RATIONAL APPROXIMATION WITH SERIES

D. FENNA

(received 22 July 1960)

The Siegel conjecture on the rational approximation to algebraic numbers was proved a few years ago by K. F. Roth [1] with the following theorem:

Let α be any algebraic number, not rational. If

$$\left| \alpha - \frac{h}{q} \right| < \frac{1}{q^{\kappa}}$$

has an infinity of solutions in integers h and q (q > 0), then $\kappa \leq 2$.

This result, which gives a best-possible bound for κ , improved on earlier results of Liouville, Thue, Siegel, and Dyson.

The analogous problem of approximating to algebraic functions, with degree replacing absolute value, was considered by B. P. Gill [2], who obtained a result corresponding to that of Siegel. In this paper we improve on Gill's result by proving the analogue of Roth's theorem, so obtaining a best-possible result.

Let f denote an arbitrary field of zero characteristic and z an indeterminate. Then the set \Re of all formal Laurent series

$$x = \alpha_d z^d + \alpha_{d-1} z^{d-1} + \cdots,$$

where

 $\alpha_d, \alpha_{d-1}, \cdots \in \mathfrak{k},$

is a field. Further, the sets $\mathfrak{T} = \mathfrak{k}[z]$ and $\mathfrak{R} = \mathfrak{k}(z)$ form a subring and a subfield of \mathfrak{R} respectively, with

If $x \in \Re$ then we denote by deg x the degree of x, i.e.

deg $x = -\infty$ if $x \equiv 0$, = d if α_d is the leading non-zero coefficient in $x \neq 0$.

The *n*-dimensional space of all vectors (x_1, x_2, \dots, x_n) , where the $x_k \in \Re$, is denoted by \Re_n .

We prove the following theorem.

107

THEOREM 1.1. Let $t \in \Re$ be algebraic over \mathfrak{T} but not in \mathfrak{R} . If

(1.2)
$$\deg\left(t-\frac{u}{v}\right) < -v \deg v$$

for infinitely many $u/v \in \Re$, then $v \leq 2$.

[Note. It is taken throughout this paper that, in such a representation u/v of an element of \Re , the u, v are relatively prime elements of \mathfrak{T} .]

This result is clearly best-possible for v. For if d is a positive integer there exists a non-trivial set α_d , α_{d-1} , $\cdots \alpha_0$ of d + 1 elements of t such that, if v is the polynomial

$$\alpha_d z^d + \alpha_{d-1} z^{d-1} + \cdots + \alpha_0$$

then the coefficients of z^{-i} in the product vt vanish for $i = 1, \dots d$. Putting u equal to the polynomial part of vt we then have

 $\deg (vt - u) < -d \leq -\deg v,$

i.e.

$$\deg\left(t-\frac{u}{v}\right)<-2\deg v.$$

Since t is not rational it follows that, by allowing d to range over all positive integers, we obtain an infinity of distinct solutions u/v of (1.2) with v = 2.

For the case where the ground field \mathfrak{k} is of positive characteristic p Mahler [3] has shown that the equivalent bound for ν is $\nu \leq p$, which is again best-possible.

In the proof of our theorem certain details are omitted because of the essential similarity between our case and that of Roth.

2. Let x_1, \dots, x_m be *m* indeterminates and let

$$F = F(x_1, \cdots x_m) \in \Re[x_1, \cdots x_m],$$

i.e. F is a sum of terms of the form

$$a(i_1, \cdots, i_m)x_1^{i_1}\cdots x_m^{i_m},$$

where the $a = a(i_1, \dots, i_m) \in \Re$. We extend the notation deg x defined above for $x \in \Re$ to include

deg
$$F = -\infty$$
 if $F \equiv 0$;
= max {deg $a(i_1, \dots i_m)$ } if $F \neq 0$,

where the maximum is taken over all non-zero a. Clearly this is consistent with our earlier notation, since it merely means that $z^{\deg F}$ is the largest power of z that occurs with non-zero coefficient in F. If F itself is in \Re then the two notations agree.

Obviously, if

$$F'(x_1, \cdots x_m) \in \Re[x_1, \cdots x_m],$$

then

$$\deg (F \pm F') \leq \max \{\deg F, \deg F'\}$$

and

$$\deg (FF') \leq \deg F + \deg F'.$$

We consider differential operators of the form

$$\Delta = \frac{\partial^{i_1 + \cdots + i_m}}{\partial x_1^{i_1} \cdots \partial x_m^{i_m}}$$

and call $(i_1 + \cdots + i_m)$ the order of Δ .

For a positive integer h, let

$$\phi_{\beta}(x_1,\cdots,x_m) \in \Re[x_1,\cdots,x_m] \qquad (\beta=0,\,1,\cdots,h-1),$$

and let Δ_{α} , $(\alpha = 0, 1, \dots, h-1)$, be operators on x_1, \dots, x_m of order at most α . Then we call the determinant

$$G(x_1,\cdots,x_m)=\{\varDelta_{\alpha}\phi_{\beta}(x_1,\cdots,x_m)\}_{\alpha,\beta=0,1,\cdots,n-1}$$

a generalized Wronskian of $\phi_0, \phi_1, \cdots, \phi_{h-1}$.

LEMMA 2.1. The necessary and sufficient condition that

 $\phi_{\beta}(x_1,\cdots,x_m) \in \Re[x_1,\cdots,x_m] \qquad (\beta=0,\,1,\cdots,h-1)$

are linearly independent over \mathfrak{T} is that at least one of their generalized Wronskians is non-zero.

LEMMA 2.2. Let $R(x_1, \dots, x_m)$ be a polynomial in $m \ge 2$ variables, with coefficients in \mathfrak{T} , which is not identically zero. Let R be of degree at most r_j in x_j , $(j = 1, \dots, m)$. Then there exists an integer h satisfying

$$1 \leq h \leq r_m + 1$$

and there exist differential operators Δ_{λ} , $(\lambda = 0, 1, \dots h - 1)$, on the variables $x_1, \dots x_{m-1}$, of order at most λ , such that, if

$$F(x_1, \cdots, x_m) = \det \left\{ \Delta_{\lambda} \frac{\partial^{\mu} R}{\partial x_m^{\mu}} \right\}_{\lambda, \mu = 0, 1, \cdots, n-1}$$

then (i) F has coefficients in \mathfrak{T} and is not identically zero;

(ii) $F(x_1, \cdots x_m) = U(x_1, \cdots x_{m-1}) \cdot V(x_m),$

where U and V have coefficients in \mathfrak{T} , U is of degree at most hr_j in x_j , $(j = 1, \dots, m-1)$, and V is of degree at most hr_m in x_m .

The proofs of these two lemmas are omitted as they are very similar to those of Roth.

With F, h and R as defined above we prove the following inequality. LEMMA 2.3. deg $F \leq h \cdot \deg R$ PROOF. Put D. Fenna

$$R_{\lambda,\mu} = \Delta_{\lambda} \frac{\partial^{\mu} R}{\partial x_{m}^{\mu}} \qquad (\lambda, \mu = 0, 1, \cdots h - 1).$$

Now R is the sum of terms of the form

$$a(s_1, \cdots, s_m)x_1^{s_1}\cdots x_m^{s_m}$$

Differentiation with respect to any x_1, \dots, x_m of such a term will not increase the degree of the coefficient $a(s_1, \dots, s_m)$. Hence

 $\deg R_{\lambda,\mu} \leq \deg R \qquad (\lambda,\mu=0,1,\cdots h-1).$

On the other hand, F is the sum of h! terms, each of which is a product of the form

$$\pm R_{\lambda_0,0} R_{\lambda_1,1} \cdots R_{\lambda_{h-1},h-1}$$

It follows that

$$\deg F \leq h \cdot \max \{ \deg R_{\lambda,\mu} \},\$$

where the maximum is taken over λ , $\mu = 0, 1, \dots h - 1$. Hence the assertion.

3. Let $P(x_1, \dots, x_m) \in \Re[x_1, \dots, x_m]$ and, further, let $a_1, \dots, a_m \in \Re$ and let r_1, \dots, r_m be any positive numbers.

Definition 3.1.

The index

$$\theta\{P\} = \theta\{P; (a_1, \cdots a_m); r_1, \cdots r_m\}$$

of P at the point $(a_1, \dots a_m) \in \mathfrak{P}_m$ relative to $r_1, \dots r_m$ is put equal to $+\infty$ if $P \equiv 0$, otherwise

$$\theta\{P\} = \min\left\{\frac{j_1}{r_1} + \cdots + \frac{j_m}{r_m}\right\}$$

for all sets of non-negative integers j_1, \dots, j_m for which

$$\left\{\frac{\partial^{j_1+\cdots+j_m}P}{\partial x_1^{j_1}\cdots\partial x_m^{j_m}}\right\}_{(a_1,\cdots,a_m)}\neq 0.$$

The index then has the following properties $[Q(x_1, \cdots x_m)$ being a second polynomial in $x_1, \cdots x_m$, and the indices being evaluated at $(a_1, \cdots a_m)$ relative to $r_1, \cdots r_m$].

(3.2)
$$\theta\{P\} \ge 0, = 0 \text{ if and only if } P(a_1, \cdots a_m) \neq 0.$$

(3.3)
$$\theta\{P+Q\} \ge \min(\theta\{P\}, \theta\{Q\}).$$

(3.4) $\theta\{P,Q\} = \theta\{P\} + \theta\{Q\}$

(3.5) If

$$Q = \frac{\partial^{k_1 + \dots + k_m} P}{\partial x_1^{k_1} \cdots \partial x_m^{k_m}} \text{ for some } k_1, \dots k_m \ge 0,$$

110

then

$$\theta\{Q\} \ge \theta\{P\} - \left(\frac{k_1}{r_1} + \cdots + \frac{k_m}{r_m}\right)$$

Also, if P is actually a function of less than m of the variables x_1, \dots, x_m , say P is independent of x_m , then

$$\theta\{P; (a_1, \cdots, a_m); r_1, \cdots, r_m\} = \theta\{P; (a_1, \cdots, a_{m-1}); r_1, \cdots, r_{m-1}\}.$$

Hence, in particular, if P is a function of x_1, \dots, x_{m-1} only and Q is a function of x_m only, then, from (3.4),

(3.6)
$$\theta\{PQ; (a_1, \cdots, a_m); r_1, \cdots, r_m\} \\ = \theta\{P; (a_1, \cdots, a_{m-1}); r_1, \cdots, r_{m-1}\} + \theta\{Q; (a_m); r_m\}.$$

4. Let $r_1, \dots r_m$ be *m* positive integers and let ρ be a non-negative number. We denote by

$$\mathfrak{B}_m = \mathfrak{B}_m(\rho; r_1, \cdots, m)$$

the set of all polynomials $R(x_1, \cdots x_m) \in \mathfrak{T}[x_1, \cdots x_m]$ which satisfy the conditions

- (i) $R \neq 0$;
- (ii) R is of degree at most r_j in x_j , $(j = 1, \dots, m)$;
- (iii) deg $R \leq \rho$.

Let $v_1, \dots, v_m \in \mathfrak{T}$ be of positive degree. We put

$$\Theta_m\{\rho; v_1, \cdots v_m; r_1, \cdots r_m\} = \sup \theta \left\{ R; \left(\frac{u_1}{v_1}, \cdots , \frac{u_m}{v_m}\right); r_1, \cdots r_m \right\},$$

where the supremum is taken over all $R \in \mathfrak{B}_m$ and over $u_1, \cdots u_m \in \mathfrak{T}$ satisfying $(u_i, v_i) = 1, (i = 1, \cdots m)$.

We now obtain an upper bound for Θ_m , by induction with respect to m. For m = 1 we have the following inequality.

LEMMA 4.1.

$$\Theta_1\{\rho; v_1; r_1\} \leq \frac{\rho}{r_1 \cdot \deg v_1}$$

Proof. By the definition of θ , the polynomial $R(x_1)$ is divisible by $(x_1 - u_1/v_1)r_1 \cdot \theta\{R\}$. Applying Gauss's theorem on factorization, we have

$$R(x_1) = (v_1 x_1 - u_1)^{r_1 \cdot \theta\{R\}} Q(x_1)$$

where $Q(x_1) \in \mathfrak{T}[x_1]$. The leading coefficient of R is therefore divisible by $v_1^{r_1 \cdot \theta\{R\}}$, whence

$$r_1\theta\{R\} \deg v_1 \leq \deg R \leq \rho$$

and the assertion follows.

LEMMA 4.2. Let $m \ge 2$ be an integer and let $r_1, \dots r_m$ be positive integers

111

[5]

satisfying

112

 $r_m > 10\delta^{-1}, r_{j-1} > r_j\delta^{-1}$ for $j = 2, \cdots m$,

where $0 < \delta < 1$. Also, let $v_1, \dots v_m \in \mathfrak{T}$ be of positive degree. Then

(4.3)
$$\Theta_m\{\rho; v_1, \cdots v_m; r_1, \cdots r_m\} \leq 2 \cdot \max \left(\Phi + \Phi^{\frac{1}{2}} + \delta^{\frac{1}{2}} \right)$$

where the maximum is taken over all integers h satisfying

$$1 \leq h \leq r_m + 1$$
,

and where

(4.4)
$$\Phi = \Theta_1\{h\rho; v_m; hr_m\} + \Theta_{m-1}\{h\rho; v_1, \cdots v_{m-1}; hr_1, \cdots hr_{m-1}\}.$$

We again omit the proof because of its similarity to that of Roth. Note that if

$$F(x_1, \cdots, x_m) = U(x_1, \cdots, u_{m-1}) \cdot V(x_m)$$

is the function defined in lemma 2.2 then

$$\max (\deg U, \deg V) \leq \deg F \leq h \deg R \leq h\rho,$$

by lemma 2.3. It follows from this and lemma 2.2 that

 $U(x_1, \cdots, x_{m-1}) \in \mathfrak{B}_{m-1}(h\rho; hr_1, \cdots, hr_{m-1})$

and

$$V(x_m) \in \mathfrak{B}_1(h\rho; hr_m).$$

We now restrict δ , $v_1, \dots v_m, r_1, \dots r_m$, give ρ a particular value, and obtain an explicit upper bound for $\Theta_m\{\rho; v_1, \dots v_m; r_1, \dots r_m\}$ in terms of m and δ .

LEMMA 4.5. Let *m* be a positive integer and let δ satisfy

 $0 < \delta < m^{-1}$.

Let $r_1, \cdots r_m$ be positive integers satisfying

$$r_m > 10\delta^{-1}, r_{j-1} > r_j \delta^{-1}$$
 for $j = 2, \cdots m$.

Let $v_1, \dots, v_m \in \mathfrak{T}$ have positive degree and satisfy

(4.6)
$$r_j \deg v_j \ge r_1 \deg v_1 \qquad (j = 2, \cdots m).$$

Then

$$arPhi_m\{\delta r_1 \deg v_1; v_1, \cdots v_m; r_1, \cdots r_m\} < 10^m \delta^{(rac{1}{2})^m}$$

PROOF. If m = 1 then, by lemma 4.1,

$$\Theta_1\{\delta r_1 \deg v_1; v_1; r_1\} \leq \frac{\delta r_1 \deg v_1}{r_1 \deg v_1} = \delta < 10\delta^{\frac{1}{2}}.$$

Assume, now, that $m \ge 2$ and that the lemma holds if m is replaced by m-1. Note that the hypothesis remains valid if we replace m by m-1

and r_j by hr_j , $(j = 1, \dots, m-1)$. Now, by lemma 4.1,

$$\Theta_1\{\delta hr_1 \deg v_1; v_m; hr_m\} \leq \frac{\delta hr_1 \deg v_1}{hr_m \deg v_m} \leq \delta,$$

by (4.6). Hence, if Φ is the sum defined in (4.4), we have, by the inductive hypothesis,

$$\Phi < \delta + 10^{m-1} \cdot \delta^{(\frac{1}{2})^{m-1}} < 2(10^{m-1}\delta^{(\frac{1}{2})^{m-1}}).$$

Now the hypotheses of lemma 4.2 are less stringent than those of lemma 4.5. Hence lemma 4.2 is applicable and, by (4.3),

$$\begin{split} \mathcal{\Theta}_{m} \{ \delta r_{1} \deg v_{1}; v_{1}, \cdots v_{m}; r_{1}, \cdots r_{m} \} \\ &< 2 \{ 2 \cdot 10^{m-1} \delta^{(\frac{1}{2})^{m-1}} + 2^{\frac{1}{2}} 10^{(m-1)/2} \delta^{(\frac{1}{2})^{m}} + \delta^{\frac{1}{2}} \} \\ &< 2 \left\{ \frac{2}{10} + \frac{2^{\frac{1}{2}}}{10} + \frac{1}{10^{2}} \right\} 10^{m} \delta^{(\frac{1}{2})^{m}} \\ &< 10^{m} \delta^{(\frac{1}{2})^{m}}. \end{split}$$

Thus lemma 4.5 holds for m and the induction is complete.

5. LEMMA 5.1. Let $n \ge 2$ and let

$$f(x) = a_0 x^n + a_1 x^{n-1} + \cdots + a_n$$
, where $a_0 \neq 0$,

and

$$g(x) = b_0 x^s + b_1 x^{s-1} + \cdots b_s$$

be two elements of $\mathfrak{T}[x]$, of degree α and β in z respectively. Suppose that d is a non-negative integer such that

 $d \ge s - n + 1$

and let $h(x) \in \mathfrak{T}[x]$ be of degree at most (n-1) in x and satisfy

 $a_0^d g(x) \equiv h(x), \mod f(x).$

Then h(x) is of degree at most $(\beta + d\alpha)$ in z.

PROOF. If $s \leq n - 1$ the lemma is trivial. We complete the proof by induction on s.

Assume that $s \ge n$, whence $d \ge 1$, and assume that the lemma holds for (s - 1) instead of s.

Put

$$g^{*}(x) = a_{0}g(x) - b_{0}x^{s-n}f(x)$$

Then $g^*(x)$ is of degrees at most (s - 1) in x and at most $(\beta + \alpha)$ in z. Also

$$a_0^{d-1}g^*(x) \equiv a_0^d g(x) \equiv h(x), \mod f(x).$$

Then, by the inductive hypothesis, h(x) is of degree at most

 $(\beta + \alpha) + (d - 1)\alpha = \beta + d\alpha$

in *z*.

D. Fenna

6. Let $t = t(z) \in \Re$ be algebraic, of degree at least 2, over \mathfrak{X} , and suppose that the inequality (1.2) is satisfied by infinitely many $u/v \in \Re$. Then we wish to show that $v \leq 2$.

We may assume that t is of negative degree in z. For if not, let t' be the polynomial part of t, and put $t^* = t - t'$. Then t^* is also algebraic and of the same degree as t, and is of negative degree in z. Further u/v satisfies (1.2) if and only if

$$\deg\left(t^*-\frac{u'}{v}\right)<\nu\deg v,$$

where

$$u' = u - vt' \in \mathfrak{T}$$

Now t is the root of some irreducible polynomial

$$f(x) = a_0 x^n + a_1 x^{n-1} + \cdots + a_n \in \mathfrak{T}[x],$$

where $a_0 \neq 0$, $n \geq 2$. Let f(x) be of degree $\alpha \geq 0$ in z.

We now prove our final lemma.

Let *m* be a positive integer, and let $\delta, r_1, \cdots r_m, v_1, \cdots v_m$ satisfy the following conditions

- (6.1) $0 < \delta < \min(m^{-1}, \alpha^{-1}),$
- (6.2) $10^m \delta^{(\frac{1}{2})^m} + 2(1+\delta)nm^{\frac{1}{2}} < \frac{1}{2}m,$
- (6.3) $r_m > 10\delta^{-1}, r_{j-1} > r_j\delta^{-1}$ $(j = 2, \cdots m),$

$$(6.4) \qquad \qquad \delta^2 \deg v_1 > m_1$$

$$(6.5) r_j \deg v_j \ge r_1 \deg v_1 (j = 2, \cdots m).$$

Note that these conditions are stricter than those of lemma 4.5. Define the integer ρ' by

$$\rho' \leq \delta r_1 \deg v_1 < \rho' + 1,$$

whence, by (6.4),

(6.6) $\rho' + 1 > \delta^{-1} r_1 m.$

Define the numbers λ , γ , η by

$$(6.7) \qquad \qquad \lambda = 4(1+\delta)nm^{\frac{1}{2}}$$

$$(6.8) \qquad \qquad \gamma = \frac{1}{2}(m-\lambda)$$

$$\eta = 10^m \delta^{(\frac{1}{2})^m}$$

Note that (6.2) is then equivalent to

$$\eta < \gamma$$
.

LEMMA 6.10. Suppose that the conditions (6.1)-(6.5) are satisfied, and suppose that $u_1, \cdots u_m \in \mathfrak{T}$ are relatively prime to $v_1, \cdots v_m$ respectively. Then there exists a polynomial

Rational approximation with series

 $O(x_1, \cdots, x_m) \in \mathfrak{T}[x_1, \cdots, x_m]$

of degree at most r_j in x_j , $(j = 1, \dots, m)$, such that

- (i) $\theta\{Q; (t, \cdots, t); r_1, \cdots, r_m\} \ge \gamma \eta;$ (ii) $Q\left(\frac{u_1}{v_1}, \cdots, \frac{u_m}{v_m}\right) \neq 0;$
- (iii) for all

(6.11)
$$Q_{i_1,\cdots,i_m}(x_1,\cdots,x_m) = \frac{\partial^{i_1+\cdots+i_m}}{\partial x_1^{i_1}\cdots\partial x_m^{i_m}}Q,$$

where $i_1, \cdots i_m$ are non-negative integers,

$$Q_{i_1,\cdots,i_m}(t,\cdots,t)$$

is of degree at most ρ' in z.

PROOF. We consider polynomials $W(x_1, \cdots, x_m) \in \mathfrak{T}[x_1, \cdots, x_m]$ of the form

$$W(x_1, \cdots, x_m) = \sum_{d_0=0}^{p'} \sum_{d_1=0}^{r_1} \cdots \sum_{d_m=0}^{r_m} \xi(d_0, d_1, \cdots, d_m) z^{d_0} x_1^{d_1} \cdots x_m^{d_m}$$

Here the total number of coefficients $\xi(d_0, d_1, \cdots, d_m) \in \mathfrak{t}$ is

(6.12) $(\rho'+1)(r_1+1)\cdots(r_m+1), = M$ say.

Denote by $j^{(i)}$, $(i = 1, \dots, D)$, the D sets of integers j_1, \dots, j_m satisfying

$$0 \leq j_1 \leq r_1, \cdots 0 \leq j_m \leq r_m \text{ and } \frac{j_1}{r_1} + \cdots + \frac{j_m}{r_m} \leq \frac{1}{2}(m-\lambda).$$

By a result of Roth, ([1], lemma 8)

(6.13)
$$D \leq 2m^{\frac{1}{2}}\lambda^{-1}(r_1+1)\cdots(r_m+1),$$
$$= 2m^{\frac{1}{2}}\lambda^{-1}(\rho'+1)^{-1}M \text{ by (6.12)}.$$

For $i = 1, \dots D$, put

$$W_{j^{(i)}}(x_1,\cdots,x_m)=\frac{\partial^{j_1+\cdots+j_m}W}{\partial x_1^{j_1}\cdots\partial x_m^{j_m}},$$

where $j^{(i)} = (j_1, \dots, j_m)$. Then, for each such derivative, we form the polynomial

$$W_{j^{(i)}}(x,\cdots x) \in \mathfrak{T}[x],$$

which is of degree at most $(r_1 + \cdots + r_m)$, $\leq mr_1$, in x and, also, of degree at most ρ' in z.

Now, let

$$T_{j^{(\ell)}}(W;x) \in \mathfrak{T}[x]$$

be that element, of order at most n - 1 in x, which satisfies

$$a_0^{mr_1}W_{j^{(i)}}(x,\cdots x)\equiv T_{j^{(i)}}(W;x), \quad \text{mod } f(x).$$

Since $mr_1 \ge \max \{0, (mr_1 - n + 1)\}$, we have, by lemma 5.1,

 $\deg T_{j^{(i)}} \leq \rho' + mr_1 \alpha.$

Hence, for a given $j^{(i)}$, the polynomial $T_{j^{(i)}}(W; x)$ is defined by at most

 $n(\rho' + mr_1\alpha + 1)$

elements of f.

Therefore, for each W, the set $T_{j(0)}(W; x)$, $(i = 1, \dots D)$, is defined by at most

$$Dn(\rho'+mr_1\alpha+1)$$

elements of \mathbf{f} . Obviously these elements are combinations of the $\xi(d_0, d_1, \cdots, d_m)$, the integers, and the known elements of \mathbf{f} involved in f(x). However, they are linear and homogeneous in the unknowns $\xi(d_0, d_1, \cdots, d_m)$ occurring in W. But

$$Dn(\rho' + mr_1\alpha + 1) \leq 2m^{\frac{1}{2}}Mn\lambda^{-1}\left(\frac{\rho' + mr_1\alpha + 1}{\rho' + 1}\right) \text{ by (6.13),}$$
$$\leq \frac{M}{2(1+\delta)}\left(1 + \frac{mr_1\alpha}{\rho' + 1}\right) \text{ by (6.7),}$$
$$< M \text{ by (6.1) and (6.6).}$$

It follows that W may be chosen so that

 $T_{j^{(i)}}(W; x) \equiv 0, \quad \mod f(x) \quad (i = 1, \cdots D).$

Since $a_0 \neq 0$ we then have

 $W_{j^{(i)}}(x, \cdots x) \equiv 0, \mod f(x) \qquad (i = 1, \cdots D)$

and, since f(t) = 0 by definition of f, the derivatives $W_{j(0)}(x_1, \cdots, x_m)$ satisfy

$$W_{j^{(i)}}(t,\cdots t)=0 \qquad (i=1,\cdots D).$$

Hence

$$\theta\{W; t, \cdots t; r_1, \cdots r_m\} \geq \frac{1}{2}(m-\lambda)$$

= γ by (6.8).

Now, also,

$$W(x_1, \cdots x_m) \in \mathfrak{B}_m(\delta r_1 \deg v_1; r_1, \cdots r_m).$$

By lemma 4.5

$$heta\left\{W;\left(\frac{u_1}{v_1},\cdots,\frac{u_m}{u_m}\right);r_1,\cdots,r_m\right\}<\eta$$

where η is defined in (6.9). Hence, there exists non-negative integers k_1, \dots, k_m such that

$$\frac{k_1}{r_1}+\cdots+\frac{k_m}{r_m}<\eta$$

and if

$$Q(x_1,\cdots,x_m)=\frac{\partial^{k_1+\cdots+k_m}W}{\partial x_1^{k_1}\cdots\partial x_m^{k_m}}$$

then

$$Q\left(\frac{u_1}{v_1},\cdots,\frac{u_m}{v_m}\right)\neq 0.$$

Then, by (3.5),

$$\theta\{Q; (t, \cdots t); r_1, \cdots r_m\} \geq \gamma - \eta$$

and so Q satisfies parts (i) and (ii) of the lemma.

It also satisfies part (iii). For both $Q(x_1, \dots, x_m)$ and the derivative Q_{i_1,\dots,i_m} defined in (6.11) are clearly elements of $\mathfrak{T}[x_1,\dots,x_m]$ of degree at most ρ' in z. Then, since t is of negative degree,

$$\deg Q_{i_1,\cdots,i_m}(t,\cdots,t) \leq \rho'.$$

This completes the proof of lemma 6.10.

7. PROOF OF THEOREM 1.1. We suppose that $\nu > 2$ and that the inequality

(7.1)
$$\deg\left(t-\frac{u}{v}\right)<-\nu\deg v$$

has infinitely many solutions $u/v \in \Re$.

We can show (after Gill [2]) that for any integer $\mu \ge 0$ there is at most one solution u/v of (7.1) for which deg $v = \mu$. For suppose that r/s is also a solution, with deg $s = \mu$. Then (7.1) implies

$$\deg (su - rv) < -\nu\mu + \deg s + \deg v = \mu(2 - \nu) \leq 0$$

since $\mu \ge 0$ and $\nu > 2$. But $r, s, u, v \in \mathfrak{T}$ whence $su - rv \in \mathfrak{T}$ and so is identically zero. Since $s, v \ne 0$ this implies that r/s and u/v are identical.

From this it follows that an infinity of solutions of (7.1) implies solutions for which deg v is arbitrarily large. We deduce a contradiction of this.

We first choose m so that

$$m > 4nm^{\frac{1}{2}}$$
, and $2m(m - 4nm^{\frac{1}{2}})^{-1} > \nu$.

If δ is sufficiently small we then have

 $m-4(1+\delta)nm^{\frac{1}{2}}-2\eta<0,$

which is the same as (6.2). We choose δ to satisfy also the inequality (6.1) and further to satisfy

$$\frac{2m(1+2\delta)}{m-4(1+\delta)nm^{\frac{1}{2}}-2\eta} < \nu.$$

This inequality is equivalent to

D. Fenna

(7.2)
$$\frac{m(1+2\delta)}{\gamma-\eta} < \nu$$

Now let u_1/v_1 be a solution of (7.1), with $(u_1, v_1) = 1$, and so that v_1 satisfies (6.4). Let $u_2/v_2, \cdots u_m/v_m$ be further solutions of (7.1) with $(u_i, v_i) = 1$, $(i = 2, \cdots m)$, such that

$$\deg v_j > 2\delta^{-1} \deg v_{j-1} \qquad (j = 2, \cdots m).$$

Now take r_1 to be an integer satisfying

$$r_1 \deg v_1 > 10\delta^{-1} \deg v_m$$

and define $r_2, \cdots r_m$ by

(7.3)
$$\frac{r_1 \operatorname{deg} v_1}{\operatorname{deg} v_j} \leq r_j < 1 + \frac{r_1 \operatorname{deg} v_1}{\operatorname{deg} v_j} \qquad (j = 2, \cdots m).$$

Then (6.5) is satisfied. Also

(7.4)
$$\frac{r_j \deg v_j}{r_1 \deg v_1} < 1 + \frac{\deg v_j}{r_1 \deg v_1} \le 1 + \frac{\deg v_m}{r_1 \deg v_1} < 1 + \frac{\delta}{10} < 1 + \delta.$$

The conditions (6.3) are satisfied, since

$$r_m \geq \frac{r_1 \deg v_1}{\deg v_m} > 10\delta^{-1}$$

and

$$\frac{r_{j-1}}{r_j} > \frac{\deg v_j}{\deg v_{j-1}} \left(1 + \frac{\delta}{10}\right)^{-1} > \delta^{-1}.$$

Now let $Q(x_1, \cdots, x_m) \in \mathfrak{T}[x_1, \cdots, x_m]$ be the polynomial of lemma 6.10.

Since Q is of degree at most r_j in x_j , $(j = 1, \dots, m)$, and is non-zero for $x_i = u_i/v_i$, $(i = 1, \dots, m)$, we have

$$v_1^{r_1}\cdots v_m^{r_m}Q\left(\frac{u_1}{v_1},\cdots,\frac{u_m}{v_m}\right)\in\mathfrak{T},\neq 0.$$

Thus,

(7.5) deg
$$Q\left(\frac{u_1}{v_1}, \cdots, \frac{u_m}{v_m}\right) \ge -(r_1 \deg v_1 + \cdots + r_m \deg v_m) \ge -mr_1(1+\delta) \deg v_1,$$

by (7.4). On the other hand,

$$Q\left(\frac{u_1}{v_1},\cdots,\frac{u_m}{v_m}\right) = \sum_{i_1=0}^{r_1}\cdots\sum_{i_m=0}^{r_m}Q_{i_1,\cdots,i_m}(t,\cdots,t)\cdot\left(\frac{u_1}{v_1}-t\right)^{i_1}\cdots\left(\frac{u_m}{v_m}-t\right)^{i_m}$$

where, by (i) of lemma 6.10, the terms with

$$\frac{i_1}{r_1} + \cdots + \frac{i_m}{r_m} < \gamma - \eta$$

vanish. In every other term we have

$$\deg\left(\left(\frac{u_1}{v_1}-t\right)^{i_1}\cdots\left(\frac{u_m}{v_m}-t\right)^{i_m}\right) < -\nu(i_1 \deg v_1+\cdots+i_m \deg v_m) \\ \leq -\nu r_1(\gamma-\eta) \deg v_1, \text{ by (7.3).}$$

By (iii) of lemma 6.10, it follows that

$$\deg Q\left(\frac{u_1}{v_1}, \cdots, \frac{u_m}{v_m}\right) \leq \rho' - \nu r_1(\gamma - \eta) \deg v_1$$
$$\leq \delta r_1 \deg v_1 - \nu r_1(\gamma - \eta) \deg v_1.$$

Comparing this with (7.5) we have

$$\begin{aligned} & \operatorname{vr}_1(\gamma - \eta) \operatorname{deg} v_1 \leq \delta r_1 \operatorname{deg} v_1 + (1 + \delta) \operatorname{mr}_1 \operatorname{deg} v_1, \\ & < m(1 + 2\delta) r_1 \operatorname{deg} v_1 \end{aligned}$$

since $m \ge 2$. Now deg $v_1 \ne 0$, hence

$$\nu < \frac{m(1+2\delta)}{\gamma-\eta}$$

contrary to (7.2), and the proof is complete.

This work was carried out under the auspices of the U.K. Department of Scientific and Industrial Research, and the guidance of Professor K. Mahler F.R.S., to both of whom the author is indebted.

References

- [1] Roth, K. F., Rational approximations to algebraic numbers. Mathematika, Vol. 2, p. 1.
- [2] Gill, B. P., An analogue for algebraic functions of the Thue-Siegel theorem. Annals of Maths., Ser. 2, Vol. 31, p. 207.
- [3] Mahler, K., On a theorem of Liouville in fields of positive characteristic. Canadian Journal of Maths., Vol. 1, p. 397.

Department of Defence, Canberra.

https://doi.org/10.1017/S1446788700026409 Published online by Cambridge University Press