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Abstract

Generalized local mean normal measures µz, z ∈ R
d , are introduced for a nonstationary

process X of convex particles. For processes with strictly convex particles it is then shown
that X is weakly stationary and weakly isotropic if and only if µz is rotation invariant
for all z ∈ R

d . The paper is concluded by extending this result to processes of cylinders,
generalizing Theorem 1 of Schneider (2003).
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1. Introduction

For stationary processes of convex particles Weil [9], [10] introduced mean normal measures
as measure-valued parameters. They can be used to define associated convex bodies and
thus allow the application of convex geometric tools to analyze properties of the underlying
process—an idea which goes back to Matheron [4], who studied stationary processes of hyper-
planes via their associated zonoids. A detailed account of the stationary case can be found in
[8, Section 4.5] (also note the references given in [8, p. 178ff]). Recently, Schneider [6]
considered local direction measures for nonstationary processes of flats and proved that a flat
process is weakly stationary and weakly isotropic if and only if its local direction measures
are rotation invariant. In the present paper we prove a similar result for processes with strictly
convex particles and a generalization for cylinder processes which includes and extends both
special cases.

In Sections 2 and 3 we introduce some basic notation and a generalization of local mean
normal measures (see [2]). Section 4 contains the result that processes with strictly convex
particles are stationary and isotropic if and only if all their generalized local mean normal
measures are rotation invariant. Finally, in Section 5 a more general result for cylinder processes
is presented that includes both the main theorem from Section 4 and Theorem 1 of [6]. The
appendices collect some well-known facts about convex particles and some auxiliary results
which are needed throughout the paper.

2. Preliminaries and basic notation

Let d ∈ N \ {0}. Throughout this paper we will work in d-dimensional Euclidean space R
d ,

with Bd being the unit ball, Sd−1 the unit sphere with spherical Lebesgue measure ωd−1, and
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λd the d-dimensional Lebesgue measure. For a topological space S, we will denote the Borel
σ -algebra by B(S) and the support of any Borel measure ν on S by supp ν. Furthermore, for
any probability measure P, let EP denote the expected value with respect to P.

For k ∈ {0, . . . , d}, the k-dimensional Hausdorff measure will be denoted by Hk . Further-
more, let Ld

k and Ed
k be the Grassmannians of k-dimensional linear and affine subspaces of

R
d , respectively. In addition, let SOd and Gd denote the spaces of all rotations and all rigid

motions of R
d , respectively. We denote by L⊥ the orthogonal complement of a linear subspace

L and we denote by λL the Lebesgue measure on L. By id we denote the identity map.
The space F ′ of all nonempty closed subsets of R

d shall, as usual, be endowed with the Fell
topology and the σ -algebra B(F ′). The subspace K ′ ⊆ F ′ of all nonempty compact convex
sets, i.e. convex bodies, and the subset K0 ⊆ K ′ of all convex bodies with Steiner point (see
Appendix A) in the origin shall be equipped with the Hausdorff metric dH and the respective
Borel σ -algebras. A particle process is called (weakly) stationary if its distribution (intensity
measure) is invariant under translations and (weakly) isotropic if its distribution (intensity
measure) is invariant under rotations. All basic concepts from stochastic geometry (e.g. point
processes, intensity measures, or Campbell’s theorem) can be found in [8].

For any K ∈ K ′, we denote its affine hull, interior, boundary, and relative boundary by
aff K , int K , bd K , and rel bd K , respectively. As usual, the dimension dim K of a convex
body K is defined as the dimension of its affine hull. Furthermore, K is called strictly convex if
its boundary does not contain any segment. If K is a d-dimensional convex body and x ∈ bd K ,
a regular boundary point of K , by definition there exists a unique outer unit normal vector of
K at x; let this vector be denoted by σK(x) and let reg K ⊆ bd K be the set of all regular
boundary points of K . Analogously, if K is a lower-dimensional convex body and x is a point
on the relative boundary of K with unique outer unit normal vector in aff K , let the latter be
denoted by σ̃K(x). Finally, let �d−1(K, ·) and Cd−1(K, ·) = �d−1(K, · × Sd−1) respectively
denote the (d −1)th support measure and the (d −1)th curvature measure of K . If dim K = d,
for B ∈ B(Rd) and A ∈ B(Sd−1), we have �d−1(K, B × A) = Hd−1(bd K ∩ B ∩ σ−1

K (A)),
i.e. �d−1(K, B × A) is equal to the (d − 1)-dimensional Hausdorff measure of all regular
boundary points of K that lie in B and have outer unit normal vector in A. For all basic notions
from convex geometry, we refer the reader to [5]. Some definitions and results important for
this paper are also given in Appendix A.

In Sections 3 and 4 the measurability of the mappings we use follows from respective
theorems in [5], [7], and [8], and Lemma B.2. In Section 5 the measurability is implied by an
auxiliary result that we prove in Appendix B.

3. Generalized local mean normal measures

In the following two sections X will always be a particle process on K ′ with nontrivial
locally finite intensity measure �. Furthermore, we assume that � is of the form

�(A) =
∫

K0

∫
Rd

1A(K + x)f (x)λd(dx) P0(dK), A ∈ B(K ′). (3.1)

Here, f : R
d → [0, ∞) denotes a continuous function and P0 denotes a probability measure

on K0. Note that both f and P0 are uniquely determined by �; see [1, p. 173]). As usual, we
call f the intensity function of X. The mapping

� : K ′ → R
d × K0,

K 	→ (K − s(K), s(K)),
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is a homeomorphism; see [8, p. 121]. Thus, �(X) is a point process on R
d × K0, a so-called

‘germ-grain-process’ (see [8, Section 4.3]), and the distribution of the typical grain is given
by P0. Therefore, any random closed set Z with distribution P0 will be called the typical
particle of X and we will refer to P0 as the distribution of the typical particle of X. If the latter
is rotation invariant we call the typical particle of X isotropic.

Let z ∈ R
d , A ∈ B(Sd−1), and A ∈ B(K0). We define a set function µz : B(Sd−1) ×

B(K0) → [0, ∞) by

µz(A, A) := EP0 1A(K)

∫
Rd

f (z − x)�d−1(K, dx × A).

Let A ∈ B(Sd−1) and B ∈ B(Rd) be bounded. In the proof of Theorem 5.1, given in Section 5,
it is shown that

E
∑
K∈X

Hd−1(B ∩ σ−1
K (A)) =

∫
Rd

1B(z)µz(A, K0)λd(dz).

As a Borel measure on Sd−1, the left-hand side can (after normalization) be interpreted as the
distribution of the outer unit normal vectors of the particles of X at boundary points in B; see
[8, p. 157]. LettingB shrink to z yields a normalization ofµz(·, K0) that can be interpreted as the
distribution of the outer unit normal vectors of the particles of X at z whenever µz(S

d−1, K0) >

0. For this reason, µz(·, K0) was called the local mean normal measure of X at z in [2]. Now
let A ∈ B(K0) such that P0(A) > 0. Then XA := �−1({(x, K) ∈ �(X) | K ∈ A}) is a
nonstationary process of convex particles and its local mean normal measure is (up to a constant)
given by µz(·, A). Therefore, we call µz the generalized local mean normal measure of X at
z. Let us additionally assume that X is Poisson and let ZA be the Boolean model generated by
XA. In this case µz also has another interpretation. For any z ∈ R

d , the volume density p̄(z) of
ZA at z is defined as the probability that z ∈ ZA. Furthermore, let �+

d−1 denote the extension
of �d−1 to the extended convex ring; see [3, Section 3] for details. From Theorem 4.11 of [3]
we find that, for arbitrary A ∈ B(Sd−1), the Borel measure

E �+
d−1(ZA, · × A)

on R
d is absolutely continuous with respect to λd with density

z 	→ 1 − p̄(z)

P0(A)
µz(A, A).

Hence, if µz(S
d−1, A) > 0 a normalization of µz(·, A) can be interpreted as the distribution

of the normal vectors of ZA at z.
Some important properties of µz are summarized in the following theorem.

Theorem 3.1. Let X be a particle process with intensity measure as in (3.1), let z ∈ R
d , and

let µz be as given above. Then the set function

µz : B(Sd−1) × B(K0) → [0, ∞), (A, A) 	→ µz(A, A),

can be extended to a measure on B(Sd−1) ⊗ B(K0). It is uniquely determined by X and, for
λd -almost all z ∈ R

d , it is finite.

Proof. The assertions follow immediately from Theorem 5.1, below.

Note that µz(·, A) is not necessarily an even measure.
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4. A characterization of weak stationarity and weak isotropy

Let X be a particle process with intensity measure as in (3.1). In addition, assume that
some K ∈ supp P0 are strictly convex. Our main result in this section shows that in this case
X is weakly stationary and weakly isotropic if and only if the generalized local mean normal
measure µz is rotation invariant for every z ∈ R

d . This transfers a similar result by Schneider
for processes of k-flats (see [6, Theorem 1]) to processes of convex particles. However, we start
by characterizing isotropy of the typical particle of X and weak stationarity of X, respectively,
by invariance properties of µz. Both proofs contain ideas that are vital for the derivation of the
main theorem.

Let X be a particle process with intensity measure as in (3.1). We say that X satisfies
condition (A) if a typical particle of X is almost surely (d − 1)- or d-dimensional and we say
that X satisfies condition (B) if there exists a strictly convex K0 ∈ K0 such that, for all ε > 0,
we have

P0({K ∈ K0 | dH(K, K0) < ε}) > 0,

i.e. there exists a strictly convex K0 ∈ supp P0.

Example. Let d = 2. For n ∈ N, let R2n denote the regular polytope with 2n + 2 vertices, all
of which are assumed to be lying on the unit circle. Let X be a particle process with intensity
measure as in (3.1) and typical particle distribution P0 given by

P0 =
∞∑

n=1

1

2n
δR2n .

Here, for K ∈ K0, δK denotes the Dirac measure concentrated on K . Then X satisfies condition
(B) with K0 = B2 even though its typical particle is almost surely a polytope. Hence, condition
(B) does not impose any regularity properties on the typical particle of X. Obviously, similar
examples can be given for the case in which d > 2.

For any rotation ϑ ∈ SOd , let ϑ also denote the mapping K 	→ ϑK from K ′ to K ′.

Theorem 4.1. Let X be a particle process with intensity measure as in (3.1). Furthermore, we
assume that X satisfies condition (A). Then the typical particle of X is isotropic if and only if

µz(S
d−1, A) = Eϑ ◦ P0 1A(K)

∫
Rd

f (z − x)Cd−1(K, dx) (4.1)

for all z ∈ R
d , A ∈ B(K0), and ϑ ∈ SOd .

Proof. For d = 1, the theorem is trivial; thus, let d ≥ 2. Obviously, (4.1) holds if P0 is
rotation invariant. Therefore, we assume that (4.1) holds. For all z ∈ R

d , A ∈ B(K0), and
ϑ ∈ SOd we then have

µz(S
d−1, A) = EP0 1A(K)

∫
Rd

f (z − x)Cd−1(K, dx)

= Eϑ ◦ P0 1A(K)

∫
Rd

f (z − x)Cd−1(K, dx) (by (4.1))

= Eϑ ◦ P0 1A(K)

∫
Rd

f (z − ϑx)Cd−1(ϑ
−1K, dx)

= EP0 1ϑ−1A(K)

∫
Rd

f (z − ϑx)Cd−1(K, dx).
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For the third equality we used the rotation covariance of Cd−1. For all ϑ ∈ SOd and
A ∈ B(K0), this implies that P0(A) = 0 if and only if P0(ϑA) = 0. Otherwise, without
loss of generality, there would exist a set A ∈ B(K0) with P0(A) > 0 and P0(ϑA) =
0. Let K(n)

0 := {K ∈ K0 | dim K ∈ {d − 1, d}, K ⊆ nBd}. We choose n ∈ N such that
P0(A ∩ K(n)

0 ) > 0. Using Lemma A.2 it is then easy to obtain a contradiction to (4.1). Hence,
for all ϑ ∈ SOd , there exists a measurable function ηϑ : K0 → [0, ∞) such that

EP0 g(K) = Eϑ ◦ P0 g(K)ηϑ(K) = EP0 g(ϑK)ηϑ(ϑK) (4.2)

for any measurable mapping g : K → [0, ∞). Let there exist an r(n) ≥ 0, n ∈ N, as in
Lemma A.2, i.e. such that∫

Rd

∫
r(n)Bd

f (z − ϑx)λd(dz)Cd−1(K, dx) > 0

for all K ∈ K(n)
0 . Repeating the calculation from the beginning of the proof, we obtain, from

(4.1) and (4.2),

EP0 1ϑ−1A(K)

∫
Rd

∫
r(n)Bd

f (z − ϑx)λd(dz)Cd−1(K, dx)

= EP0 1ϑ−1A(K)

∫
Rd

∫
r(n)Bd

f (z − ϑx)λd(dz)Cd−1(K, dx)ηϑ(ϑK)

for all A ∈ B(K0). Thus, for P0-almost all K ∈ K(n)
0 , we have∫

Rd

∫
r(n)Bd

f (z − ϑx)λd(dz)Cd−1(K, dx)

=
∫

Rd

∫
r(n)Bd

f (z − ϑx)λd(dz)Cd−1(K, dx)ηϑ(ϑK),

which implies that ηϑ(ϑK) = 1. Letting n tend to infinity we obtain ηϑ(ϑK) = 1 for P0-almost
all K ∈ K0. Hence, P0 is rotation invariant.

In the proof of Theorem 4.1 we do not have to apply Lemma A.2 if the intensity function f

is strictly positive. In this case the following result holds.

Corollary 4.1. Let X be a particle process with intensity measure as in (3.1). Furthermore,
we assume that X satisfies condition (A) and that its intensity function is strictly positive. Then
the typical particle of X is isotropic if and only if there exists a z ∈ R

d such that (4.1) holds
for all A ∈ B(K0) and ϑ ∈ SOd .

Proof. The above result follows directly from the proof of Theorem 4.1.

The stationarity of X can be characterized in a similar way.

Theorem 4.2. Let d ≥ 2 and let X be a particle process with intensity measure as in (3.1).
Furthermore, we assume that X satisfies condition (B). Then X is weakly stationary if and only
if

EP0 1A(K)

∫
Rd

f (z − ϑx)�d−1(K, dx × A) = µz(A, A) (4.3)

for all z ∈ R
d , A ∈ B(Sd−1), A ∈ B(K0), and ϑ ∈ SOd .
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Example. Before we proceed with the proof of Theorem 4.2 let us first consider the case in
which d = 1. Here id is the only element of SO1. Thus, any particle process on R

1 satisfies
(4.3) and Theorem 4.2 does not hold. An obvious analogous characterization is that X is weakly
stationary if and only if

EP0 1A(K)

∫
Rd

f (z + x)�d−1(K, dx × A) = µz(A, A)

for all z ∈ R, A ∈ B(S0), and A ∈ B(K0). Unfortunately, we can find the following
counterexample. Let X be a particle process on R with the property that its typical particle is
almost surely a line segment (compact interval) [−a, a] for some a ∈ (0, ∞) and its intensity
function f is a nontrivial, nonnegative function of periodicity 2a. In this case the last equation
holds for all z ∈ R, A ∈ B(S0), and A ∈ B(K0) if and only if

1A(−1)f (z + a) + 1A(1)f (z − a) = 1A(1)f (z + a) + 1A(−1)f (z − a)

for all A ∈ B(S0). This is true by the periodicity of f , but X is not necessarily weakly
stationary. Also note that

µz(−A, −A) = µz(A, A)

for all z ∈ R
1, A ∈ B(S0), and A ∈ B(K0); see Theorem 4.4, below.

Proof of Theorem 4.2. If X is weakly stationary, i.e. f ≡ γ > 0, (4.3) obviously holds for
all z ∈ R

d . Therefore, we assume that (4.3) holds. Written out, (4.3) means that

EP0 1A(K)

∫
Rd×Sd−1

f (z − ϑx) 1A(u)�d−1(K, dx × du)

= EP0 1A(K)

∫
Rd×Sd−1

f (z − x) 1A(u)�d−1(K, dx × du)

for all z ∈ R
d , A ∈ B(K0), A ∈ B(Sd−1), and ϑ ∈ SOd . By the usual arguments from

measure and integration theory this implies that, for any measurable function g : Sd−1 →
[0, ∞),

EP0 1A(K)

∫
Rd×Sd−1

f (z − ϑx)g(u)�d−1(K, dx × du)

= EP0 1A(K)

∫
Rd×Sd−1

f (z − x)g(u)�d−1(K, dx × du).

Let g : Sd−1 → [0, ∞) be a continuous (and hence bounded) function. Since the above identity
holds for all A ∈ B(K0) and since, by weak continuity, the mapping

K 	→
∫

Rd×Sd−1
f (z − ϑx)g(u)�d−1(K, dx × du)

is continuous for all ϑ ∈ SOd , we have, for all K ∈ supp P0, z ∈ R
d , and all ϑ ∈ SOd ,∫

Rd

f (z − ϑx)g(u)�d−1(K, dx × du) =
∫

Rd

f (z − x)g(u)�d−1(K, dx × du).

Since there exists a K ∈ supp P0 that is strictly convex, the assertion follows from Lemma A.1
and Theorem A.1.
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For Poisson processes this immediately yields the following corollary.

Corollary 4.2. Let d ≥ 2 and X be a Poisson process with intensity measure as in (3.1).
Furthermore, we assume that X satisfies condition (B). Then X is stationary if and only if (4.3)
holds for all z ∈ R

d , A ∈ B(Sd−1), A ∈ B(K0), and ϑ ∈ SOd .

For the case in which d = 2, the following more general results hold.

Theorem 4.3. Let d = 2 and X be a particle process with intensity measure as in (3.1).
Furthermore, we assume that the typical particle of X is almost surely two-dimensional. Then
X is weakly stationary if and only if (4.3) holds for all z ∈ R

2, A ∈ B(S1), A ∈ B(K0), and
ϑ ∈ SO1.

Corollary 4.3. Let d = 2 and X be a Poisson process with intensity measure as in (3.1).
Furthermore, we assume that the typical particle of X is almost surely two-dimensional. Then
X is stationary if and only if (4.3) holds for all z ∈ R

2, A ∈ B(S1), A ∈ B(K0), and ϑ ∈ SO2.

Proof of Theorem 4.3. From the proof of Theorem 4.2 it is obvious that we need only
consider a process X where each convex body K ∈ supp P0 has the following property. Each
x ∈ reg K lies in the relative interior of a line segment S ⊆ bd K . Thus, let x0 ∈ reg K be a
regular boundary point and let S ⊆ bd K be the line segment of maximal length with x0 ∈ S.
Furthermore, let u0 ∈ Sd−1 be the outer normal vector of K at x0. Arguing as in the proof of
Theorem 4.2 we obtain ∫

S

f (z − x)H1(dx) =
∫

S

f (z − ϑx)H1(dx)

for all ϑ ∈ SO2 and z ∈ R
2. Choosing suitable rotations the last identity can be used to show

that there exists some r > 0 such that, for all z ∈ R
2 and all z′ ∈ (z + 2rS1), there exists a

constant c(z) ≥ 0 depending only on z such that
∫

z′+ϑ(−S)

f (x)H1(dx) = c(z)

for all ϑ ∈ SO2. From this we can deduce that, for each rigid motion g ∈ Gd , the following
holds: ∫

g(−S)

f (x)H1(dx) = c

for a constant c > 0. It immediately follows that there exists a constant l > 0 such that
f (z) = f (z + lu) for all z ∈ R

2 and u ∈ S1. As in the proof of Theorem A.1, this implies that
f is constant.

Finally, we can state our main theorem.

Theorem 4.4. Let d ≥ 2 and X be a particle process with intensity measure as in (3.1).
Furthermore, we assume that X satisfies conditions (A) and (B). Then X is weakly stationary
and weakly isotropic if and only if

µz(ϑA, ϑA) = µz(A, A) (4.4)

for all z ∈ R
d , A ∈ B(Sd−1), A ∈ B(K0), and ϑ ∈ SOd .
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Let X be a particle process that satisfies the assumptions of Theorem 4.4. Since both f and
P0 are uniquely determined, weak stationarity and weak isotropy of X imply that f is a constant
function and P0 is rotation invariant. Hence, from Theorems 4.1, 4.2, and 4.4 we obtain

X satisfies (4.1) and (4.3) ⇐⇒ X satisfies (4.4).

Unfortunately, a direct proof of this equivalence does not seem to be possible.

Proof of Theorem 4.4. If X is weakly stationary and weakly isotropic, (4.4) obviously holds.
Therefore, let us assume that (4.4) holds. Written out, (4.4) means that

EP0 1ϑA(K)

∫
Rd

f (z − x)�d−1(K, dx × ϑA)

= EP0 1A(K)

∫
Rd

f (z − x)�d−1(K, dx × A).

First, choose A = Sd−1. As in the proof of Theorem 4.1, we can show that, for all ϑ ∈ SOd ,
there exists a function ηϑ : K0 → K0 such that EP0 g(K) = EP0 g(ϑK)ηϑ(ϑK) for all
measurable mappings g : K0 → [0, ∞). From (4.4) it follows that

EP0 1ϑA(K)

∫
Rd

f (z − x)�d−1(K, dx × ϑA)

= EP0 1A(K)

∫
Rd

f (z − x)�d−1(K, dx × A) (by (4.4))

= EP0 1A(ϑ−1K)

∫
Rd

f (z − x)�d−1(ϑ
−1K, dx × A)ηϑ−1(ϑ−1K)

= EP0 1ϑA(K)

∫
Rd

f (z − ϑ−1x)�d−1(K, dx × ϑA)ηϑ−1(ϑ−1K).

Hence, for all z ∈ R
d , A ∈ B(Sd−1), ϑ ∈ SOd , and P0-almost all K ∈ K0, we have

∫
Rd

f (z − ϑ−1x)�d−1(K, dx × A)ηϑ−1(ϑ−1K) =
∫

Rd

f (z − x)�d−1(K, dx × A). (4.5)

As before let K(n)
0 := {K ∈ K0 | dim K ∈ {d − 1, d}, K ⊆ nBd} and r(n) be as defined in

Lemma A.2. Since (4.5) holds for all z ∈ R
d , choosing A = Sd−1 implies that, for all n ∈ N

and P0-almost all K ∈ K(n)
0 ,

ηϑ−1(ϑ−1K) =

>0︷ ︸︸ ︷∫
Rd

∫
r(n)Bd

f (z − x)λd(dz)Cd−1(K, dx)

∫
Rd

∫
r(n)Bd

f (z − ϑ−1x)λd(dz)Cd−1(K, dx)

︸ ︷︷ ︸
>0

. (4.6)

For fixed z ∈ R
d and ϑ ∈ SOd , the mappings

x 	→ f (z − x) and x 	→ f (z − ϑ−1x)
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are continuous. Furthermore, for all K ∈ K(n)
0 , z ∈ r(n)Bd , and x ∈ bd K , we have

f (z − x) ≤ max
y∈(r(n)+n)Bd

f (y) < ∞ and f (z − ϑ−1x) ≤ max
y∈(r(n)+n)Bd

f (y) < ∞.

Hence, by dominated convergence the mappings

x 	→
∫

r(n)Bd

f (z − x)λd(dz) and x 	→
∫

r(n)Bd

f (z − ϑ−1x)λd(dz)

are continuous for each n ∈ N. This immediately yields the continuity of the mappings

K 	→
∫

Rd

∫
r(n)Bd

f (z − x)λd(dz)Cd−1(K, dx)

and

K 	→
∫

Rd

∫
r(n)Bd

f (z − ϑ−1x)λd(dz)Cd−1(K, dx)

on K(n)
0 . Since this is true for each n ∈ N by (4.6), the function ηϑ is equal to a continuous

function for P0-almost all K ∈ K0. So, without loss of generality, we can assume that ηϑ is
a continuous function on K0. As in the proof of Theorem 4.2 we can then show that, for all
z ∈ R

d , ϑ ∈ SOd , continuous (and bounded) g : Sd−1 → [0, ∞), and K ∈ supp P0, we have∫
Rd×Sd−1

f (z − ϑ−1x)g(u)�d−1(K, dx × du)ηϑ−1(ϑ−1K)

=
∫

Rd×Sd−1
f (z − x)g(u)�d−1(K, dx × du).

Since there exists a K ∈ supp P0 that is strictly convex, f is constant by Lemma A.1 and
Theorem A.1. From (4.6) we obtain ηϑ−1(ϑ−1K) = 1 for each ϑ ∈ SOd and P0-almost all
K ∈ K0. This implies that P0 is rotation invariant and, hence, that X is weakly stationary and
weakly isotropic.

We can rephrase Theorem 4.4 as follows.

Corollary 4.4. Let d ≥ 2 and X be a particle process with intensity measure as in (4.1).
Furthermore, we assume that X satisfies conditions (A) and (B). Then X is weakly stationary
and weakly isotropic if and only if µz is rotation invariant for all z ∈ R

d .

Proof. The assertion follows directly from Theorem 4.4.

For Poisson processes this yields the following corollary.

Corollary 4.5. Let d ≥ 2 and X be a Poisson process with intensity measure as in (4.1).
Furthermore, we assume that X satisfies conditions (A) and (B). Then X is stationary and
isotropic if and only if µz is rotation invariant for all z ∈ R

d .

5. Processes of cylinders

In this section we want to combine our Theorem 4.4 and Theorem 1 of [6] to obtain a similar
result for processes of cylinders.

Let q ∈ {0, . . . , d − 1}. We define a cylinder Z with direction space L ∈ Ld
q and basis

K ∈ K ′, K ⊆ L⊥, as the set Z := K + L, i.e. the Minkowski (vector) sum of K and L.
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Let Zd
q be the set of all cylinders with q-dimensional direction space and let Zd

q,0 ⊆ Zd
q be the

subset of all cylinders with a basis K from K0. Both Zd
q and Zd

q,0 are Borel subsets of F ′. Let
l ∈ {1, . . . , d} and m ∈ {0, . . . , l}. Throughout this section Xl,m will denote a cylinder process
on Zd

d−l with nontrivial locally finite intensity measure �. Furthermore, we assume that � is
of the form

�(A) =
∫

Ld
d−l

∫
K0

∫
L⊥

1A(K + L + x)f (L + x)λL⊥(dx) P(L, dK)�(dL), (5.1)

A ∈ B(Zd
d−l ). Here, f : Ed

d−l → [0, ∞) denotes a continuous function; for each L ∈ Ld
d−l ,

P(L, ·) is a probability measure on K0 with the property that

P(L, {K ∈ K0 | dim K = m, K ⊆ L⊥}) = 1;
for all A ∈ B(K0), the mapping L 	→ P(L, A) is measurable; and � is a finite measure on
Ld

d−l . Note that f , P(L, ·), and � are not uniquely determined by �. We can consider Xl,m as
a process of cylinders for which � describes the distribution of the direction spaces and P(L, ·)
the distribution of the bases. Note that Xl,m is a process of convex particles if l = d and m > 0
and that Xl,m is a process of (d − l)-flats if m = 0. For the rest of the paper we assume that
(l, m) �= (d, 0).

Before generalizing Theorem 1 of [6], we introduce our main object of study, the generalized
local mean normal measures for a cylinder process. For all z ∈ R

d , we therefore define a set
function µz : B(Zd

d−l,0) × B(Sd−1) by

µz(A, A) :=
∫

Ld
d−l

∫
K0

1A(K + L)

×
∫

rel bd K

1A(σ̃K(x))f (L + z − x)Hm−1(dx) P(L, dK)�(dL),

A ∈ B(Zd
d−l,0) and A ∈ B(Sd−1). If m = 0, we define

∫
rel bd K

1A(σ̃K(x))f (L + z − x)Hm−1(dx) := 1

for all A ∈ B(Sd−1). Note that σ̃K(x) = σ̃K+L(x) ∩ aff K .

Remark. Let B ∈ B(Rd) be bounded. For A ∈ B(Sd−1) and K + L ∈ Zd
d−l with dim K =

m ≤ l and K ⊆ L⊥, we have

Hd−l+m−1(B ∩ (σ̃−1
K (A) + L)) =

∫
L

∫
rel bd K

1B(a + b) 1A(σ̃K(a))Hm−1(da)λL(db).

By Lemma B.2, Theorem 1.1.7 of [8], and monotone convergence the mapping

K + L 	→
∫

L

∫
rel bd K

1B(a + b) 1A(σ̃K(a))Hm−1(da)λL(db)

is measurable. The latter (together with Lemma B.2 and respective theorems from [5], [7], and
[8]) implies the measurability of the mappings we use in this section.
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Let us state some properties of µz.

Theorem 5.1. Let l ∈ {1, . . . , d}, m ∈ {0, . . . , l}, and Xl,m be a particle process with intensity
measure as in (5.1), and let µz be as defined above. Then the set function

B(Zd
d−l,0) × B(Sd−1) → [0, ∞), (A, A) 	→ µz(A, A),

can be extended to a measure on B(Zd
d−l,0)×B(Sd−1). For λd -almost all z ∈ R

d , the measure
is finite and uniquely determined by �.

Proof. Let A ∈ B(Zd
d−l,0) and A ∈ B(Sd−1). The first assertion is obvious because we

can rewrite µz in terms of 1A×A. For B ∈ B(Rd) bounded, we have, by Campbell’s theorem,

E
∑

(K+L)∈Xl,m

1A(K + L − s(K))Hd−l+m−1(B ∩ (σ̃−1
K (A) + L))

=
∫

Ld
d−l

∫
K0

1A(K + L)

∫
L⊥

∫
L

∫
rel bd K

1B−z(a + b) 1A(σ̃K(a))Hm−1(da)λL(db)

× f (L + z)λL⊥(dz) P(L, dK)�(dL)

=
∫

Ld
d−l

∫
K0

1A(K + L)

∫
L⊥

∫
L

∫
rel bd K

1B(b + z) 1A(σ̃K(a))f (L + z − a)Hm−1(da)

× λL(db)λL⊥(dz) P(L, dK)�(dL)

=
∫

Rd

1B(z)µz(A, A)λd(dz).

Hence, for λd -almost all z ∈ R
d , the measure µz is uniquely determined by �. Furthermore,

we have
E

∑
(K+L)∈Xl,m

1Zd
d−l,0

(K + L − s(K))Hd−l+m−1(B ∩ (σ̃−1
K (Sd−1) + L))

= E
∑

(K+L)∈Xl,m

Hd−l+m−1(B ∩ rel bd(K + L))

= c E
∑

(K+L)∈Xl,m

Cd−l+m−1(K + L, B)

for some constant c > 0 depending only on d and d−l+m. Here, Cd−l+m−1(K+L, ·) denotes
the curvature measure of K + L (extended to arbitrary closed convex sets). By Theorem 4.2
of [1] the Borel measure

E
∑

(K+L)∈Xl,m

Cd−l+m−1(K + L, ·)

on R
d is locally finite and, thus, µz is finite for λd -almost all z ∈ R

d .

Note that, for l = m = d , the above definition of µz(A, A) matches the definition given
in Section 3. Furthermore, Xl,m is a translation-regular (d − l)-flat process with continuous
density as introduced in [6] if m = 0. In this case µz coincides with the direction measure
ϕ(z, ·) defined in [6, p. 142]. As before, we call µz the generalized local mean normal measure
of Xl,m at z. We now present the following generalization of our Theorem 4.4 and Theorem 1
of [6].
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Theorem 5.2. Let d ≥ 2, l ∈ {1, . . . , d}, and m ∈ {0, . . . , l}, and let Xl,m be a cylinder process
with intensity measure as in (5.1). Furthermore, we assume that there exist L ∈ supp � and
K ∈ supp P(L, ·) such that K is strictly convex in aff K . Then Xl,m is weakly stationary and
weakly isotropic if and only if

µz(ϑA, ϑA) = µz(A, A) (5.2)

for all z ∈ R
d , A ∈ B(Zd

d−l,0), A ∈ B(Sd−1), and ϑ ∈ SOd .

Proof. If Xl,m is weakly stationary and weakly isotropic it is easy to see that (5.2) holds.
Therefore, we assume that (5.2) holds. If m = 0 the assertion follows from Theorem 1 of [6].
So, let m ∈ {1, . . . , l}. The case in which l = d can be proved in the same way as Theorem 4.4,
i.e. using Theorem A.1. Thus, let 1 ≤ l ≤ d − 1. First, we consider the case in which m ≥ 2.
Lemma B.2 states that the mapping

K + L 	→
∫

rel bd K

g(σ̃K(x))f (L + z − x)Hm−1(dx)

is continuous for all continuous functions g : Sd−1 → [0, ∞) and z ∈ R
d . As in the respective

proofs of Theorems 4.1 and 4.4, by choosing A = Sd−1 we can show that, for all ϑ ∈ SOd ,
the measure P(L, ·) ⊗ � is absolutely continuous with respect to ϑ ◦(P(L, ·) ⊗ �) and we can
find a continuous density function. Furthermore, it is easy to see that if K ∈ supp P(L, ·) for
some L ∈ supp � then ϑL ∈ supp � and ϑK ∈ supp P(ϑL, ·) for all ϑ ∈ SOd . This implies
that supp � = Ld

d−l .

By (5.2) we have, for all z ∈ R
d , A ∈ B(Zd

d−l,0), A ∈ B(Sd−1), and ϑ ∈ SOd ,

∫
Ld

d−l

∫
K0

1ϑA(K + L)

∫
rel bd K

1ϑA(σ̃K(x))f (L + z − x)Hm−1(dx) P(L, dK)�(dL)

=
∫

Ld
d−l

∫
K0

1A(K + L)

×
∫

rel bd K

1A(σ̃K(x))f (L + z − x)Hm−1(dx) P(L, dK)�(dL) (by (5.2))

=
∫

Ld
d−l

∫
K0

1A(ϑ−1(K + L))

×
∫

rel bd(ϑ−1K)

1A(σ̃ϑ−1K(x))f (ϑ−1L + z − x)

× Hm−1(dx)ηϑ−1(ϑ−1(K + L)) P(L, dK)�(dL)

=
∫

Ld
d−l

∫
K0

1ϑA(K + L)

∫
rel bd K

1ϑA(σ̃K(x))f (ϑ−1L + z − ϑ−1x)Hm−1(dx)

× ηϑ−1(ϑ−1(K + L)) P(L, dK)�(dL).

For the last equation we used the rotation invariance of the Hausdorff measure. The above is
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equivalent to
∫

Ld
d−l

∫
K0

1A(K + L)

∫
rel bd K

1A(σ̃K(x))f (L + z − x)Hm−1(dx) P(L, dK)�(dL)

=
∫

Ld
d−l

∫
K0

1A(K + L)

∫
rel bd K

1A(σ̃K(x))f (ϑL + z − ϑx)Hm−1(dx)

× ηϑ(ϑ(K + L)) P(L, dK)�(dL) (5.3)

for all z ∈ R
d , A ∈ B(Zd

d−l,0), A ∈ B(Sd−1), and ϑ ∈ SOd . As in the proof of Theorem 4.2,
we can show that, for all K ∈ supp P(L, ·) with L ∈ supp �, z ∈ R

d , ϑ ∈ SOd , and continuous
functions g : Sd−1 → [0, ∞), we have

∫
rel bd K

g(σ̃K(x))f (L + z − x)Hm−1(dx)

=
∫

rel bd K

g(σ̃K(x))f (ϑL + z − x)Hm−1(dx)ηϑ(ϑ(K + L)).

Since one of the Ks was assumed to be strictly convex in aff K and dim K = dim aff K > 1
it follows, from Theorem A.1 (using rotations ϑ ∈ SOd with ϑL = L), that, for all z ∈ R

d

and L ∈ Ld
d−l , we have f (L + z) = f (L). Choosing A = Sd−1 we obtain, from (5.3), for all

A ∈ B(Zd
d−l,0),∫

Ld
d−l

∫
K0

1A(K + L)f (L)Hm−1(K) P(L, dK)�(dL)

=
∫

Ld
d−l

∫
K0

1ϑ−1A(K + L)f (ϑL)ηϑ(ϑ(K + L))Hm−1(K) P(L, dK)�(dL)

=
∫

Ld
d−l

∫
K0

1ϑ−1A(K + L)f (L)Hm−1(K) P(L, dK)�(dL).

Note that Hm−1 is rotation invariant. Hence, for (P(L, ·) ⊗ �)-almost all K + L ∈ Zd
d−l,0,

we have f (ϑL)ηϑ(ϑ(K + L)) = f (L). Let A ∈ B(Zd
d−l ) and ϑ ∈ SOd . As

�(ϑA) =
∫

Ld
d−l

∫
K0

∫
L⊥

1A(ϑ−1(K + L + x))f (L)λL⊥(dx) P(L, dK)�(dL)

=
∫

Ld
d−l

∫
K0

∫
L⊥

1A(K + L + ϑ−1x)f (ϑL)ηϑ(ϑ(K + L))

× λ(ϑL)⊥(dx) P(L, dK)�(dL)

= �(A),

the intensity measure � is rotation invariant. Invariance under translations follows analogously.
Now let m = 1 and, without loss of generality, l = 1 (for l ∈ {2, . . . , d}, the following argument
can easily be adapted). For all ϑ ∈ SOd , there exists a continuous mapping

ηϑ : Zd
d−1,0 → [0, ∞)
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such that∫
Ld

d−1

∫
K0

1A(K + L)

∫
rel bd K

1A(σ̃K(x))f (L + z − x)H0(dx) P(L, dK)�(dL)

=
∫

Ld
d−1

∫
K0

1A(K + L)

∫
rel bd K

1A(σ̃K(x))f (ϑL + z − x)H0(dx)ηϑ(ϑ(K + L))

× P(L, dK)�(dL).

Again, for all K ∈ supp P(L, ·) with L ∈ supp �, z ∈ R
d , ϑ ∈ SOd , and continuous functions

g : Sd−1 → [0, ∞), we have∫
rel bd K

g(σ̃K(x))f (L + z − x)H0(dx)

=
∫

rel bd K

g(σ̃K(x))f (ϑL + z − x)H0(dx)ηϑ(ϑ(K + L)). (5.4)

Let K ∈ supp P(L, ·) for L ∈ supp �. As K ∈ K0 and dim K = 1, K is a line segment in
L⊥ with midpoint 0. We define l = l(K) := 1

2H1(K) > 0. Also, let u = u(K) ∈ Sd−1 be
a unit vector such that L⊥ = {αu | α ∈ R}. In particular, we have K = [−lu, lu]. Here, for
any x, y ∈ R

d , [x, y] denotes the line segment between x and y. Furthermore, let ϑ ∈ SOd be
a rotation with the property that ϑL = L and ϑu = −u. From (5.4) we obtain, by choosing
g ≡ 1,

f (L + z + lu) + f (L + z − lu) = ηϑ(ϑ(K + L))(f (L + z + lu) + f (L + z − lu)),

i.e. ηϑ(ϑ(K + L)) = 1. Note that we chose z such that f (L + z + lu) + f (L + z − lu) > 0.
Let z ∈ R

d be arbitrary and let g : Sd−1 → [0, ∞) be a continuous function with the property
that g(u) = 1 and g(−u) = 0. Using the same rotation ϑ as before (which has the property
that ηϑ(ϑ(K + L)) = 1), we obtain

f (L + z + lu) = f (L + z − lu). (5.5)

Hence, f (L+·) has periodicity 2l. Combining (5.4) and (5.5) with a suitable choice of g, i.e. a
g that is continuous with the property that g(u) = g(ϑu) = 1 and g(−u) = g(−ϑu) = 0,
yields, for all ϑ ∈ SOd and z ∈ R

d ,

ηϑ(ϑ(K + L))f (ϑ(L + lu) + z + 2lu) = f (L + lu + z + 2lu)

= f (L + z + lu)

= ηϑ(ϑ(K + L))f (ϑ(L + lu) + z),

i.e.
f (ϑ(L + lu) + z + 2lu) = f (ϑ(L + lu) + z).

Obviously, for all α ∈ [0, 2l], we can find ϑ ∈ SOd such that ϑL + 2lu = ϑL + αϑu. In
combination with (5.3) this yields

f (ϑL + z + lϑu + αϑu) = f (ϑL + z + lϑu).

The last equation is equivalent to f (L + z + αu) = f (L + z) for all z ∈ L⊥ and α ∈ [0, 2l].
Therefore, the function f can only depend on L. The translation and rotation invariance of �

follow as before.
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Remark. Theorem 1 of [6] and Theorem 4.4 are included in Theorem 5.2 as special cases.
Theorem 1 of [6] follows by choosing m = 0 and Theorem 4.4 follows for l = m = d.

Finally, let us state two corollaries of Theorem 5.2. The first is a reformulation of Theorem 5.2
and the second is a specialization to Poisson processes.

Corollary 5.1. Let d ≥ 2, l ∈ {1, . . . , d}, and m ∈ {0, . . . , l}, and let Xl,m be a cylinder
process with intensity measure as in (5.1). Furthermore, we assume that there exist L ∈ supp �

and K ∈ supp P(L, ·) such that K is strictly convex in aff K . Then Xl,m is weakly stationary
and weakly isotropic if and only if µz is rotation invariant for all z ∈ R

d .

Corollary 5.2. Let d ≥ 2, l ∈ {1, . . . , d}, and m ∈ {0, . . . , l}, and let Xl,m be a Poisson
cylinder process with intensity measure as in (5.1). Furthermore, we assume that there exist
L ∈ supp � and K ∈ supp P(L, ·) such that K is strictly convex in aff K . Then Xl,m is
stationary and isotropic if and only if µz is rotation invariant for all z ∈ R

d .

Remark. The question remains open of whether the additional assumption that there exist
L ∈ supp � and K ∈ supp P(L, ·) such that K is strictly convex in aff K can be omitted in
Theorem 5.2. The latter is directly related to the open problem if Theorem A.1 is true without
the additional assumption that K is strictly convex in aff K . It should also be added that the
results of this paper do not depend on the choice of center function (in our case the Steiner
point) that was used to obtain P0. Only the proof of Theorem A.1 has to be modified slightly
as for any other choice of center function the origin no longer has to be a relative interior of K .

Appendix A. Auxiliary results for convex bodies

In this appendix we collect some results for convex bodies which are needed throughout the
paper. Let K ∈ K be a convex body and h(K, ·) its support function. The Steiner point s(K)

of K is defined as

s(K) := 1

λd(Bd)

∫
Sd−1

h(K, u)ωd−1(du).

For any g ∈ Gd , s(gK) = gs(K) and s(K) always lies in the relative interior of K . More
details on the Steiner point can be found in [5, pp. 42–43]. Now additionally assume that K has
a nonempty interior. The map σK : reg K → Sd−1 is continuous; see [5, p. 78]). Furthermore,
we provide a formula for integrals with respect to the (d −1)th support measure, which follows
directly from Lemma 2.1 of [9].

Lemma A.1. Let K ∈ K with nonempty interior and let f : R
d × Sd−1 → [0, ∞) be

measurable. Then∫
Rd×Sd−1

f (x, u)�d−1(K, dx × du) =
∫

Rd

f (x, σK(x))Cd−1(K, dx).

We will also need the following lemmas.

Lemma A.2. Let f : R
d → [0, ∞) be continuous and f �≡ 0. Then, for all n ∈ N, there exists

an r(n) ∈ [0, ∞) such that∫
Rd

∫
r(n)Bd

f (z − x)λd(dz)�d−1(K, dx × Sd−1) > 0

for all K ∈ K(n)
0 := {K ∈ K0 | dim K ∈ {d − 1, d}, K ⊆ nBd}.

https://doi.org/10.1239/aap/1198177229 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1198177229


On weak stationarity and weak isotropy SGSA • 879

Proof. The set T := {z ∈ R
d | f (z) > 0} �= ∅. Hence, there exists an r > 0 such that

T ∩rBd �= ∅. We define r(n) := r +n and let x ∈ nBd . For t ∈ (T ∩rBd), (t +x) ∈ r(n)Bd .
This implies that

∫
r(n)Bd

f (z − x)λd(dz) ≥
∫

x+(T ∩rBd)

f (z − x)λd(dz) =
∫

T ∩rBd

f (z)λd(dz) > 0.

Lemma A.3. Let m ∈ {0, . . . , d}, K ∈ K0, and (Ki)i∈N ⊆ K0. Furthermore, we assume
that dim K = dim Ki = m for all i ∈ N and that Ki → K . For h : Sd−1 × R

d → [0, ∞)

continuous, we then have

lim
i→∞

∫
rel bd Ki

h(σ̃Ki
(x), x)Hm−1(dx) =

∫
rel bd K

h(σ̃K(x), x)Hm−1(dx).

Proof. If m = 0 the assertion is true since in this case Ki = K = {0} for all i ∈ N. If m = d

the theorem follows from LemmaA.1 and the weak continuity of the mappingK 	→ �d−1(K, ·).
Hence, we assume that m ∈ {1, . . . , d − 1}. If Ki ⊆ aff K for almost all i ∈ N the assertion
follows from the case in which m = d . Otherwise, since dim K = dim Ki = m for all i ∈ N,
there exists a rotation ϑi ∈ SOd such that ϑiKi ⊆ aff K . We choose ϑi in such a way that
d(ϑiKi, K) is minimal. Obviously, ϑiKi converges to K and we have

lim
i→∞

∫
rel bd ϑiKi

h(σ̃ϑiKi
(x), x)Hm−1(dx) =

∫
rel bd K

h(σ̃K(x), x)Hm−1(dx).

The continuity of h and a compactness argument then yield the assertion.

One of the major tools used to prove the results of this paper is the following theorem.

Theorem A.1. Let d ≥ 2, let K ∈ K0 such that dim K = m > 0, and let K be strictly convex
in aff K . Furthermore, let f : R

d → [0, ∞) be a continuous function. Then f is constant if
and only if there exists a function η : SOd → [0, ∞) such that

∫
rel bd K

f (z−ϑx)g(σ̃K(x))Hm−1(dx)η(ϑ) =
∫

rel bd K

f (z− x)g(σ̃K(x))Hm−1(dx) (A.1)

for all z ∈ R
d , ϑ ∈ SOd , and continuous g : Sd−1 → [0, ∞).

Proof. The only-if part is obvious, so let us assume that (A.1) holds. First, let m = d. Recall
that σK is continuous on reg K and that Hd−1(bd K \ reg K) = 0. Since K is strictly convex,
no two points on the boundary of K have the same outer normal vector. Therefore, for any
x ∈ reg K , we have

for all ε > 0 there exists a δ > 0 for all y ∈ reg K such that

‖σK(x) − σK(y)‖ < δ �⇒ ‖x − y‖ < ε. (A.2)

Here ‖·‖ denotes the Euclidean norm. We fix z ∈ R
d and x0 ∈ reg K . Furthermore, we assume

that there exists a ϑ ∈ SOd such that

f (z − ϑx0)η(ϑ) > f (z − x0)η(ϑ).
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Since f is continuous, there exists a ε > 0 such that f (z − ϑy)η(ϑ) > f (z − y)η(ϑ)

for all y ∈ R
d with ‖y − x0‖ < ε. We choose δ > 0 as in (A.2) and define a mapping

g : Sd−1 → [0, ∞) by

g(u) := 1 − 1

δ
‖u − σK(x0)‖

for all u ∈ (σK(x0) + δBd) ∩ Sd−1 and g(u) := 0 elsewhere. Note that g is continuous. Let
S := (σK(x0) + δ(int Bd)) ∩ Sd−1 be the set of all unit normals in a δ-ball around σK(x0). By
the continuity of σK ,

Hd−1(reg K ∩ σ−1
K (S)) > 0.

Additionally, we have

f (z − ϑx)η(ϑ)g(σK(x)) ≥ f (z − x)η(ϑ)g(σK(x))

for all x ∈ bd K and

f (z − ϑx)η(ϑ)g(σK(x)) > f (z − x)η(ϑ)g(σK(x))

for all x ∈ reg K ∩ σ−1
K (S). This yields a contradiction to (A.1). Hence,

f (z − ϑx)η(ϑ) = f (z − x) (A.3)

for all ϑ ∈ SOd and all x ∈ reg K . Since f is continuous and reg K is a dense subset of bd K ,
this holds for all x ∈ bd K . Now let ϑ ∈ SOd have the property that there exists a u ∈ Sd−1

with ϑu = u. Then we can find an x ∈ bd K with x = αu for some α ∈ (0, ∞) and, thus,
ϑx = x. It follows, from (A.3) and f �≡ 0, that ηϑ−1(ϑ−1K) = 1. Let x ∈ bd K be fixed.
If d ≥ 3, for any y ∈ ‖x‖Sd−1, we can find ϑ ∈ SOd with the property that ϑy = x and
u ∈ Sd−1 with ϑu = u. As we just proved, the latter implies that η(ϑ) = 1. This yields
f (z − y) = f (z − x) and, thus, f is constant on z + ‖x‖Sd−1. This implies that, for z ∈ R

d

and y ∈ (z + 2‖x‖Sd−1), we have
f (z) = f (y).

For z′, z′′ ∈ R
d with ‖z′ − z′′‖ ≤ 2‖x‖,

(z′ + ‖x‖Sd−1) ∩ (z′′ + ‖x0‖Sd−1) �= ∅

and so f (z′) = f (z′′) must hold. This can only be true if f is constant on the whole of R
d .

Let d = 2. For u ∈ S1, let x = x(u), x′ = x′(u) ∈ bd K be the points on the boundary
of K that lie on the half-line {αu | α ≥ 0} and {αu | α ≤ 0}, respectively. Furthermore, we
define

S := {x(u) − x′(u) | u ∈ Sd−1}.
Note that S is a closed curve and the boundary of a star-shaped set with nonempty interior.
From (A.3) we can deduce that, for each z ∈ R

2, the function f is constant on z + 2S and the
latter implies that f is constant.

Now let m < d . In aff K , K is strictly convex, so (A.2) holds for K if we replace σK by σ̃K

and reg K by the set of all points on rel bd K that have a unique outer normal vector in aff K .
The assertion then follows as in the case in which m = d.
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Let X be a particle process with intensity measure as in (3.1). Throughout the paper we
have implicitly used the fact that the measure

A 	→
∫

K0

∫
Rd

1A(x, K)�d−1(K, dx × Sd−1) P0(dK)

on B(Rd)⊗B(K0) is σ -finite. Define K(n)
0 := {K ∈ K0 | K ⊆ nBd}; it is easy to check that

An := R
d × K(n)

0 has finite measure.

Appendix B. Auxiliary results for cylinders

In Section 5 we used the following lemmas.

Lemma B.1. The sequence (Ki + Li)i∈N ⊆ Zd
q,0 converges to K + L ∈ Zd

q,0 in F ′ if and
only if Ki converges to K with respect to the Hausdorff metric and Li to L in F ′.

Proof. The only-if part holds by Theorem 1.2.3 of [8]. For the if part, note that Ld
q is compact

and metrizable; see [7, Chapter 1]. Hence, any sequence (Li)i∈N of linear subspaces contains a
convergent subsequence. Using Theorem 1.1.2 of [8] and the definition of the Hausdorff metric
it is a straightforward calculation to show that the assertion holds.

Lemma B.2. Let l ∈ {0, . . . , d}, let z ∈ R
d , and let f : Ed

d−l → [0, ∞) and g : Sd−1 →
[0, ∞) be continuous functions. Then the mapping

Zd
d−l,0 → [0, ∞), K + L 	→

∫
rel bd K

g(σ̃K(x))f (L + z − x)Hm−1(dx),

is continuous.

Proof. Let K + L ∈ Zd
d−l,0 be fixed and let (Ki + Li) be a sequence in Zd

d−l,0 converging
to K + L. By Lemma B.1 and a compactness argument, for all ε > 0, there exists an i0 ∈ N

with the property that

max
x∈rel bd Ki

|f (Lin + z − x) − f (L + z − x)| < ε

for all i ≥ i0. This implies that, for all ε′ > 0, we can find an i′0 ∈ N such that
∫

rel bd Ki

g(σ̃Ki
(x))f (L + z − x)Hm−1(dx) − ε′

≤
∫

rel bd Ki

g(σ̃Ki
(x))f (Li + z − x)Hm−1(dx)

≤
∫

rel bd Ki

g(σ̃Ki
(x))f (L + z − x)Hm−1(dx) + ε′

holds for all i ≥ i′0. Combined with Lemma A.3 this yields the assertion.
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