
Journal of Glaciology, V o!. " , No. 62. (972 

A MODEL OF A SURGING GLACIER 
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ABSTRACT. As the cause of a surge we assume a sudden improvement of the sliding conditions at the 
glacier bed. This improvement has the same effec t on the behaviou r of the g lacier as a n equiva len t va riation 
of the annual bala nce. W e are therefore a ble to a pply Nye's ( 1963) theory of the advance a nd re trea t of 
g laciers to our problem. A simple gl acier model discussed in this theory shows as a consequence of a n im
provemen t of the sliding conditions, a n addi tiona l discha rge of ice, which ca n be separa ted in two phases. 
T he first phase of strong motion yields a transport of ice from the upper to the lower par t of the glacier. The 
ice essentia lly remains within the previous limi ts of the glacier. The sequence of motion during this phase 
corresponds to a surge. The second phase of motion is essentia ll y slower. During this phase the ice ac
cum ula ted in the lower part of the glacier flows beyond the previous limits, till the whole surface level is 
lowered . 

R ESUME. Un modete de glacier en crue rapide. Comme cause d 'une crue ra pide, nous pouvons admettre l' hypo
these d 'une souda ine a meliora tion des conditions de glissement sur le lit du glacier. Cette a meliora tion a les 
memes effets sur le comportement du glacier qu 'une vari a tion equiva lente du bilan a nnuel. N ous pouvons 
d onc appliquer a notre probleme la theorie d e N ye ( 1963) sur l'avance e t le retra it des glaciers. U n modCle 
simple de glacier considere d ans la theorie que I'on vient d e citer, montre qu 'a une amelio ra tion d es conditions 
de glissement rep ond un debit additionnel de masses d e glace qui peut etre sepan~ en d eux phases. La 
premiere phase d e for t mouvement produit un tra nsport des masses de glace du ha ut en bas du glacier . La 
g lace res te cependa nt a peu pres a l' interieur des limites a nterieures du glacier. La sucession des mouvements 
pendant ce tte phase correspond a une crue. La seconde phase du mouvement es t essentiellement plus lente. 
Pendant cette phase, la glace accumulee dans la partie basse du glacier, s'e tale au-dela des limi tes a nterieures 
du glacier, jusqu'a ce que le niveau superfi ciel du glacier soit entierement a ba isse. 

Z USAMMENFASSUNG. Ein Modell fur einen ausbrechenden Gletscher. AIs U rsach e eines Gletscherausbruches 
wi rd eine plotzliche V erbesserung der Gleitbedingungen a m Gletsch erbett angenommen. Diese hat dieselbe 
Wi rkung auf das V erhalten des Gle tschers, wie eine aquivalente Anderung d er jahrlichen M assenbila nz. 
Dadurch ist es m oglich , die Theorie d er Gle tscherschwankungen (Nye, 1963) a uch a uf d as vorliegende 
Problem anzuwenden . D as in dieser Theorie diskutierte einfach e Gletschermodell erg ibt a ls Folge einer 
Verbesserung d er Gleitbedingungen eine in zwei Phasen a blaufende zusa tzliche Eisbewegung. D ie erste, 
rasch ablaufende Phase bewirkt eine Umlagerung von Eismassen aus dem ob eren Teil d es G letschers in 
den unteren . Die Eismassen bleiben a ber im wesentlichen innerhalb der ursprunglichen Grenzen d es G let
schers. Diese Phase entspricht dem Bewegungsablauf wahrend eines Ausbruchs. Die zweite Phase lauft 
wesentli ch la ngsamer a b. W a hrend dieser fli essen die im unteren Gle tscher teil angeha uften Eismassen liber 
das fr lihere G le tscherende hina us, so dass schliesslich die gesa m te G le tscheroberfl ache einsinkt. 

I NTR ODUCTION 

An exciting a nd still unsolved phenomenon in glaciology is the occurrence of surges . A 
glacier stagnant for some tens of years suddenly starts to move with excep tionally high 
velocity. Great masses of ice are transported from the upper to the lower part of the glacier 
in one or two years. As a resul t of this movem ent, the surface level in the upper pa rt is lowered 
a nd the lower part is raised, bu t the ice does not move beyond the limi ts of the previously 
stagnant ice. As a result of the surge, m edial moraines are deformed into loops. From this 
characteristic i t can be deduced tha t a surge is a repeating phenom enon. No external cause 
can be found for a surge (Post, 1960) and it seems very probable that it is caused by a varia tion 
of the sliding condi tions a t the glacier bed (W eer tman, 1962). 

I n this paper we try to find a theoretical model which explains the sequence of motion 
during a surge, assuming a sudden improvemen t of the sliding conditions. As a prototype the 
surge of Muldrow Glacier described by Post (1960) will be used . 

GENERAL E QUATIONS 

We consider a two-dimensional model of a glacier. As in the theory of advance a nd 
retreat of glaciers, we need two equa tions. First the continuity equa tion and secondly a 
relation between the discharge q(x, t ) and the ice thickness h(x, t ) and its derivativeoh(x, t) / ox. 
T his rel ation can be deduced from a general flow law which implies the flo w law of the ice and 
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the sliding conditions at the glacier bed. As in the present problem we are concerned with 
changes of the sliding conditions, we have to consider q as a function of the parameters cti of 
the general flow law too. We make the assumption, that the mathematical form of the general 
flow law always remains the same. 

If we regard only perturbations (suffix I ) from a steady state (suffix 0) we may write the 
two equations: 

n 

(Oq) ( Oq) ohr ~ ( Oq) 
qI = oh 0 hr+ o(oh(ox) 0 dx + L Octi 0 ctil 

1= 1 

where al (x,t ) is the deviation from a mean annual balance ao. x is measured positive from the 
upper end of the glacier along the surface and h is perpendicular to the x-direction. 

Eliminating hI and qr respectively we obtain from Equations (I) and (2) the equations: 

" 

°O~' = -Gr)o ~~.r - ( O(O~~oxJ o 0(j~1 + L G:i)O 2;;1 +G!)o al + ( O(O~~2X) ) o ~:I , (3) 

oh, 
at 

i = 1 

-:x G1)o h, - [G1)o + :x ( O(2~~2x) )J ~:' - ( O(O~~ox) ) o o;~~ 

The third term on the right side of Equation (3) represents the influence of a change in the 
sliding conditions on q.. It is equivalent to a variation of the annual balance a/ which can 
be found from the first-order differential equation 

" 
( oq ) oar' (Oq) , ~(Oq) Octil 

o(oh(ox) 0 ox + oh 0 a, - L Octi 0 Tt = o. (5) 
1 = 1 

In the same manner we can replace the fourth term on the right side of Equation (4) by an 
equivalent variation of the annual balance a," given by 

(6) 

With Equations (5) and (6) we have reduced our problem to the response of glaciers to 
climatic changes. We are therefore able to apply the theory of advance and retreat of glaciers 
(Nye, 1963) with only small modifications. 

SPECIAL MODEL 

For the description of the glacier flow we adopt a power law (Nye, 1959) . 

Where T is the shear stress at the glacier bed and as a first approximation is given by 

T = pgh ((3 - Oh) (8) ox ' 
f3 is the inclination of the glacier bed, p the density of the ice, and g the gravity acceleration. 
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At any datum state of the glacier we are able to choose the coefficients U and T in such a 
manner that q becomes independent of n. If we do this, U is consequently the mean velocity of 
the ice and T the basal shear stress at this datum state. 

For (o q/oh)o which represents the velocity of the kinematic waves, a nd [oq/o(oh/ox)]o 
which is the diffusion coefficient, we adopt the same polynomials as discussed and used by 
Nye (1963) . 

(
Oq) qo x ( x) - = (n+ I ) - = - 1- - , 
oh 0 ho a l 

(9) 

( 
oq ) _ npghoqo _ x' ( 8 x) 

o( oh/ox) 0 - ~ - - -;; 1 - - 7 ' ( 10) 

where l ( 1 - 8) is the length L of the glacier and a is a na tural time uni t. For a glacier of L ~ 
10 km a rough estimate gives a ~ 10 year and 8 ~ 0.01. This estimate of a is only valid if the 
exponent n is about 3 or 4. If we va ry n ---* 1l[ we have to multip ly a by the factor (n+ I ) / 

(n[ + I ) . 
If we choose U and T in Equation (7) in such a manner tha t (oq/on)o = 0 , "L, (oq/OCt.i)o 

reduces using Equations (7) and (9) to 

(
Oq) nhoqo nhox ( x) 
oT 0 = - T oho = -(n+ I)T oa 1- 7 . ( I I) 

W e adopt for ho/T o the constant value (ho/ To) X~ Ll z , Following from Equation (8), this 
simplifica tion means a uniform surface inclination of the whole glacier. Therefore To tends to 
zero for x ---* 0 and ( I - 8)l in the same manner as ho. From Equations ( 10) and ( I I ) we see 
that [oq/o(oh/ox)]o and (oq/oT) o should have the same analytical form . But as we need only 
the approximate form of the coefficients, the difference between the adopted polynomials wi ll 
not falsify the resu lts. 

S O L UTION 

After having determined the coefficients of Equation (3) we look for a solution which 
satisfies the following conditions: a[ = 0 for any time; for t < 0 we assume a steady state with 
hI , ohI /ox, oT, /ot = 0 and an arbitrary n; for the small time interval 0 ~ t < t:.t we take a 
constant oT 1/ot = T, /t:.t. For t ~ t:.t we take oT ,/ot = o. 

In our model To tends to zero for x ---* 0 or ( I - 8) l. As we shall assume T[ consta nt and 
negative, this will lead to a basal shear stress in the direction of the glacier flow, which is 
physically meaningless. But as thi s discrepancy is res tricted to the highes t and lowest part of 
the glacier it can hardly affec t the solution of Equation (3) for the main part of the glacier. 

The variation of the annual balance equivalent to the adopted variation of the sliding 
conditions is found by Equation (5) to be 

nhoT[ 

With a [ and the coeffi cients given by Equations (9), ( 10) and ( I I ) , the solution of Equa tion (3) 
for the time interval 0 ~ t < t:.t is given by (Nye, 1963) 

~~ [ I ~] ql = (n+ I)T ot:.t {I - exp (- t/a) }x+ I _ 28 {exp (- t/a)-exp (- 28t/a)} i . 

W e expand exp (- t/a) and exp (- 28t/a) in to series and , taking t:.t ---* 0 , we find for ql at 
t = 0 

nhoT ,x ( X) 
ql = -(n+ I)aTo 1- 7 ' 

A sudden change of T o to T o + T, yields therefore a q 1 given by Eq uation ( 12 ) . 
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For t ~ t!.t we have to solve the homogenous differential equation (3) with the ini tial 
condition (12 ) . The solution is 

q, = (n~:~To [X(I -n exp ( - tla)+~ 1~~8 (exp (- 28tla)-exp (- tla)]) (13) 

The solution for h, is found from Equations (13) and ( I) : 

hI = 1 - 1 - - -- exp (- t/a)- - -- exp (- 28t/a) nho T , [ ( X 2 ) L 2 ] 

(n+ l ) T o L 1- 28 x 1- 28 

DISCUSSION 

From Equation (13) we see that a sudden change of T o to To+ TI (T, negative) causes an 
additional discharge ql which can be separated into two phases. The first phase, represented 
by the first term in Equation ( 13), describes a discharge which reaches its maximum in the 
middle of the glacier and vanishes completely at the head and nearly at the snout. The motion 
caused by this discharge yields a transport of ice from the upper part of the glacier to the lower 
part and decays from a maximum at the beginning with a time constant a . No essential 
transport of ice beyond the previous limits of the glacier takes place. 

The second phase of motion, represented by the second term in Equation (13), becomes 
important after the first has decayed. It increases quadratically toward the end of the glacier 
and therefore causes an advance. Its magnitude is smaller by the factor 28, but, decaying with 
the time constant a128, it continues correspondingly longer. al28 is known as the long time 
constant from the theory of advance and retreat of glaciers. 

W e find a similar behaviour in h,. During the first phase of rapid motion the surface level 
lowers in the upper part of the glacier and rises in the lower part. During the second phase, 
decaying with the long time constant a/28, the surface level in the lower part drops too, till 
a constant decrease of ice thickness hI = nho T ,/(n+ I) To over the whole glacier is reached. The 
resulting diminution of the length of the glacier is of no physical significance for I T, I > T o 
at the extreme ends of the glacier as mentioned in the previous section. 

Qualitatively the first phase of motion is very similar to a surge. To fit our model 
quantitatively we assume T l :::::: t T o to get the right magnitude of the surface level variation. 
a, normally about 10 years, must be more than I o-times smaller during a surge to yield the very 
fast motion observed. This corresponds to a very high value of the exponent n. Normally no 
advance is produced by a surge. The first phase of motion of our theoretical model meets this 
observation. The second phase, transporting ice beyond the steady-state end of the glacier, is 
weaker by the factor 28 than the first phase. One could imagine that this second phase is 
suppressed if a consolidation of the sliding conditions takes place after the first phase of strong 
m otion is over. 

M S. received 18 May 1971 
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