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The Siegel conjecture on the rational approximation to algebraic numbers
was proved a few years ago by K. F. Roth [1] with the following theorem:

Let a be any algebraic number, not rational. If

h
a

q

has an infinity of solutions in integers h and q (q > 0), then K 5S 2.
This result, which gives a best-possible bound for K, improved on earlier

results of Liouville, Thue, Siegel, and Dyson.
The analogous problem of approximating to algebraic functions, with

degree replacing absolute value, was considered by B. P. Gill [2], who ob-
tained a result corresponding to that of Siegel. In this paper we improve on
Gill's result by proving the analogue of Roth's theorem, so obtaining a
best-possible result.

Let ! denote an arbitrary field of zero characteristic and z an indetermi-
nate. Then the set ® of all formal Laurent series

X = OLtZ* + OL^Z*-1 -\
where

is a field. Further, the sets % = l[z] and 9t = l(z) form a subring and a sub-
field of ® respectively, with

ft 2 812 a:-
If x e S then we denote by deg x the degree of x, i.e.

deg x = — oo if x = 0,
= d if xd is the leading non-zero coefficient in x ^ 0.

The »-dimensional space of all vectors (xlt xit • • • xn), where the xk c ®, is
denoted by tyn.

We prove the following theorem.
107
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108 D. Fenna [2]

THEOREM 1.1. Let < e t be algebraic over £ but not in 9t. If

(1.2) deg yt - ^J < —v deg v

for infinitely many u\v e 9t, then v ^ 2.
[Note. It is taken throughout this paper that, in such a representation u/v
of an element of 9t, the u, v are relatively prime elements of %.~\

This result is clearly best-possible for v. For if d is a positive integer there
exists a non-trivial set ad, ad_1, • • • a,, of d + 1 elements of ! such that, if v
is the polynomial

<*•*& + *d-xZ?-1 -\ h <*o.
then the coefficients of z~* in the product vt vanish for i = 1, • • • <J. Putting
« equal to the polynomial part of vt we -then have

deg (vt — u) < —i ^ — deg w,
i.e.

deg \t j < —2 deg t>.

Since £ is not rational it follows that, by allowing d to range over all positive
integers, we obtain an infinity of distinct solutions ujv of (1.2) with v = 2.

For the case where the ground field I is of positive characteristic p Mahler
[3] has shown that the equivalent bound for v is v ^ p, which is again best-
possible.

In the proof of our theorem certain details are omitted because of the
essential similarity between our case and that of Roth.

2. Let xx, • • • xm be m indeterminates and let

F = F(x1, • • •*„)« «[*!, • • • xm],

i.e. F is a sum of terms of the form

where the a = a(ilt • • • im) e ®. We extend the notation deg x defined above
for x e ft to include

d e g F = —oo if F= 0;
= max {deg a(ilt • • • *J} if F 0 0,

where the maximum is taken over all non-zero a. Clearly this is consistent
with our earlier notation, since it merely means that z***F is the largest
power of z that occurs with non-zero coefficient in F. If F itself is in ® then
the two notations agree.

Obviously, if
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[3] Rational approximation with series 109

then
deg (F ± F') ̂  max {deg F, deg F'}

and
deg (FF') ̂  deg F + deg F'.

We consider differential operators of the form

A =

and call (»! + ••• + *m) the order of A.
For a positive integer A, let

Mxi> • ••*«)« «[*i. •••*»] (0 = 0, 1, • • • A - l ) ,

and let /4a, (a = 0, 1, • • • h — 1), be operators on xx, • • • xm of order at
most a. Then we call the determinant

G(X1> • • • * « ) = {^»4>fi(Xl' ' ' " Xm)}a,ff-0,l,-h~-l

a generalized Wronskian of <j>0, <f>lt • • • <^h_1.

LEMMA 2.1. The necessary and sufficient condition that

' • • • *J «*[*!. •••*-] o? = o, l, • • • A - i)
are linearly independent over % is that at least one of their generalized
Wronskians is non-zero.

LEMMA 2.2. Let R(x1, • • • xm) be a polynomial in m 2^ 2 variables, with
coefficients in %, which is not identically zero. Let R be of degree at most r,
in Xj, (j = 1, • • • m). Then there exists an integer h satisfying

1 ^ h ^ rm + 1

and there exist differential operators JA, (A = 0, 1, • • • h — 1), on the
variables xlt • • • xm_lt of order at most A, such that, if

\,/»=<>, l , " - f t - l

then (i) F has coefficients in £ and is not identically zero;

(ii) Ffa. •••xm) = U(xlt • • • xm_x) • V(xm),

where U and V have coefficients in %, U is of degree at most hrt in x},
(/ = 1, • • • m — 1), and V is of degree at most hrm in xm.

The proofs of these two lemmas are omitted as they are very similar to
those of Roth.

With F, h and R as defined above we prove the following inequality.

LEMMA 2.3. deg F 5j h- deg R

PROOF. Put
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Now R is the sum of terms of the form

«(*i.-- - s m K l •••<"••
Differentiation with respect to any x1, • • • xm of such a term will not in-
crease the degree of the coefficient a{sx, • • • sm). Hence

deg RK/l ^ deg R (A, /z = 0, 1, • • • h - 1).

On the other hand, F is the sum of h! terms, each of which is a product of
the form

It follows that

deg F ^ h • max {deg RK^,

where the maximum is taken over X, fi = 0, 1, • • • h — 1. Hence the asser-
tion.

3. Let P(xlt • • • xm) e ft[xlt • • • xm] and, further, let alt • • • am e $t and
let rx, • • • rm be any positive numbers.

Definition 3.1.
The index

of P at the point (alt • • • am) e $ m relative to rlt • • • rm is put equal to
+ oo if P = 0, otherwise

'1 '

for all sets of non-negative integers j x , • • • jm for which

The index then has the following properties [Q{xlt • • • xm) being a second
polynomial in xr, • • • xm, and the indices being evaluated at (alt • • • am)
relative to rx, - • • rm].

(3.2) 0{P} ^ 0, = 0 if and only if P(ai, • • • aj =£ 0.

(3.3)
nlQ)

(3.5) If

Q = gjjb.. . . g ^ ^ f ° r S O m e *1>
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then

'1

Also, if P is actually a function of less than m of the variables xx, • • • xm,
say P is independent of xm, then

6{P; K , • • • am); rx, • • • rm) = 0{P; (o1, • • • a^); rx. • • • rm_J.

Hence, in particular, if P is a function of xx, • • • xm_x only and Q is a func-
tion of xm only, then, from (3.4),

(a1( • • • a ^ ) ; rlt • • • rm_J + 6{Q; (aj; rm}.
4. Let r1, • • • rm be m positive integers and let p be a non-negative num-

ber. We denote by

the set of all polynomials R(x1, • • • xm) e %[xlt • • • xm] which satisfy the
conditions

(i) # # 0 ;
(ii) R is of degree at most r} in xjt (j = 1, • • • m);

(iii) deg R 5j p.
Let vx, • • • vme% be of positive degree. We put

rm} = sup d[R; (-1, • • - ^ ) ; rlf • • • r j

where the supremum is taken over all R e S3m and over ux, • • • um e % satis-
fying (uit vt) = 1, (i == 1, • • • m).

We now obtain an upper bound for &m, by induction with respect to m.
For m = 1 we have the following inequality.

LEMMA 4.1.

Proof. By the definition of B, the polynomial i?(xx) is divisible by
(xx — ujv1)r1 • 9{R}. Applying Gauss's theorem on factorization, we have

R(Xl) = (vlXl - u^WQixJ

where Q{xx) e j ^ ] , The leading coefficient of R is therefore divisible by
D,'' ' '!*), whence

r^R} deg vx ^ deg R ^ p,

and the assertion follows.

LEMMA 4.2. Let w ^ 2 be an integer and let rx, • • • rm be positive integers
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satisfying

rm > lOd-1, r,_! > r^-1 for j = 2, • • • m,

where 0 < d < 1. Also, let vt, • • • vm e % be of positive degree. Then

(4.3) 0m{P; »!,-•• «m; rlf • • • rm} ^ 2 • max (<P + 0i + 6i)

where the maximum is taken over all integers h satisfying

1 ^ h ^ rm + 1,
and where

(4.4) 0 = ejhp; vm, hrm} + em^{hP; vv • • • w ^ ; Ar^ • • • hrm_^.

We again omit the proof because of its similarity to that of Roth. Note
that if

F(x1,--;xm) = U(x1,--;um_1)-V(xn)

is the function defined in lemma 2.2 then

max (deg U, deg V) ^ deg F 5S h deg R 5S hp,

by lemma 2.3. It follows from this and lemma 2.2 that

U(xlt • • • x^j) e ^m^(hp; Arlf • • • hrm_x)
and

VixJeXtfp-.hrJ.
We now restrict d, v1, • • • vm, rx, • • • rm, give p a particular value, and

obtain an explicit upper bound for Qm{p\ vx,---vm;rx,---r^ in terms
of m and 6.

LEMMA 4.5. Let m be a positive integer and let <5 satisfy

0 < d < m-1.

Let rx, • • • rm be positive integers satisfying

rm > lOd-1, rj_1 > rjd-1 for / = 2, • • • m.

Let vlt • • • vme% have positive degree and satisfy

(4.6) rj deg v} ^ rx deg vx (j = 2, • • • m).

Then
6>m{«5r1 deg »!; w1# • • • wm; r l f • • • r j

PROOF. If » I = 1 then, by lemma 4.1,

«!{*-! deg »x; Vl; r j ^ ^ ^ ^ = 5 < 10<5i
rx deg »!

Assume, now, that m ^ 2 and that the lemma holds if *w is replaced by
m — 1. Note that the hypothesis remains valid if we replace w'by m — 1
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and rt by hrjt {j = 1, • • • m — 1). Now, by lemma 4.1,

O^dh^ deg vx; vm; Arm}

by (4.6). Hence, if <P is the sum defined in (4.4), we have, by the inductive
hypothesis,

0 <d+ 10"1-1 • d*"*-1 * '"1

Now the hypotheses of lemma 4.2 are less stringent than those of lemma 4.5.
Hence lemma 4.2 is applicable and, by (4.3),

vt; vlt • • • vm; rlt • • • rm}

2{2 • Ky-M*"-1 + 2i
(2 2i 11

2 1 h —
UO 10 102)

1 h
UO 10 102

< 10m<5*m.

Thus lemma 4.5 holds for m and the induction is complete.

5. LEMMA 5.1. Let n ^ 2 and let

/(a;) = aoa;n + a^"- 1 H h «„, where a0 =£ 0,
and

g(«) = box> + b^-1 -\ b,

be two elements of % [a], of degree a and /? in z respectively. Suppose that
d is a non-negative integer such that

d^s — n + 1

and let h(x) e £[a;] be of degree at most On — 1) in x and satisfy

a*gOx) = h(x), modf(x).

Then h(x) is of degree at most (/? -)- ̂ «) in z.

PROOF. If s ^ n — 1 the lemma is trivial. We complete the proof by
induction on s.

Assume that s }z n, whence d 2g 1, and assume that the lemma holds for
(s — 1) instead of s.

Put
g*(x) = aog(x) - box-»f(x).

Then g*(x) is of degrees at most (s — 1) in a; and at most (fi + a) in z. Also

a^g^x) = a*g(x) = *(*), mod f(x).

Then, by the inductive hypothesis, h(x) is of degree at most

(0 + a) + (d - l)a = fi + dx
in z.
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6. Let t = t (z) e ® be algebraic, of degree at least 2, over %, and suppose
that the inequality (1.2) is satisfied by infinitely many u/ve^R. Then we
wish to show that v sS 2.

We may assume that t is of negative degree in z. For if not, let t' be the
polynomial part of t, and put t* — t — V. Then t* is also algebraic and of the
same degree as t, and is of negative degree in z. Further u/v satisfies (1.2) if
and only if

deg It* 1 < v deg v,

where
«' = « - » / ' « %.

Now t is the root of some irreducible polynomial

f(x) = aox" + ^ x " - 1 H \-ane %[x],

where a0 ̂  0, n ^ 2. Let f(x) be of degree a ^ 0 in z.
We now prove our final lemma.
Let m b e a positive integer, and let 6, rlt • • • rm, vlt • • • vm satisfy the

following conditions

(6.1) 0 < d < min (nr1, or1),

(6.2) 10m<5*~ + 2(1 + d)nmi < \m,

(6.3) rm > lOd-1, r,_x > r,<5~i (j = 2, • • • w),

(6.4) 32 deg wx > w,

(6.5) rt deg ŵ  ^ rx deg vx (/ = 2, • • • w).

Note that these conditions are stricter than those of lemma 4.5. Define the
integer p by

p ^ drx deg vx < p + 1,
whence, by (6.4),

(6.6) p' + 1 > d-lrxm.

Define the numbers X, y, r\ by

(6.7) A = 4(1 + d)nmi

(6.8) y = \(m - X)

(6.9) r\ = 10™ a*"

Note that (6.2). is then equivalent to

n<7-
LEMMA 6.10. Suppose that the conditions (6.1) —(6.5) are satisfied, and

suppose that ult---ume% are relatively prime to vlt • • • vm respectively.
Then there exists a polynomial
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of degree at most rs in. xf, (j = 1, • • • tn), such that

(iii) for all

where ix, • • • im are non-negative integers,

Q<v...ijt,---t)

is of degree at most p in z.

PROOF. We consider polynomials W(x1, • • • xm) e %[xt, • • • xm] of the
form

W(x1,---xJ = Z I • • • 2 f (d0, dv--- dj^xf* • • • <- .

Here the total number of coefficients f (d0, dlt • • • dm) e ! is

(6.12) (P> + l)(rt +l).-.(rm + l), = M say.

Denote by /•", (» = 1, • • • D), the D sets of integers j \ , • • • jm satisfying

0 ^ j \ g rlt • • • 0 ^ j n ^ rn and ^ + • • • + ^ ^ ^(m - X).
rl rm

By a result of Roth, ([1], lemma 8)

n u)
 D ^ amU-ifa + 1) • • • (rm + 1),

1 ' ; = 2mik-1(p' + \)~*M by (6.12).

For * = 1, • • • D, put

where ; ( " = (/lt • • • /m). Then, for each such derivative, we form the poly-
nomial

which is of degree at most (rx + * • • + rm)> ^ mri> m * a n d , also, of degree
at most p in z.

Now, let
TiW(W;x)e%[x]

be that element, of order at most n — 1 in x, which satisfies

a?TiWiU)(x, •••*)== 7>,(JF; *), mod f(x).
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Since mrx ̂  max {0, (mrx — n + 1)}, we have, by lemma 5.1,

deg TjW <: p + mrxv..

Hence, for a given j ( < ) , the polynomial TjU>(W;x) is defined by at most

»(/>' + mrx<x. + 1)
elements of f.
Therefore, for each W, the set TjU,(W; x), (i = 1, • • • D), is defined by at
most

Dn{p + mrxa. + 1)

elements of !. Obviously these elements are combinations of the £{d0, dv • • •
dm), the integers, and the known elements of I involved in /(a;). However, they
are linear and homogeneous in the unknowns £(d0, dx, • • • dm) occurring in
W. But

Dn{p' + mrxv. + 1) ̂  iwSMnX^ (P + ™l(t + ^ by (6.13),
\ o + 1 /p +

M
~ 2(1 + d)
< M by (6.1) and (6.6).

It follows that W may be chosen so that

7>(W; x) = 0, mod f(z) (» = 1, • • • D).

Since « 0 # 0 w e then have

Wtm{x, •••x) = 0, mod/ (*) (» = 1, • • • D)

and, since f(t) = 0 by definition of /, the derivatives WjW(xx, • • • xm) satisfy

WiW{t, •••t) = 0 (i=l,---D).

Hence
B{W;t,---t;rx,---rm}^\{m-X)

= y by (6.8).
Now, also,

W(xx, •••xje %m(drx deg vx; rx, • • • rm).

By lemma 4.5

where r\ is defined in (6.9). Hence, there exists non-negative integers
kx, • • • km such that
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and if

then

Then, by (3.5),

and so Q satisfies parts (i) and (ii) of the lemma.
It also satisfies part (iii). For both Q (xt, • • • xm) and the derivative

Qi ...t defined in (6.11) are clearly elements of %\_x1, • • • xm~\ of degree at
most p in z. Then, since t is of negative degree,

This completes the proof of lemma 6.10.

7. PROOF OF THEOREM 1.1. We suppose that v > 2 and that the inequality

(7.1) deg (« - •£) < - v deg »

has infinitely many solutions u/v e fR.
We can show (after Gill [2]) that for any integer /j, ^ 0 there is at most one

solution ujv of (7.1) for which degu = /i. For suppose that rjs is also a
solution, with deg s = fi. Then (7.1) implies

deg (su — rv) < — vfi -\- deg s + deg v = [x(2 — v) ^ 0

since ft S; 0 and v > 2. But r , j , « , » f J whence s« — rv e £ and so is
identically zero. Since s, v ^ 0 this implies that r/s and «/w are identical.

From this it follows that an infinity of solutions of (7.1) implies solutions
for which deg v is arbitrarily large. We deduce a contradiction of this.

We first choose m so that

m > 4nwi, and 2m(m — inmt)'1 > v.

If <5 is sufficiently small we then have

m — 4(1 + 8)nmi — 2J? < 0,

which is the same as (6.2). We choose 8 to satisfy also the inequality (6.1)
and further to satisfy

2w(l + 2<3)
m — 4(1 + 8)nmi — 2rj<V'

This inequality is equivalent to
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(7.2) < "< 1 + » > < , .
y — v

Now let ujv! be a solution of (7.1), with (%, vx) = 1, and so that vt satisfies
(6.4). Let u2/v2, • • • um\vm be further solutions of (7.1) with (uit vt) = 1,
(* = 2, • • • m), such that

deg vt > 26-1 deg vf_x (j = 2, • • • m).

Now take rx to be an integer satisfying

rx deg v1 > lOd"1 deg vn,

and define r2, • • • rm by

7.3 ' S * ^ r, < 1 + * S ' y - 2, • • • m).
d e g ^ d e g ^

Then (6.5) is satisfied. Also

(7.4) < l +
g ^ 10

The conditions (6.3) are satisfied, since

and

r, degw^V 10/

Now let Q(xx, • • • xm) e %[xt, • • • xm] be the polynomial of lemma 6.10.
Since Q is of degree at most rf in x}, (j = 1, • • • m), and is non-zero for

xi ~ ui\vi> ( » = ! , • • • m), we h a v e

Thus,

(7.5)

by (7.4). On the other hand,

where, by (i) of lemma 6.10, the terms with
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vanish. In every other term we have

d e g ( ( — - t) l- • • fe- t) " I < -v(i1degv1 + ••• + imdegvm)

^ -Wi(y - n) degfj, by (7.3).

By (iii) of lemma 6.10, it follows that

—, - I ^ p - vri(y - n) deg v1

vl vm>

< drt deg vx — vrx{y — r\) deg vx.

Comparing this with (7.5) we have

"My — n) deg vx ^ drx deg vt + (1 + b)mrx deg vx,
< m{\ + 2d)rxdegvx

since m ^ 2. Now deg t^ 9̂  0, hence

m{\ + 26)
v <

Y — n
contrary to (7.2), and the proof is complete.

This work was carried out under the auspices of the U.K. Department of
Scientific and Industrial Research, and the guidance of Professor K. Mahler
F.R.S., to both of whom the author is indebted.
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