ability and the protection by 1,25-(OH)₂ D₃ were also observed in de-endothelialized preparations, the effects are exerted directly on the VSM cell.

In view of the vasodilatory effect of PTH, the question about the attenuation of blood pressure by parathyroidectomy was sought to be answered from other observations. PTH stimulates the production of 1,25-(OH)₂ D₃; its hypertensive action in the whole animal might, therefore, be related to the increased production of this vitamin D hormone which has a pressor function. Another interesting finding was that special cell types in the parathyroid produced other factors with hypertensive action (Pang & Lewanczuk, 1989). The parathyroid hypertensive factor (PHF) administered to normotensive rats induced a developing rise in blood pressure. PHF is responsive to Ca intake and is found in the serum of hypertensive subjects and animal models of hypertension but not in normotensive subjects. It has been speculated that the tropic action of 1,25-(OH)₂ D₃ (Minghetti & Norman, 1988) might cause enhanced growth of specific cell types in the parathyroid which produce PHF. PHF, in turn, suppresses 1,25-(OH)₂ D₃ production which might account for the fall in the concentration of 1,25-(OH)₂ D₃ in established hypertensive subjects.

The linkage between calcitropic hormones, NaCl sensitivity, renin status and hypertension has been clarified by Resnick (1999a). As stated earlier (p. 9), he has categorized essential hypertensive subjects on the basis of their renin response. The low-renin type shows NaCl sensitivity and the high-renin type is NaCl resistant. Increased circulating levels of PTH and 1,25-(OH)₂ D₃, which facilitate cellular Ca uptake from extracellular space, are seen in this type. NaCl-induced increases in intracellular accumulation of Ca ([Ca²⁺]ᵢ) and the concomitant decrease in [Mg²⁺]ᵢ are paralleled by the increase in PTH and 1,25-(OH)₂ D₃; the greater the NaCl-induced increase in serum 1,25-(OH)₂ D₃, the greater the blood pressure in this group of
low-renin hypertensive subjects. Oral Ca supplementation of these subjects, who were on the NaCl load, had the opposite effect on blood pressure and on vitamin D hormone. Resnick proposed that NaCl and Ca both operate through modulation of 1,25-(OH)₂ D₃. This is significant, because normotensive black subjects, who are prone to NaCl overload hypertension, have higher circulating levels of 1,25-(OH)₂ D₃ and PHF. Among essential hypertensive subjects, those with the highest levels of PHF were of the low-renin type. In experimental animal models, the NaCl-sensitive, low-renin DOCA–NaCl rat had high levels of PHF. Also, among those with essential hypertension, the pressor response to NaCl loading was directly proportional to the basal level of PHF. Dietary Ca suppresses PHF secretion whereas PHF stimulates 1,25-(OH)₂ D₃ synthesis. Thus, PHF has taken the place of PTH in the original Ca-regulation scheme.

As stated earlier, vitamin D (cholecalciferol) is 25-hydroxylated in the liver and this is the substrate for the subsequent 1-hydroxylation in the kidney to form the vitamin D hormone 1,25-(OH)₂ D₃. The kidney enzyme 25-(OH)D₃ 1 hydroxylase is under stringent control. When concentrations of vitamin D, phosphate and Ca are low (consistent with high concentrations of PTH and also PHF), the synthesis of 1,25-(OH)₂ D₃ is stimulated. Plasma concentrations of 1,25-(OH)₂ D₃ are higher for salt-sensitive than for salt-resistant rats. Inverse associations between plasma 25-(OH) D₃ concentration and blood pressure of salt-sensitive rats and also between plasma 25-(OH) D₃ and the time the rats were on salt loading have been reported (Thierry-Palmer et al. 1998).

The acute direct effects of 1,25-(OH)₂ D₃ on blood pressure, cardiac output and renal haemodynamics were investigated (Jespersen et al. 1998). The rapid effects of vitamin D hormone were assessed over 120 min following a bolus injection in subjects with essential hypertension and compared with controls. Ionized Ca was kept constant during the study with a clamping technique. Acute 1,25-(OH)₂ D₃ caused a fast and non-genomic-mediated decrease in cardiac output together with a transient increase in blood pressure; such changes were not seen in normal control subjects. The changes in hypertensive subjects could not be associated with any change in related hormone systems (including the RAS system) as these interactions require a longer time owing to genomic or secondary effects (Burgess et al. 1990). The results indicate a role for 1,25-(OH)₂ D₃ in the regulation of vascular contractility in essential hypertension.

To provide a direct cellular basis for the pressor effect of vitamin D hormone, Shan et al. (1993) studied the effect of 1,25-(OH)₂ D₃ on the voltage-dependent Ca-channel activity as well as on cytosolic free Ca accumulation using the whole-cell version of the patch clamp method and fluorescence spectroscopic technique: 1,25-(OH)₂ D₃ applied for 20 min produced a significant increase in the Ca current over the entire range of test pulses; this effect was time and dose dependent. Correspondingly, 1,25-(OH)₂ D₃ significantly increased free Ca levels. These results provide a cellular basis for the vascular function of the vitamin D hormone.

Vitamin D is a prohormone for more polar metabolites of which 1,25-(OH)₂ D₃ is the hormone. The other polar metabolite is the 24,25-dihydroxy (24,25-(OH)₂ D₃) derivative, which was considered to be an inactive metabolite of vitamin D although, quite early, it was suggested that this metabolite, too, might have a function in endochondral bone formation (Malluche et al. 1980). Specific receptors for 24,25-(OH)₂ D₃ were found in the parathyroids (Merke & Norman, 1981), chondrocytes (Corvol et al. 1980), epiphyseal growth plate (Somjen et al. 1982a) and limb bud mesenchymal cells (Somjen et al. 1982b). Shan et al. (1996) have investigated the vascular effects of 24,25-(OH)₂ D₃; they found that it caused a dose-dependent relaxation of the tonic or phasic tension induced by K⁺ or by noradrenaline. These were direct effects on the VSM as the artery strips used were de-endothelialized. 24,25-(OH)₂ D₃ inhibited vasoconstriction dependent on the release of intracellular Ca stores released by noradrenaline. Tension dependent on extracellular entry of Ca induced by noradrenaline was also attenuated.
Tension dependent on entry of external Ca induced by K⁺ or arginine vasopressin was also inhibited. In patch clamp experiments, 24,25-(OH)₂ D₃ reduced the amplitude of inward Ca currents in VSM cells.

1,25-(OH)₂ D₃ has been shown to open VSM cell-membrane Ca channels and to increase intracellular free Ca concentration (Shan et al. 1993). 24,25-(OH)₂ D₃ also acts on the voltage-dependent Ca channel with effects in the opposite direction, acting as an inhibitor of Ca entry, similar in action to oestrogen, progesterone (Shan et al. 1994) and PLP (described in a later section; p. 26). As 1,25-(OH)₂ D₃ and 24,25-(OH)₂ D₃ are immediate metabolites of 24-hydroxycholecalciferol and have opposite vascular effects, is it possible that the metabolic switch has a role in blood pressure regulation or even in the development of hypertension? In most of the investigations cited, the concentrations of 1,25-(OH)₂ D₃ or 24,25-(OH)₂ D₃ used have been high compared with their circulating concentrations, which are 30 pg/ml for 1,25-(OH)₂ D₃ and 2 ng/ml for 24,25-(OH)₂ D₃. One can implicate local high concentrations to answer the quibble of unphysiological concentrations. Still, the possibility of using these polar metabolites of 24-hydroxycholecalciferol metabolically or pharmacologically to control blood pressure is a worthy prospect.

Vitamin B₆

Early reports have indicated a relationship between vitamin B₆ status and hypertension in pregnant women. The toxaemic placenta is markedly deficient in PLP and the lack of demonstrable effect of vitamin B₆ in toxaemia was ascribed to a low pyridoxal kinase activity. Seizures associated with pregnancy-induced hypertension were prevented by Mg alone or in association with vitamin B₆ (pyridoxine). The enzyme pyridoxal kinase requires Mg for its activity. Various clinical reports indicate a correlation between alcoholism, hypothyroidism, diabetes and hypertension. However, many factors confound the underlying vitamin B₆ status of these individuals (Dakshinamurti & Lal, 1992).

We have investigated the effect of moderate vitamin B₆ deficiency on blood pressure regulation (Paulose et al. 1986, 1988). The blood pressure changes in the vitamin B₆-deficient rat can be classified into three phases: (1) pre-hypertensive (1–4 weeks); (2) hypertensive (5–11 weeks); (3) post-hypertensive (starting from week 12). Vitamin B₆-deficient rats during the hypertensive phase were only moderately pyridoxine deficient; they did not have any clinical signs of deficiency. This moderately vitamin B₆-deficient hypertensive rat has been biochemically characterized (Dakshinamurti et al. 1990a) in terms of tissue vitamin B₆ levels and as functionally deficient in neurotransmitters serotonin and γ-aminobutyric acid (GABA). Brain regional PLP levels were significantly (P < 0.05) reduced after 8 weeks of vitamin B₆ depletion. PLP levels in cerebral cortex, hippocampus and thalamus were 5.5 (SD 0.39), 7.45 (SD 0.45) and 8.7 (SD 0.36) nmol/g, respectively, in controls (pair-fed a vitamin B₆-supplemented diet) and 3.36 (SD 0.40), 5.2 (SD 0.32) and 6.3 (SD 0.34) nmol/g in vitamin B₆-deficient rats, respectively. We refer to this as the ‘moderately deficient’ condition. After 11 weeks of vitamin B₆ depletion, the PLP levels were further reduced to 2.78 (SD 0.28), 4.42 (SD 0.35) and 5.10 (SD 0.32) nmol/g in cerebral cortex, hippocampus and thalamus respectively. At this stage of vitamin B₆ deficiency the rats were no longer hypertensive: they were normotensive or even hypotensive. We refer to this as the advanced vitamin B₆-depleted state. It is the ‘moderately vitamin B₆-deficient rat’ which we have used as an animal model of moderate hypertension.

The nature of the hypertension that developed in the pyridoxine-deficient animal needed to be characterized in an effort to identify the causative factor(s). Using drugs such as phenytoin,
valproic acid and diazepam, it was shown that the hypertension was not the result of a hyperexcitable state in these animals. Although pyridoxine treatment reversed both the hypothyroidism and hypertension, there was no indication that the hypothyroid condition initiated hypertension. An association between hypertension and sympathetic stimulation has been observed in both hypertensive animals and human subjects; therefore, the possibility that the reversible hypertension seen in pyridoxine-deficient rats was related to sympathetic stimulation was considered. The concentration of noradrenaline in plasma is a valid reflection of sympathetic activity. However, blood samples have to be withdrawn from the conscious animal without trauma. We developed such a system by implanting a vascular-access port with catheterization to the jugular vein (Paulose & Dakshinamurti, 1987). We showed (Viswanathan et al. 1990) that both adrenaline and noradrenaline levels in the plasma of pyridoxine-deficient rats were nearly threefold higher than those of controls. Treatment of the rats with pyridoxine restored the blood pressure and catecholamine levels to normal within 24 h, whereas pyridoxine administration to control rats had no significant effect on either of these parameters. The complete reversibility of hypertension in such a short time would preclude a permanent structural damage to the vessel wall of the deficient rat; the lesion might possibly be at the level of neurotransmitter regulation. We also determined noradrenaline turnover in the hearts of deficient and control rats, but found no difference in myocardial noradrenaline content between the two groups; however, noradrenaline turnover was significantly increased in deficient rats compared with controls, thus supporting the contention that peripheral sympathetic activity is increased in the pyridoxine-deficient hypertensive animal.

Cardiovascular effects of serotonin. Serotonin (5-HT) is involved in a wide variety of functions of the central nervous system. Serotonergic cell bodies occur mainly in the raphe nuclei of the brain stem; however, the nerve axons project into virtually all parts of the brain and spinal cord and thus control a variety of functions such as blood pressure, emotional behaviour, endocrine function, perception of pain and sleep. In addition, there are effects on the peripheral neurons and non-neural tissues. 5-HT, when administered into the brain, elicits complex cardiovascular responses. The receptors that mediate these effects are different and have been categorized into major families. Each ‘family’ consists of multiple receptor subtypes that share similarities in their molecular biological, pharmacological, biochemical and physiological properties. These receptors are present throughout the central and peripheral nervous systems. The development of centrally acting 5-HT agonists such as 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT), ipsapirone and flesinoxan with specificity to 5-HT_{1A} subtype receptors has led to the recognition that 5-HT_{1A} receptors are involved in the central control of autonomic flow (Schoeffler & Hoyer, 1988). It is possible that the decrease in neuronal 5-HT and the consequent changes in its receptors, particularly 5-HT_{1A}, may cause hypertension in these animals. Hence, we investigated the effect of serotonergic 5-HT_{1A} receptor agonists such as 8-OH-DPAT, flesinoxan, urapidil or methyl urapidil on the SBP of conscious vitamin B_{6}-deficient hypertensive rats. After hypertension developed and had reached its peak (8–10 weeks on the deficient diet), the rats were used for assessment of the effect of the drugs under investigation. Intraperitoneal injection of 8-OH-DPAT, flesinoxan, urapidil, or 5-methyl urapidil (0·1–10 µmol/kg) caused a significant fall in systolic blood pressure of vitamin B_{6}-deficient hypertensive rats (Lal & Dakshinamurti, 1993a). The effect clearly depended on the dose used and was seen within 30 min of drug administration. When doses that caused a fall in SBP of 20 mmHg were compared, the following rank order was established: 8-OH-DPAT > flesinoxan > 5-methyl urapidil > urapidil; none of these drugs, however, had a consistent effect on heart rate. The
affinity of the agonists for the 5-HT_{1A} receptor site (Groz et al. 1987) correlates with the order of their anti-hypertensive activity, indicating that this effect is mediated through the 5-HT_{1A} receptor site. The selective 5-HT_{1A} receptor antagonist spiroxatrine (Nelson & Taylor, 1986) dose-dependently antagonized the hypotensive activity of 5-HT_{1A} receptor agonists. The moderately pyridoxine-deficient hypertensive rats have a low concentration of 5-HT in various brain areas, reflected in the increased 5-HT_{1A} receptor number in membrane preparations. Lesioning of central serotonergic tracts with 5,7-dihydroxytryptamine results in a similar increase in the 5-HT_{1A} receptor numbers, indicating that central serotonergic depletion is one of the contributors to the development of hypertension. What is the mechanism of the hypertensive action of the 5-HT_{1A} agonist? The hypertension of the moderately pyridoxine-deficient rat is characterized by central sympathetic stimulation, as in other hypertensive animal models. When α₂ adrenoreceptors in the nucleus tractus solitarii are stimulated, inhibitory neurons of the vasomotor centre are activated. Sympathetic outflow, which originates from the vasomotor centre and innervates the peripheral vasculature, heart and kidney, is reduced. As a result, peripheral vascular tone, heart rate and renin release are decreased, leading to a decrease in total peripheral resistance and cardiovascular output. Drugs such as clonidine, an α₂ agonist, exert their cardiovascular effect through stimulation of the α₂ adrenoreceptors in the brain stem. Activation of central α₂ adrenoreceptors in the nucleus tractus solitarii required a serotonergic input through 5-HT_{1A} receptors (Rappaport et al. 1985); hence, the hypotensive action of 5-HT_{1A} receptor agonists.

Calcium channels. The end result of centrally mediated sympathetic stimulation is an increase in peripheral resistance. This is reflected in elevation of both resting and stimulated vascular tone in the resistance arteries of the moderately pyridoxine-deficient hypertensive rats. Elevated peripheral resistance is the hallmark of hypertension, as seen in other models of hypertension (Postnov & Orlov, 1985). The increase in tone of caudal artery segments from the hypertensive deficient rats is Ca dependent, as seen by the decrease in unstimulated isometric tension observed in response to the presence of the specific Ca chelator ethylene glycol tetra-acetic acid in the medium and also the response to the addition of Ca to the medium (Viswanathan et al. 1991). The decrease in tone following the addition to the medium of the Ca-channel antagonist nifedipine indicates that increased peripheral resistance, resulting from increased permeability of smooth muscle plasma membrane to Ca²⁺, might be central to the development of hypertension (Rapp et al. 1986).

The initiation of smooth muscle contraction is principally dependent on the short-term increase in cytosolic free Ca. Ca moves in and out of the cell and intracellular storage sites in response to chemical, electrical, pressure and other physical stimuli. Ca influx essentially occurs through plasma membrane Ca²⁺ channels which are receptor operated or voltage operated (Glossman & Striessnig, 1988). Voltage-sensitive Ca channels participate in action potential generation by mediating voltage-activated inward movement of Ca ions which depolarize the cell (Catterall et al. 1998). These channels couple cell-surface electrical signals to the physiological response by mediating a voltage-dependent increase in the cytosolic concentration of Ca, which is a key intracellular second messenger. The slow channel (L-type) is the major pathway by which Ca ions enter the cell during excitation for initiation and regulation of the force of contraction of cardiac and skeletal muscle. VSM also contains the (L-type) slow channel. We evaluated the possibility that, in the pyridoxine-deficient hypertensive rat, a higher concentration of cytosolic free Ca²⁺ might be responsible for the higher tension in the VSM. The higher cytosolic free Ca²⁺ could be caused by an abnormal increase in the permeability of dihydropyri-
dine-sensitive Ca\(^{2+}\) channel of the VSM plasma membrane. We determined the intracellular Ca uptake by caudal artery segments of normal control and pyridoxine-deficient rats during progressive depletion using La-resistant \(^{45}\)Ca uptake as an index (Lal & Dakshinamurti, 1993b). In the prehypertensive vitamin B\(_6\)-deficient phase (weeks 3–4 on the deficient diet) the \(^{45}\)Ca\(^{2+}\) influx into VSM did not differ significantly from control values. In the hypertensive rat (SBP 145 (SD 2) mmHg), the \(^{45}\)Ca\(^{2+}\) influx into the VSM was significantly increased to twice that of the control. As the degree of vitamin B\(_6\) deficiency increased (post-hypertensive phase, after 12 weeks on the deficient diet) there was a further large increase in \(^{45}\)Ca\(^{2+}\) uptake. The mechanisms leading to a decrease in SBP during this advanced phase of deficiency are not yet understood. The possibility of altered sensitivity of the contractile apparatus to increased intracellular Ca and calmodulin cannot be discounted (Ngheim & Rapp, 1983). It is significant that changing the diet of vitamin B\(_6\)-deficient rats in the post-hypertensive phase (after 12–14 weeks on the deficient diet) to that of a vitamin B\(_6\)-containing normal diet led to a significant increase in their SBP within 2 weeks.

In a further study, we explored the defects in the Ca channel of the vitamin B\(_6\)-deficient hypertensive rat by studying the effect of Ca-channel antagonists on the SBP of conscious hypertensive rats (Lal & Dakshinamurti, 1993b). They were on the deficient diet for 7–10 weeks and had an SBP of 145–150 mmHg. The intraperitoneal injection of nifedipine produced a dose-dependent decline in SBP. All of the other Ca-channel antagonists used were also effective in lowering the SBP of the vitamin B\(_6\)-deficient hypertensive rats. The rank order of potency was: nifedipine > (-) 202–791 > verapamil > diltiazem. The specificity of the effect was seen in the effect of the dihydropyridine agonist, BAY K 8644, on the SBP of the vitamin B\(_6\)-deficient hypertensive rats: injection of BAY K 8644 did not alter the SBP of the deficient rat; however, when it was co-administered with the dihydropyridine Ca-channel antagonist nifedipine at equimolar doses, BAY K 8644 significantly antagonized the hypotensive effect of nifedipine. BAY K 8644 is known to prolong the open state of Ca channels during activation (Kokubun & Reuter, 1984), thereby promoting Ca entry into the cell. The failure of BAY K 8644 to do this in the deficient hypertensive rats suggests that the dihydropyridine-sensitive Ca channel is probably maximally open, implying that the vitamin B\(_6\) status might be an important contributor to the variation in Ca-channel function.

Dietary-induced hypertension and vitamin B\(_6\) In further experiments we investigated the relationship between the vitamin B\(_6\) levels in the diet and some diet-induced hypertensive conditions. Dietary manipulations such as decrease in the Ca content of the diet or increase in the sucrose or fructose content of the diet led to a consistent, although modest, increase in SBP. The effect of altering the level of Ca in the diet at different phases (prehypertensive, hypertensive and post-hypertensive) of vitamin B\(_6\) deficiency was studied (Lal & Dakshinamurti, 1995). Lowering dietary Ca from 1.0 to 0.1% caused a significant increase in the SBP in rats on a vitamin B\(_6\)-sufficient diet. This occurred during weeks 3–4 on the low-Ca diet. Similar effects of a low-Ca diet on blood pressure have been reported by others (Baksi et al. 1989). Low levels of Ca in the diet potentiated the hypertension induced by the vitamin B\(_6\)-deficient diet when both deficiencies were present from the beginning of the experiment. Feeding a low-Ca diet during the hypertensive or post-hypertensive phase failed to raise the SBP in these rats, whereas normalizing the vitamin B\(_6\) status of post-hypertensive vitamin B\(_6\)-deficient rats restored the ability of low dietary Ca to increase SBP.

It has been suggested that reduced dietary Ca depletes Ca from membrane storage sites, causing a less stable membrane of the VSM (Brickman et al. 1990). This results in enhanced Ca
influx and increased tone and reactivity. Peripheral resistance is elevated, leading to hypertension. Stabilizing the membrane abnormality in VSM by using high dietary Ca has been demonstrated. We have shown (Dakshinamurti & Lal, 1992) that high dietary Ca also reduces hypertension in rats with vitamin B₆ deficiency-induced hypertension, as has been shown in other models of hypertension such as the one-kidney deoxycorticosterone–NaCl hypertensive Wistar rat (Arvola et al. 1993). A low-Ca diet decreases ionic serum Ca; vitamin B₆ deficiency appears to cause a similar abnormality. Ca uptake by enterocytes is reduced in vitamin B₆ deficiency. An interesting finding was that an increased concentration of vitamin B₆ in the diet attenuated the blood-pressure-increasing effect of low dietary Ca. Vitamin B₆ might correct the membrane abnormality by a mechanism similar to that of the Ca-channel antagonists (Dominiczak & Bohr, 1990; Lal et al. 1993).

Acute or chronic ingestion of simple carbohydrates such as sucrose or fructose has been shown to cause an increase in SBP of varying degrees in several strains of rats (Zein et al. 1990). The ingestion of sucrose by male Sprague–Dawley rats resulted in a modest elevation of SBP. This was attenuated by the inclusion of a vitamin B₆ supplement (five times the normal intake) in their diet (Lal et al. 1996). The results show that hypertension induced by dietary means such as low Ca or an increase in simple carbohydrates in the diet of rats receiving normal amounts of vitamin B₆ in their diet responds to a further dietary supplement of vitamin B₆ (five times the normal intake).

Genetic hypertension and vitamin B₆. In further work we investigated whether a dietary supplement of vitamin B₆ could attenuate the elevation of SBP in genetically hypertensive animal models such as the Zucker obese rat or SHR. The Zucker obese (fa/fa) rat was originally studied as a model of obesity and atherosclerosis and has found extensive use in the study of diabetes mellitus. Various reports have shown that the Zucker obese rat also develops hypertension, which is specifically associated with the obese genotype (fa/fa); in contrast, Zucker lean rats are normal in all parameters. Metabolic alterations associated with obesity are believed to be the pathogenetic determinants of hypertension. Energy restriction of Zucker obese rats reduced the weight gain but did not attenuate the hypertension. SHR have been used extensively as an experimental model for the study of essential hypertension in human subjects.

Zucker obese (fa/fa), SHR and corresponding control rats were tested for the effects of vitamin B₆ ingestion in different ways:

1. vitamin B₆ was included as a supplement (five times the normal intake) from the start of the experiment until development of hypertension;
2. vitamin B₆ supplement was removed from the diet of Zucker obese and Zucker lean control groups after 16 weeks on the dietary supplements;
3. a diet deficient in vitamin B₆ was instituted in SHR and control WKY;
4. the SBP of rats in all groups was monitored in the conscious animal by tail-cuff plethysmography;
5. the effects of the various treatments on the uptake of Ca by caudal artery segments were also examined.

Male Zucker obese rats (fa/fa) of age 6 weeks fed a commercial rat chow developed hypertension in 3–4 weeks, whereas their lean controls (Fa/Fa) did not. Similar increases in the SBP of the Zucker obese rat have been reported using direct (Zemel et al. 1992b) and indirect (Yoshioka et al. 1993) measurements. The inclusion of a vitamin B₆ supplement (five times the normal intake) resulted in complete attenuation of the hypertension in the obese strain; in
fact, the SBP of the obese rats after 16 weeks of supplementation was lower than their initial level. Heart rate was also lowered as a result of feeding the high vitamin B₆ diet. The age-associated increase in the blood pressure of the Zucker lean rat was also attenuated by the high vitamin B₆ diet. When the high vitamin B₆ diet of the Zucker obese rats was changed to a normal vitamin B₆ diet, the SBP of the rats increased by about 30 mmHg in 12 d. Similar switch of the diet in the Zucker lean rat also resulted in a rise in the SBP within 2 d to the same level as shown by Zucker lean rats fed the normal vitamin diet for the entire experimental period. In contrast to the effects seen in the Zucker obese rats, there was no response to the inclusion or removal of dietary vitamin B₆ supplement in the SHR. However, the WKY responded to both these conditions in a manner similar to that seen in the Sprague–Dawley strain. Thus, the SBP of SHR, unlike that of WKY, was insensitive to the vitamin B₆ concentration in the diet. The changes in SBP in the Zucker as well as in the sucrose-fed rats correlated with changes in the uptake of Ca by caudal artery segments in all these groups. This is the first observation that animal models of hypertension can be classified on the basis of their response to a vitamin B₆ supplement. On this basis, the aetiology of hypertension in SHR is quite distinct from that in Zucker obese rats.

Effect of high dietary vitamin B₆ on blood glucose of Zucker rats and Sprague–Dawley rats ingesting sucrose. Zucker obese rats on the high-vitamin B₆ diet for 16 weeks had a lower blood glucose level than rats on the normal vitamin B₆ diet. This blood-glucose-lowering effect was seen in the both the fasting and non-fasting state. The hyperglycaemia seen in Sprague–Dawley rats ingesting sucrose was also attenuated. Zucker lean rats and Sprague–Dawley rats on commercial rat chow did not respond to the ingestion of high levels of vitamin B₆ as these rats were normoglycaemic (Lal et al. 1996).

Effect of pyridoxal phosphate on \(^{45} \text{Ca} \) uptake by rat caudal artery segments. We investigated the possibility that pyridoxine or, more particularly, PLP, could directly modulate the cellular Ca uptake process. Cold La-resistant \(^{45} \text{Ca}^{2+} \) uptake by segments of caudal artery was determined. The effect of PLP on the BAY K 8644-induced \(^{45} \text{Ca}^{2+} \) influx was examined in artery segments from control (normal) rats. The DHP-sensitive Ca-channel agonist was ineffective in increasing further the basal Ca uptake by caudal artery segments from vitamin B₆-deficient hypertensive rats. However, BAY K 8644 stimulated \(^{45} \text{Ca}^{2+} \) entry into artery segments from control (normal) rats. PLP dose-dependently (0.1–10 µM) reduced the BAY K 8644-stimulated Ca uptake by control artery segments. As seen earlier (Viswanathan et al. 1991), the basal uptake of \(^{45} \text{Ca}^{2+} \) by caudal artery segments from vitamin B₆-deficient hypertensive rats was at least twice the uptake by artery segments from control (normal) rats. PLP or nifedipine added to the incubation medium reduced significantly the \(^{45} \text{Ca}^{2+} \) uptake by artery segments from the deficient hypertensive rats. However, in the presence of BAY K 8644 (which, by itself, had no effect) in the incubation medium, both PLP and nifedipine were much less effective in attenuating the \(^{45} \text{Ca}^{2+} \) uptake by artery segments from the deficient hypertensive rats. These *in vitro* direct antagonisms indicate the possibility that the Ca-channel agonist BAY K 8644, the Ca-channel antagonist nifedipine and PLP might all act at the same site on the Ca channel.

Effect of pyridoxal phosphate on \([^{3}\text{H}]\text{nitrendipine binding by artery membrane preparations.}\) We have also examined the effect of PLP on the binding of tritiated \([^{3}\text{H}]\text{nitrendipine, a dihy-}
dropyridine Ca-channel antagonist, to membrane preparations from caudal artery of normal rats and have analysed the Scatchard plots of the binding assay. The equilibrium dissociation constant value for $[^3H]$nitrendipine binding was 0.57 ± 0.03 nM and the total number of binding sites was 150 ± 7 fmol/mg protein in control membranes. $[^3H]$Nitrendipine showed corresponding values of 0.69 ± 0.04 nM and 98 ± 6 fmol/mg protein in PLP-treated membranes. The results indicate that PLP treatment of membranes caused a decrease in the number of $[^3H]$nitrendipine binding sites.

Effect of pyridoxal phosphate on ATP-induced positive inotropic action in the isolated heart. In other experiments (Dakshinamurti et al. 1998, 2000) we investigated the effect of PLP on the ATP-induced positive inotropic effect in isolated perfused normal rat heart. The infusion of ATP caused an immediate increase (within a few seconds) in left ventricular developed pressure, $+dP/dt$ and $-dP/dt$. This effect was completely blocked in hearts pretreated with PLP for 10 min (Wang et al. 1999). The antagonistic effect of PLP was concentration dependent: the median effective dose (ED$_{50}$) for PLP was in the range of 10–15 µM. The marked increase in contractile activity upon infusing 1 µM-isoproterenol was not affected by perfusing the heart with 50 µM-PLP, which prevented the positive inotropic action of ATP. Likewise, 10 µM-propranolol, which prevented the positive ionotropic action of 1 µM-isoproterenol, showed no effect on the positive inotropic action of 50 µM-ATP.

Effect of pyridoxal phosphate on ATP-induced increase in [Ca$^{2+}$], in cardiomyocytes. The incubation of cardiomyocytes with 15 or 50 µM-PLP for 10 min did not alter the basal [Ca$^{2+}$]. However, the ATP-induced increase in [Ca$^{2+}$] was significantly decreased in PLP-treated cardiomyocytes. The effect of PLP (1–50 µM) on the ATP (50 µM)-induced increase in [Ca$^{2+}$] was dose dependent. The effective concentration of PLP was as low as 1 µM. ED$_{50}$ for PLP was in the range of 10–20 µM.

Effect of pyridoxal phosphate on ATP binding in cardiac sarcolemma. Since cardiac sarcolemmal membrane has been reported to contain both high- and low-affinity ATP-binding sites, we studied the effects of PLP on the high-affinity and low-affinity binding sites by employing 1–10 nM- and 1–10 µM-$[^35S]$ATPγS, respectively. The maximal ATP binding at both high- and low-affinity sites was inhibited by both 50 µM-PLP and 100 µM-suramin without any change in their respective equilibrium dissociation constant values. PLP almost completely blocked the low-affinity binding. Binding at the high-affinity sites was depressed by about 60 % of the control value. Suramin (100 µM) has effects comparable to 50 µM-PLP on both high- and low-affinity sites. Cibacron blue and 4,4′-disothiocyanostilbene-2,2′-disulfonate at 50 µM concentrations inhibited ATP binding at high-affinity and low-affinity sites by 40–45 % and 60–75 % respectively. The ED$_{50}$ values for inhibitory effects of PLP on high- and low-affinity ATP binding sites were about 10 µM and 15 µM, respectively. Agents such as propranolol (β-adrenoceptor blocker), prazosin (α adrenoceptor blocker), verapamil (L-type Ca$^{2+}$-channel blocker) did not show any significant effect on the high- or low-affinity ATP-binding sites.

PLP *in vitro* attenuates the influx of extracellular Ca. This effect is achieved through modulation of ligand binding. This is analogous to the effect of PLP on steroid hormone activity (Litwack, 1988). Voltage-sensitive Ca channels undergo long-term modulation by neurotrans-
mitters and a variety of second messengers. Activation of the channels is enhanced by cAMP and cAMP-dependent protein kinase (Schmid et al. 1985). In common with the pharmacological receptors, Ca channels are regulated by homologous and heterologous factors. Chronic channel activation, chronic drug exposure, hormonal influence and specific diseases are all associated with altered expression of Ca channel function and numbers (Ferrante & Triggie, 1990). The action of drugs at the Ca channels would indicate that endogenous factors or ligands might serve as physiological regulators, a function which is mimicked by Ca channel agonists or antagonists. The KCl-induced increase in \([\text{Ca}^{2+}]_i\) was augmented in cardiomyocytes from the vitamin \(B_6\)-deficient rats. The administration of vitamin \(B_6\) to the vitamin \(B_6\)-deficient animals was found to abolish this augmentation. It is possible that the observed augmentations of KCl-induced increase in \([\text{Ca}^{2+}]_i\) is related to an increase in \(\text{Ca}^{2+}\) influx through the sarcolemmal \(\text{Ca}^{2+}\) channels. An increase in \(\text{Ca}^{2+}\) influx in smooth muscle cells caused an increase in smooth muscle tone and hypertension in vitamin \(B_6\) deficiency (Paulose et al. 1988; Lal et al. 1993).

The increase in \([\text{Ca}^{2+}]_i\) in cardiomyocytes from vitamin \(B_6\)-deficient animals may contribute towards heart dysfunction and increased susceptibility to myocardial infarction (Ellis & McCully, 1995). These observations can explain the high incidence of hypertension and coronary artery disease in vitamin \(B_6\)-deficient patients (Vermaak et al. 1987), as well as the beneficial effects of vitamin \(B_6\) in patients with hypertension (Ayback et al. 1995) and myocardial infarction (Ellis & McCully, 1995). The antagonistic effect of PLP may not be of a generalized depressant nature. Since ATP is considered to influence cellular functions by acting on purinoceptors (Dubayak & El-Moatassium, 1993), it is possible that PLP may affect the cardiac action of ATP by blocking these receptors in the myocardium. This view is consistent with pharmacological studies showing the antagonistic effect of PLP on ATP-induced changes in rat vagus and vas deferens (Trezise et al. 1994). Furthermore, PLP decreased the specific binding of ATP to both high- and low-affinity binding sites similar to purinoceptor antagonists such as suramin, Cibacron blue and 4,4’-diisothiocyanatostilbene-2,2’-disulfonate. PLP may be a selective antagonist of purinoceptors because other receptor channel blocking agents (such as propranolol, prazosin, verapamil and ryanodine) did not show any effect on the specific binding of ATP to sarcolemma. It is generally accepted that ATP acts as a sympathetic cotransmitter with noradrenaline, causing vasoconstriction acting through purinergic receptors of the P2X\(_1\) subtype (Boarder & Hourani, 1998). Electrophysiological responses similar to those of cloned P2X\(_1\) receptor are reported in VSM cells (Evans & Kennedy, 1994). Immunocytochemical evidence has been presented for the presence of P2X\(_1\) receptor on the smooth muscle cells of submucosal arteries (Vulchanova et al. 1996). In addition, \(\alpha, \beta\) methylene \(\text{L-ATP}\) has been shown to contract blood vessels (Hourani et al. 1986).

Hypertension is associated with even moderate deficiency of vitamin \(B_6\). Physiological levels of vitamin supplementation reverses this hypertension. The development of hypertension in vitamin \(B_6\) deficiency is due to a variety of mechanisms which are not mutually exclusive. The central effects on blood pressure regulation are due to vitamin \(B_6\) deficiency mediated decreases in brain GABA and 5-HT. The stimulation of sympathetic nervous system activity is due to decreased 5-HT at specific serotonergic receptor (5-HT\(_{1A}\)) sites. The increased catecholamine secretion in the autonomic nervous system results in increased muscle tone. PLP appears to have a role in cellular Ca transport, acting through both the significant Ca channels (the voltage-mediated L-type channel as well as the ATP-mediated purinergic P2X\(_1\) channel). Physiological concentrations of vitamin \(B_6\) would reverse the abnormalities seen in deficiency. Hypertension is also produced in a variety of experimental animal models with replete vitamin \(B_6\) status. Genetic and dietary influences are responsible for development of these hypertensive conditions. High levels of vitamin \(B_6\) attenuate many (although not all) of the hypertensive con-
ditions of genetic or dietary origin. It has been shown (Dakshinamurti et al. 1990b) that there is a continuum in many of the PLP-mediated enzymic activities from vitamin deficiency to pharmacological levels of the vitamin in the organism, leading to increased synthesis and secretion of various monoamines with very beneficial effects to the organism as a whole (Bender & Totoe, 1984). This would include effects on sympathetic nervous system activity as well as on the Ca channels. Other suggested mechanisms might also include enhanced sensitivity and end-organ responsiveness to glucocorticoids, mineralocorticoids and aldosterone (Bender, 1999), all of which can result in hypertension. PLP acts to terminate the action of steroid and other nuclear-acting hormones (Tully et al. 1994).

We have shown that the hyperglycaemia associated with hypertensive Zucker obese and sucrose-fed rats were normalized by the high vitamin B₆ supplement. Reaven & Hoffman (1988) have suggested that abnormalities in carbohydrate metabolism may underlie the aetiology of hypertension in this condition. However, as pointed out by Resnick (1999a), the alterations in [Ca²⁺]ᵢ might be the central abnormality which expresses itself differently in different organ systems. Correction of this basic defect ameliorates the related clinical condition, be it hypertension or hyperglycaemia.

Vitamin B₆ has been referred to as a ‘vitamin without a deficiency’ (Van den Berg, 1999). However, low plasma levels of PLP have been reported in many studies, particularly in the elderly (Van der Wielen et al. 1996; Brussard et al. 1997; Bates et al. 1999). The prevalence of hypertension in the elderly population might be related to this deficiency and/or to the chronic use of anti-inflammatory drugs, many of which have a hypertensive side effect. Ribaya Mercado et al. (1991) showed that more vitamin B₆ was required to normalize plasma PLP levels and tryptophan load test results in the elderly than in younger adult populations. There are age-related changes in vitamin B₆ metabolism. In the elderly group, plasma homocysteine is inversely correlated with plasma PLP. Homocysteine is an independent risk factor for cardiovascular disease. Van den Berg (1999) has commented that this ‘vitamin without a deficiency’ has ‘indeed protective effects beyond known functions.’ Many of these functions are being unravelled.

Vitamin C

Various associations that might suggest that a deficiency of vitamin C (ascorbic acid) may lead to hypertension in human subjects have been listed (Bulpitt, 1990). Mortality from stroke is highest in regions with lowest intake of vitamin C. Blood pressure and diabetes are inversely related to intake of vitamin C; so, too, is hypercholesterolaemia, and all three are associated with old age. Stress leads to a depletion of vitamin C and stress is related to hypertension. Although these associations may be explained by other factors, increasingly the antioxidant function of various nutrients as protective against hypertension is being considered. High blood pressure, an important risk factor for cardiovascular disease, has been inversely associated with both intake and status indices of vitamin C (Jacques, 1992; Moran et al. 1993; Ness et al. 1996; Bates et al. 1999). If the relationship between vitamin C and blood pressure is causal, it has implications for dietary intervention; however, dietary intervention trials have been inconclusive. The effect of vitamin C supplementation, even when decreasing blood pressure, was not quite unequivocal (Feldman et al. 1992; Lovat et al. 1993; Ghosh et al. 1994). In the Finnish study with smokers, where a controlled trial of mixed antioxidants including ascorbic acid, organic Se, vitamin E and β-carotene was undertaken, there was a significant reduction in systolic blood pressure (Salonen et al. 1994). In a randomized double-blind placebo-controlled trial, Duffy et al. (1999) have shown that long-term (up to 4 weeks) treatment with ascorbic
acid (500 mg daily) of hypertensive patients reduced their blood pressure. In experimental animal studies, Yoshioka et al. (1985) and Ziemalanski et al. (1991) have shown a very significant effect of vitamin C in reducing the blood pressure in SHR. Increasing evidence from animal and human interventional studies indicates that the beneficial effect of vitamin C may be due to its antioxidant function.

Cardiovascular pathology in insulin-dependent diabetes mellitus, particularly the nephropathy subset and hypertension, is mainly due to atherosclerosis or large vessel disease, although microangiopathy is also a significant contributor. Reactive oxygen free radicals are implicated in this vascular injury. Free radical scavenging systems including ascorbic acid and α-tocopherol provide a natural defence against accumulating reactive oxygen species. A valuable clue to the association between low ascorbic acid status and conditions such as diabetic nephropathy and hypertension has been provided by Ng et al. (1998), who found that the uptake mechanisms for ascorbic acid and dehydroascorbic acid were impaired in lymphoblasts from subjects with diabetic nephropathy or hypertension. The depletion of ascorbic acid may be due to the defective cycling of dihydroascorbic acid. This would impair the ability to recycle oxidized ascorbic acid and hence would deplete antioxidant defences.

As detailed in an earlier section (p. 6), the vascular endothelium has a very significant role in regulating vascular tone. The vascular endothelium-derived relaxing factor NO has an important function in this. NO is released following stimulation of the muscarinic receptor on endothelial cells by acetylcholine or by stretch. There is strong evidence to indicate that NO is inactivated by increased vascular superoxide or other free radicals, leading to endothelial dysfunction in subjects with diabetes and coronary artery disease (Levine et al. 1996; Ting et al. 1996). Solzbach et al. (1997) have extended experimental animal studies and studies with the human brachial artery to human coronary arteries. They investigated acetylcholine-induced vascular responses and papaverine-induced flow-dependent vasodilatation in the coronary circulation of hypertensive patients both before and after administration of vitamin C; thus the acute effects of vitamin C were monitored. They have shown constriction of epicardial coronary arteries during intracoronary infusion of acetylcholine in hypertensive patients. This was dramatically improved after vitamin C infusion. Flow-dependent vasodilatation is another tool to assess endothelial function and this was increased following treatment with vitamin C. Taddei et al. (1998) have reported similar results.

In other work, Kugiyama et al. (1998) studied patients with coronary spastic angina. They infused acetylcholine into the left coronary arteries and measured epicardial artery diameters by quantitative coronary angiography both before and during combined intracoronary infusion with vitamin C (10 mg/min) or saline. They found that vitamin C attenuated the constrictor response of the epicardial arteries to acetylcholine in coronary arteries but had no effect on control coronary arteries, and suggested that vitamin C suppressed vasomotor dysfunction in coronary arteries of patients with coronary spastic angina.

Jeserich et al. (1999) investigated whether the abnormal constriction of epicardial coronary arteries due to sympathetic stimulation induced by the cold pressor test in patients with essential hypertension or hypercholesterolaemia could be reversed by administration of vitamin C. The cold pressor test has been shown to dilate normal coronary arteries but to constrict epicardial arteries in patients with hypertension or hypercholesterolaemia. Jeserich et al. (1999) found that impaired coronary vasomotor activity following sympathetic nervous system stimulation in essential hypertensive or hypercholesterolaemic subjects was improved by vitamin C. Conti (1999), in an editorial in the European Heart Journal, has commented on the observations of Kugiyama et al. (1998) and Jeserich et al. (1999) to suggest the need for vitamin C therapy to be tested in a large population of patients with coronary artery disease.
In a more revealing investigation, Sherman et al. (2000) studied the dose-dependent effects of ascorbic acid on endothelial vasomotor function in patients with hypertension to seek kinetic evidence that superoxide anion contributes to endothelial dysfunction. They demonstrated that the forearm blood flow response to methacholine infusion was impaired in patients with hypertension, whereas response to sodium nitroprusside was not affected. Concomitant infusion of ascorbic acid at 24 mg/min, which produced a high physiological concentration of about 3.2 mmol/l in forearm circulation, returned the methacholine response to normal. A tenfold lower concentration of ascorbic acid had no effect on the response to methacholine. On the basis of this study, they state that, although there was a lower baseline plasma ascorbic acid concentration in hypertensive patients, there was no correlation between this and endothelium-dependent dilatation at the baseline or during ascorbic acid infusion. They contend that the improvement in endothelial vasomotor function due to ascorbic acid cannot be explained by correction of an ascorbic acid-deficient state and that alternative mechanisms for the effects of pharmacological doses of ascorbic acid should be considered. This recalls the comment of Van den Berg (1999) regarding ‘the protective action of vitamin B6 beyond its known functions’. These recent observations are very significant in the context of our currently accepted function of vitamins. We have to re-evaluate our concepts regarding all aspects of vitamin biology, including their biological effects at high physiological or pharmacological concentrations in the body.

Vitamin E and other antioxidants

Free radical production is increased in patients with NIDDM and those with essential hypertension (Collier et al. 1990; Sagar et al. 1992; Moran et al. 1993). Free radical-mediated peroxidation of membrane polyunsaturated fatty acids results in impairment of membrane integrity and its function (Slater, 1984). Vitamin E is an endogenous antioxidant: it breaks the chain of lipid peroxidation in cell membranes, prevents the formation of lipid hydroperoxides (Machlin & Bendich, 1987) and also stabilizes the membrane (Erin et al. 1984). Thus, vitamin E improves cellular free radical defence potential and seems to have a beneficial effect on glucose transport and insulin sensitivity (Paolisso et al. 1992b; Faure et al. 1997).

Pregnancy-induced hypertension complicates a small but significant percentage of all pregnancies. The hypertension is categorized as pre-eclampsia or gestational hypertension. Lipid peroxides in serum and placental tissue were significantly increased and serum vitamin E levels significantly reduced in women with severe gestational hypertension and pre-eclampsia compared with normal subjects. In mild gestational hypertensive as well as in chronic hypertensive subjects who were pregnant, there were no changes either in serum vitamin E levels or in serum lipid peroxides (Gratacos et al. 1998).

Wen et al. (1996) investigated lipid peroxidation, plasma vitamin C, and plasma and erythrocyte levels of α-tocopherol in patients with essential hypertension and healthy controls. Hypertensive subjects had a significantly higher concentration of plasma malondialdehyde and significantly lower levels of plasma ascorbic acid. Erythrocyte α-tocopherol levels, which reflect the content of vitamin E in membranes, were also significantly lower in hypertensive than in healthy normotensive subjects; however, plasma levels of vitamin E were comparable in both hypertensive and normotensive subjects. These results suggest that hypertensive patients might have reduced tissue levels of the antioxidant vitamins and, hence, increased lipid peroxidation.

In experimental animal work, antioxidant levels were reported to be low in SHR compared with WKY controls (Janero & Burghardt, 1988). In view of the known function of α-
tocopherol as a scavenger of free radicals, Newaz & Nawal (1998) have examined lipid peroxides and antioxidant status of SHR and their WKY controls. They also evaluated the effect of vitamin E supplementation on blood pressure of rats in their experimental groups. Treatment of SHR with α-tocopherol prevented the age-related increase in the blood pressure of SHR. SHR had significantly higher levels of lipid peroxides in blood vessels and plasma and reduced total antioxidant status and SOD activity. After 12 weeks of α-tocopherol supplementation of SHR, there was a significant decrease in lipid peroxidation in blood vessels. The levels of total antioxidant status and SOD increased significantly in rats supplemented with α-tocopherol. They concluded that α-tocopherol prevented an increase in blood pressure, reduced lipid peroxides in blood vessels and in plasma, and also increased the total antioxidant status.

In further work, Newaz et al. (1999) compared the NO synthase activity in blood vessels of SHR and of SHR treated with α-tocopherol. NO synthase produces NO from L-arginine through a Ca- and calmodulin-dependent process. NO is responsible for the acetylcholine-mediated vascular relaxation. Reduced activity of NO synthase or accelerated degradation of NO may lead to impaired vasodilatation and, hence, increased blood pressure. The blood pressure of α-tocopherol-treated SHR is significantly lower than that of untreated SHR. Compared with the WKY controls, the SHR had a lower NO synthase activity in blood vessels. Treatment with α-tocopherol increased the NO synthase activity and concomitantly reduced the blood pressure of SHR.

Stroke-prone SHR are regarded as an animal model for ischaemic stroke in human subjects. Cerebral ischaemia for 20 min in stroke-prone SHR induced massive efflux of glutamate which caused delayed neuronal death in the hippocampal CA1 region; no such phenomenon was found in WKY (Gemba et al. 1992). Cortical neurons isolated from stroke-prone SHR were more vulnerable than those from WKY and resulted in apoptosis when exposed to NO- and NMDA-mediated neurotoxic agents (Tagami et al. 1997b). Vitamin E inhibited the reoxygenation injury in cultured cortical neurons. Reperfusion after carotid artery occlusion resulted in an increase in apoptotic neurons in the stroke-prone SHR (Tagami et al. 1997a). In further work, Tagami et al. (1999) examined the protective effect on the reperfusion injury of feeding the stroke-prone SHR with a high-vitamin E diet for 3 weeks. Cerebral ischaemia followed by 6 or 9 d of reperfusion very significantly increased the number of apoptotic neurons in the hippocampal CA1 region of the stroke-prone SHR fed the normal diet. However, if the rats were fed the high-vitamin E diet for 3 weeks before ischaemia and reperfusion, there was a dramatic decrease in the number of apoptotic neurons. Tagami et al. (1999) have demonstrated that oxygen radical generation occurs after reperfusion and the free radicals heavily damage the neurons in stroke-prone SHR. Vitamin E pretreatment of these rats increases its concentration in all tissues, including the brain. Vitamin E reacts with the free radicals and thus prevents neuronal apoptosis caused by reperfusion.

GSH has intracellular antioxidant properties: it inhibits free radical formation and functions generally as a redox buffer. GSH may also have an important role in glucose homoeostasis (Paolisso et al. 1992b) and in lowering blood pressure in diabetic and hypertensive subjects (Ceriello et al. 1991). As stated in an earlier section (pp. 8–9), the decrease in intracellular free Mg has been recognized as a feature common to all these clinical conditions (Resnick, 1999a). Mg deficiency has been associated with increased membrane susceptibility to oxidative stress (Freedman et al. 1992; Rayssiguier et al. 1993b). Mg dose-dependently reduced blood pressure (Widman et al. 1993). It has been suggested that the beneficial effect of glutathione on glucose metabolism may be mediated by Mg (Barbagallo et al. 1999). These authors have also examined whether vitamin E had similar effects in subjects with essential hypertension. In
hypertensive subjects, vitamin E (600 mg/d) administration significantly increased whole-body glucose disposal, GSH:GSSG and [Mg$^{2+}$]. In the basal condition, whole-body glucose disposal correlated directly with GSH:GSSG and [Mg$^{2+}$]. Their results show a clinical relationship between vitamin E administration, intracellular Mg levels, GSH:GSSG and tissue glucose metabolism.

δ-Tocopherol is a minor component of dietary vitamin E, which is predominantly α-tocopherol. Murray et al. (1997) have isolated and characterized a natriuretic δ-tocopherol metabolite, LLU-α, which inhibits the intermediate conductance (70 ps) ATP-sensitive K$^+$ channel in the thick ascending limb. Unlike ANP, LLU-α exhibits a prolonged natriuresis. This factor could be part of the system controlling extracellular volume; if so, δ-tocopherol might be analogous to vitamin D being a precursor to a hormone.

The role of vitamin E as an antioxidant is well recognized. A supplement of vitamin E appears to decrease blood pressure in a variety of hypertensive conditions. Several studies indicate an association between dietary intake or plasma concentrations of the antioxidants vitamin E, vitamin C and β-carotene, and hypertension (Gey et al. 1993). Suboptimal levels of vitamin C, vitamin E and β-carotene have been reported as additive risk factors for cardiovascular diseases. Galley et al. (1997) have investigated the effect of a short-term high dose of antioxidant supplement consisting of zinc sulfate (200 mg), ascorbic acid (500 mg), α-tocopherol (600 mg) and β-carotene (30 mg). They found that this combination therapy reduced blood pressure in both hypertensive and normal subjects, although the effects were more marked in hypertensive subjects. The results confirm the well-known synergism between vitamin E and vitamin C, β-carotene and vitamin E, and Zn and vitamin E respectively (Goody et al. 1991; Palozza & Krinsky, 1992).

Conclusions

Hypertension is not a single disease entity with a single identifiable aetiology; a variety of factors contribute to the initiation and maintenance of this clinical condition. Metabolic abnormalities associated with the tetrad of hypertension, dyslipidaemia, glucose intolerance and obesity, share IR that might be organ, tissue or cell specific as an underlying feature. Oxidative stress is a major mechanism leading to impaired endothelial function and is present in hypertension and dyslipidaemia. In addition to the coexistence of several metabolic abnormalities with hypertension, the heterogeneity of hypertension itself is recognized. These metabolic abnormalities represent different tissue manifestations of a common cellular ionic defect. The intracellular concentrations of Ca and Mg, which are reciprocally related, regulate cellular metabolic processes and so define the pathophysiology shared by the tetrad of ‘syndrome X’. The heterogeneity of hypertension is defined in terms of plasma renin activity, which seems to be related to the source of the increase in intracellular free Ca. In the high-renin type this is intracellular; in the low-renin type it is extracellular. This is reflected in the inverse concentrations of extracellular ionized Ca in these two conditions. The calcitrophic hormones, particularly the derivatives of vitamin D, are involved in this regulation.

Hypertension is associated with the deficiency of some micronutrients. Various normal dietary components in recommended daily amounts or, more significantly, at much higher levels of intake, have been shown to decrease further the blood pressure of hypertensive subjects who are receiving pharmacological treatment, indicating that some aspects of blood pressure regulation not amenable to manipulation by antihypertensive drugs do respond to these ‘micronutrients’ which include minerals and vitamins. As Ca is at the centre of ionic regulation
of cellular function, vitamins involved in Ca regulation have a significant role. As the endothelium-dependent vasodilator, NO is susceptible to oxidative damage, antioxidant vitamins also have a role.

The function of vitamin D in Ca homoeostasis is well known. More interesting are the direct effects of vitamin D metabolites. 1,25-(OH)_{2}D_{3} is a vasoconstrictor, whereas 24,25-(OH)_{2}D_{3} is a vasodilator, both acting directly and reciprocally at the level of the VSM. Vitamin B\textsubscript{6} has a unique role in blood pressure regulation. The active form of this vitamin, PLP, seems to have a direct role in the regulation of Ca channels; this includes both the voltage-mediated L-type Ca channel and the ATP-mediated purinergic P2X-type Ca channel. Vitamin B\textsubscript{6} functions in blood pressure control through other mechanisms as well, particularly via regulation of sympathetic nervous system activation. This central function is mediated by the synthesis and secretion of the neurotransmitter serotonin. These subsume the ‘protective effects of vitamin B\textsubscript{6} beyond its known function’.

Vitamin C and vitamin E, because of their antioxidant nature, inhibit the oxidation of NO, the most important vasodilator of the vascular endothelium; they thus maintain the vasodilator status of blood vessels. Vitamin C also seems to have a direct acute effect on inhibition of the constrictor response of resistance arteries to a variety of stimuli. This improvement in endothelial vasomotor function may be explained, not as due to the correction of an ascorbic acid deficiency but as due to a direct effect on the VSM. A minor constituent of natural vitamin E, \(\delta\)-tocopherol, is a precursor of LLU\alpha, which exhibits prolonged natriuresis and may control extracellular fluid volume. Synergism between the actions of vitamin E and vitamin C and between vitamin E and \(\beta\)-carotene have been reported.

The actions of these vitamins on blood pressure regulation cannot always be understood on the basis of their conventionally recognized ‘vitamin function’. In addition, there is a continuum of vitamin effects from the deficient state to pharmacological levels of the vitamin in the organism. The non-traditional functions of the vitamins and their derivatives can be exploited as an adjunct to the available modalities in the treatment of hypertension.

References

Blood pressure regulation and micronutrients

Are you a Registered Nutritionist?

The Nutrition Society

The Society’s register is part of a framework of activities that set and promote high standards of education and that support professional development in nutrition. The register helps employers, the media and the general public to identify appropriately qualified individuals. Members on the register are expected to adhere to the Society’s Code of Ethics. The Nutrition Society’s Register replaced the Register of Accredited Nutritionists, run by the Institute of Biology in conjunction with the Society. Individuals who qualified as Accredited Nutritionists transferred to the Society’s register in 1999. The Register is published on the Society’s website and, from time to time, in printed form.

Register of Nutritionists
Members of the Nutrition Society have the opportunity to apply for Registration in Nutrition that enables the individual to use the title Registered Nutritionist and the letters R Nutr after their name. Members of the Society who have been working in the field of nutrition for a minimum of 3 years and who have academic qualifications in nutrition, dietetics or a related subject are eligible to apply. Certain other relevant qualifications may also be acceptable.

Associate registration
Members with appropriate qualifications who have not worked for at least 3 years after graduating may also apply for registration as Associate Nutritionists. This confers the title Associate Nutritionist and letters Assoc Nutr.

How to Apply
Send a recent CV, photocopied qualification certificate(s) and the names of THREE academic and/or professional references to the Society’s Registrar.

Register of Public Health Nutritionists
The Society has a policy to develop specialist categories of the general Register to cater for members with specialist expertise. In 1997, the first, a Register of Public Health Nutritionists, was launched. Members of the Society who have been working in the field of Public Health Nutrition for a minimum of 3 years in the last 5 and who have appropriate qualifications are eligible to apply. Members who fulfil the criteria for registration are able to use the title Public Health Nutritionist and the letters RPHNutr after their name.

How to Apply
Send a recent CV, photocopied qualification certificate(s) and the names of TWO academic and/or professional references to the Society’s Registrar.

Associate registration
Members who qualify from accredited courses and who have not worked for at least 3 years after graduating are eligible for registration as Associate Public Health Nutritionists. This confers the title Associate Public Health Nutritionist and letters Assoc. PHNutr.

For more information about the Registers, registration fees and about the Accreditation of Courses in Public Health Nutrition contact:

The Registrar, The Nutrition Society,
10 Cambridge Court, 210 Shepherds Bush Rd, London W6 7NJ
Fax +44 (0) 20 7602 1756; Email: mail@nutsoc.org.uk
Details can be found on the Society’s Website: www.nutsoc.org.uk