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Abstract. Let ðR;mÞ be a Cohen–Macaulay local ring and let I be an ideal. There are at least
five algebras built on I whose multiplicity data affect the reduction number rðI Þ of the ideal.
We introduce techniques from the Rees algebra theory of modules to produce estimates for

rðI Þ, for classes of ideals of dimension one and two. Previous cases of such estimates were
derived for ideals of dimension zero.

Mathematics Subject Classifications (2000). Primary: 13H15; secondary: 13D40, 13H10.

Key words. Cohen–Macaulay ring, conormal module, Hilbert function, multiplicity, reduction
number, Rees algebra.

1. Introduction

Let R be a commutative Noetherian ring, and let I be one of its ideals. A reduction of

I is an ideal J � I such that I nþ1 ¼ JI n. The least such integer n is the reduction num-

ber of I relative to J, and is denoted by rJðI Þ. Reductions play a role in the theory of

finite morphisms of the blowup BlowVðI ÞðSpecðRÞ, with the reduction number being a

control element. In case R is a local ring (of infinite residue field), minimal reductions

are particularly valuable because they help control the cohomology of the blowup.

We are interested in the minimum value of rJðI Þ, which we denote by rðI Þ, from

among all possible minimal reductions.

Reduction numbers are derivative invariants of I, often measuring the interplay

amongst the ‘primary’ invariants of the ideal. It can achieve very low values, as in

the case when R is a Cohen–Macaulay local ring and the Rees algebra of I is also

Cohen–Macaulay: according to Johnston and Katz (1995), rðI Þ < dimR. Several

of these notions can be defined on graded algebras and R-modules, and here we want

to exploit this even while we focus on ideals.

In this paper we shall seek to extend to ideals of positive dimension the quadratic

relationships between the reduction number rðI Þ and various multiplicities that were

developed in Doering et al. (1998) and Vasconcelos (1998a) for ideals of dimension

zero. Figuratively, for an ideal, module or algebra A (graded in the appropriate

case), where the notions of reduction number rðAÞ, multiplicity dðAÞ and dimension

d have been defined, there are usually no direct relationships between these quanti-

ties. More correctly, the relationship between rðAÞ and dðAÞ is mediated through
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various agents such as dimensions, Castelnuovo–Mumford regularity, Hilbert

function, and numerical information in the syzygies associated to one of the various

algebras built on I:

We want to capture these possibilities by inequalities of the form

rðAÞ4 f ðdðAÞ; dimAÞ;

where dðAÞ is some ‘degree’ of A (deg ðAÞ, arith-deg ðAÞ or even some extended degree

Deg ðAÞ Doering et al. (1998), and f is a polynomial of low degree. For example,

if I is an m-primary ideal and the residue field of R has characteristic zero, then

rðI Þ4 arith-degðgrIðRÞÞ; ð1Þ

where grIðRÞ is the associated graded ring of I.

There are other bounds mediated by other agents. According to Vasconcelos

(1998a), for a Cohen–Macaulay local ring ðR;mÞ of Krull dimension d, an m-pri-
mary ideal I of multiplicity eðI Þ satisfies

rðI Þ4 ðd� hÞeðI Þ � 2ðd� hÞ þ 1; ð2Þ

where h is some integer h < d such that depth grIðRÞ5 h. The method of Vascon-

celos (1998) is dependent on the Cohen–Macaulayness of R and on I being

an m-primary ideal. To extend to more general rings required in Rossi et al.

(2001) replacing eðI Þ by the length lðR=J Þ, where J is a minimal reduction of I.
The reduction number of an ideal is actually a property of its fiber cone,

F ðI Þ ¼ grIðRÞ � ðR=mÞ, and therefore a major issue is how I affects the properties

of F ðI Þ. For example, if the residue field of R has characteristic zero,

rðI Þ < arith-degðF ðI ÞÞ:

To refine these bounds, in a manner that is responsive to other properties of I, is a

challenge. It is a difficult task to track the properties of I in its passage to F ðI Þ. A

practical approach to this problem begins by attempting to bound the Hilbert func-

tion of the fiber cone of I, nðI nÞ for all n, by a polynomial f ðnÞ of degree s�1, f ðnÞ
depending on the various extended multiplicities of I. Solving for the least solution

of

f ðnÞ <
nþ s

s

� �
;
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which may require a convenient form for f ð nÞ, and using a result of Eakin and

Sathaye (1976), gives n > rðI Þ. This provides for a reduction L generated by s

elements and an attached bound for rLðI Þ. In case I is m-primary, s ¼ ‘ðI Þ, and L

is a minimal reduction. If however dimR=I5 1, this approach only provides

for a reduction L with fewer generators. It is helpful however to find a minimal

reduction J of L in order to apply rJðI Þ4 rLðI Þ þ rJðLÞ.

We will take two paths to these estimations. First, by extending to ideals of posi-

tive dimension the methods that have already been used for ideals of finite co-length.

This required the development of techniques to bound the number of generators of

powers of ideals – essentially a Hilbert function – by filtering them (whenever possi-

ble) in such a way that the factors are Cohen–Macaulay. This approach led to a

number of results in Sections 2 and 3 that benefit from the more amenable relation-

ships between multiplicities and number of generators of Cohen–Macaulay modules.

One unpleasant technical aspect of these bounds, for ideals which are not of finite

co-length, is the presence of factorial terms, a feature that could be bypassed in the

special case of dimension zero. Nevertheless an opening is provided by the conside-

ration of the Rees algebra of the conormal module. It is a small gap but sufficiently

wide to lead to several other cases of ideals of low dimension.

Our main results are treated in Section 4, whose aim is to derive analogs of (1) and

(2) for ideals of dimension 1 and 2. Our two main results are the following. In both,

R is a Cohen–Macaulay local ring of dimension d, with an infinite residue field. For

an ideal I, we set G ¼ grIðRÞ for its associated graded ring.

. Theorem 4.6. If I is a Cohen–Macaulay ideal of dimension 1 that is generically a

complete intersection, then

rðI Þ < degðG Þ:

. Theorem 4.10. If I is a perfect Gorenstein ideal of dimension 2 and R=I is

normal, then

rðI Þ4 ðd� 1Þ degðG Þ � 4dþ 5:

Actually, both estimates come close to bounding the reduction numbers rJðI Þ for an

arbitrary reduction J of I, the so-called big reduction number brðI Þ of I.

2. General Techniques

In this section we convert quickly the techniques used in Doering et al. (1998) to esti-

mate the number of generators of the powers I n of certain ideals.

Basic results, general terminology and notation will be that of Bruns and Herzog

(1993), except when we use lð�Þ for the length function on modules with a composi-
tion series. As usual, the minimum number of generators function is denoted by nð�Þ.
We begin with a brief review of the notions of multiplicity that will be used,

and refer to Vasconcelos (1998b), Chapter 9 for a detailed discussion. Let ðR;mÞ
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be a Noetherian local ring (or a graded ring with m denoting the maximal homo-

geneous ideal), and let MðRÞ be the category of finitely generated modules (with

suitable morphisms). A degree is a numerical function

deg: MðRÞ 7!� N;

with appropriate properties. The outstanding example is the ordinary multiplicity,

degðM Þ ¼ d ! � lim
n!1

lðM=mnM Þ

nd
;

where d ¼ dimM. If I is an m-primary ideal and G denotes its associated graded

ring,

G ¼ grIðRÞ ¼
X
n50

I n=I nþ1;

we set eðI Þ ¼ degðG Þ, and refer to it as the multiplicity of I. The analytic spread of

I is the dimension of the special fiber ‘ðI Þ ¼ dimF ðI Þ.

This terminology extends to a graded algebra A, finitely generated over a local ring

ðR;mÞ : ‘ðAÞ ¼ dimA=mA. However, we use deg ðAÞ to denote the multiplicity of A

relative to its (unique) maximal homogeneous ideal.

If one wants to capture the contributions of each primary component of the

module, adding them all gives rise to the arithmetic degree of M, arith-degðM Þ.

Assuming R is Gorenstein (for simplicity) it assembles itself into

arith-deg ðM Þ ¼
Xn

i¼0

degðExtiRðExt
i
RðM;RÞ;RÞÞ:

An additional refinement was made by Doering et al. (1998) with the introduction

of functions Degð�Þ : MðSÞ 7!� N, satisfying

(i) If L ¼ GmðM Þ is the submodule of elements of M which are annihilated by a

power of the maximal ideal and �MM ¼ M=L, then

DegðM Þ ¼ Degð �MM Þ þ ‘ðLÞ :

(ii) (Bertini’s rule) IfM has positive depth and h 2 R is a generic hyperplane section

on M, then

DegðM Þ5DegðM=hM Þ :

(iii) (The calibration rule) If M is a Cohen–Macaulay module, then

DegðM Þ ¼ degðM Þ :

There are several such functions if dimR5 2, and any of them will be denoted

Degð�Þ (read: big degð�Þ).
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2.1. CODIMENSION MINUS ONE TRICK

Let ðR;mÞ be a Cohen–Macaulay local ring of dimension d> 0, with an infinite

residue field, and let I be an ideal of height g<d; set ‘ ¼ ‘ðI Þ for the analytic spread

of I. Let J0 ¼ ða1; . . . ; ahÞ be part of a minimal reduction of I, with the ai’s forming a

regular sequence. Now from the embedding I n=Jn
0 ,!R=Jn

0 ; one has

nðI nÞ4nðJn
0 Þ þ nðI n=Jn

0 Þ:

We need to bound the right-hand side by a polynomial f ðnÞ of degree at most ‘�1 in

order to apply the comments above. The first term is simply

nðJn
0 Þ ¼

nþ h� 1

h� 1

� �
;

so it presents no difficulty since h4 g4 ‘4 d. The other term arises from an ideal of

the Cohen–Macaulay S ¼ R=Jn
0 , whose properties are traceable to those of R and

ordinary multiplicities of R=I. The heart of the matter is to estimate the number

of generators of the ideal I n=Jn
0 , using some multiplicity of S but still bounded by

a polynomial of degree ‘�1.

Two variants can be introduced: (i) Since one can use other kinds of multiplicities,

some of which may work well for non Cohen–Macaulay rings, we do not have to

choose J0 to be a complete intersection. (ii) To achieve a minimal reduction J with

the desirable reduction number, one may first use the technique to achieve an inter-

mediate reduction L, as indicated above.

Let us indicate how this works in practice by extending a result of Doering et al.

(1998) to a much wider class of filtrations.

PROPOSITION 2.1. Let ðR;mÞ be a Cohen–Macaulay local ring of dimension

d5 1 and infinite residue field. Let F ¼ fIn; n5 1g be a multiplicative filtration of

Cohen–Macaulay ideals of dimension d� g < d. If I ¼ I1 is an equimultiple ideal

then for all n

nðInÞ4 g! degðR= �II Þ degðRÞ
nþ g� 2

g� 1

� �
þ

nþ g� 2

g� 2

� �
:

Proof. We pick J0 as above: J0 ¼ ða1; . . . ; ag�1Þ is an ideal of height g� 1 with

the ai’s being part of a minimal reduction of I. This already accounts for the

summand

nðJn
0 Þ ¼

nþ g� 2

g� 2

� �
:

By the other assumption, In=J
n
0 is a Cohen–Macaulay ideal of height 1 of the

Cohen–Macaulay ring R=Jn
0 . Thus In=J

n
0 is a Cohen–Macaulay module and therefore

nðIn=Jn
0 Þ4 degðR=Jn

0 Þ ¼ degðR=J0Þ
nþ g� 2

g� 1

� �
:
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Let J ¼ ðJ0; xÞ be a minimal reduction of I. Since x is regular module J0, we have

degðR=J0Þ4 degðR=J Þ.

What we need will be provided in a estimate of multiplicities based on a well-

known theorem (Lech, 1960):

THEOREM 2.2. Let ðR;mÞ be a Noetherian local ring of dimension d and let I be an

m-primary ideal. Then

eðI Þ4 d ! � degðRÞ � lðR=I Þ: ð3Þ

We formulate it replacing I by its integral closure I , which can only sharpen the

inequality.

PROPOSITION 2.3. Let R be a Cohen–Macaulay local ring of infinite residue field

and let I be an equimultiple ideal of codimension g. If J is a minimal reduction of I

then

degðR=J Þ4 g! degðR= �II Þ degðRÞ:

Proof. Consider how the associativity formula for multiplicities relates to R=J:

degðR=J Þ ¼
X
p

lðRp=JpÞ degðR=pÞ; ð4Þ

where p runs over the minimal primes of J; since I is equimultiple, they are the same
as the minimal primes of I.

We note that lðRp=JpÞ is the Samuel multiplicity of the ideal Ip. By Theorem 2.2,

eðIpÞ4 g!lðRp= �IIpÞ degðRpÞ:

Noting that degðRpÞ4 degðRÞ, we obtain

degðR=J Þ ¼
X
p

eðIpÞ degðR=pÞ

4 g!
X
p

lðRp= �IIpÞ degðRÞ degðR=pÞ

¼ g!
�X

p

lðRp= �IIpÞ degðR=pÞ
�
� degðRÞ

¼ g! degðR= �II Þ degðRÞ;

giving the asserted bound. &

2.2. MULTIPLICITY OF THE SPECIAL FIBER

We give an application of the method to derive estimates for the multiplicity of the

special fiber of m-primary ideals. Let ðR;mÞ be a Cohen–Macaulay local ring of

dimension d and let I be an m-primary ideal. The surjection of d-dimensional rings

0! H�! grIðRÞ �!F ðI Þ ! 0 ð5Þ
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gives the inequality degðgrIðRÞÞ ¼ eðI Þ5 degðF ðI ÞÞ. The following observation

permits the derivation of another kind of bound, one that involves the next

coefficient, e1ðI Þ, of the Hilbert polynomial of I. Let J ¼ ða1; . . . ; adÞ be a minimal

reduction of I, and consider the exact sequence of modules of finite length

0! I n=Jn �!R=Jn �!R=I n ! 0:

Taking lengths, we have

lðI n=JnÞ ¼ lðR=JnÞ � lðR=I nÞ ¼ eðI Þ
dþ n� 1

d

� �
� lðR=I nÞ:

For n � 0, replacing lðR=I nÞ by the Hilbert polynomial of I, we obtain

lðI n=JnÞ ¼ e1ðI Þ
nþ d� 2

d� 1

� �
þ lower terms;

from the cancelling of the term eðI Þ nþd�1
d

� �
in lðR=I nÞ.

PROPOSITION 2.4. Let ðR;mÞ be a Cohen–Macaulay local ring and let I be an

m-primary ideal. Then

degðF ðI ÞÞ4 inf fe0ðI Þ; e1ðI Þ þ 1g: ð6Þ

Proof. From the estimate for the number of generators of I

nðI nÞ4nðJnÞ þ nðI n=JnÞ4nðJnÞ þ lðI n=JnÞ;

for n � 0 we obtain

nðI nÞ4
nþ d� 1

d� 1

� �
þ e1ðI Þ

nþ d� 1

d� 1

� �
þ lower terms;

which together with the observation in (5) proves the assertion. &

In another application of this technique, we are going to derive a bound for the

reduction number of an m-primary ideal of an arbitrary Noetherian local ring

ðR;mÞ.

THEOREM 2.5. Let ðR;mÞ be a Noetherian local of dimension d and infinite residue

field. For an m-primary ideal I,

rðI Þ4lðR=J Þ � d� 2dþ 1;

where J ¼ ðx1; . . . ; xdÞ is a minimal reduction of I.

LEMMA 2.6. Let ðR;mÞ be a Noetherian local ring of dimension one. For any ideal I

and for any parameter x, nðI Þ4lðR=ðxÞÞ.
Proof. We have used repeatedly the version of this result for Cohen–Macaulay

rings. For the general case, set L ¼ H0
mðRÞ and consider the two exact sequences

0! L�!R�!R 0 ! 0;

0! L0 ¼ I \ L�! I�! I 0 ! 0:
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Tensoring by R=ðxÞ, we get the exact sequences

0! xL�! xR�! xR
0 ¼ 0�!L=xL�!R=xR�!R 0=xR 0 ! 0;

0! xL0�! xI�! xI
0 ¼ 0�!L0=xL0�! I=xI�! I 0=xI 0 ! 0:

The second of the preceding sequences gives nðI Þ4lðI=xI Þ ¼ lðL0=xL0Þþ
lðI 0=xI 0Þ. Since L is a module of finite length, lðL0=xL0Þ ¼ lðxL0Þ4 lðxLÞ ¼
lðL=xLÞ, and therefore nðI Þ4lðxLÞ þ lðI 0=xI 0Þ. On the other hand, from the first

sequence we have lðR=xRÞ ¼ lðL=xLÞ þ lðR 0=xR 0Þ. Finally, lðI 0=xI 0Þ4lðR 0=xR 0Þ,

since these are the multiplicities of the Cohen–Macaulay ring R 0 and its Cohen–

Macaulay submodule I 0 (see Bruns and Herzog, 1993, x 4.7). Combining the inequal-

ities we have the desired relation. &

Proof of Theorem 2:5: As in the proof of Proposition 2.1, we set J0 ¼

ðx1; . . . ; xd�1Þ and estimate the number of generators of the ideal M ¼ I n=Jn
0 of the

one-dimensional local ring R=Jn
0 .

We use induction in n. LetM0 beM0 ¼ M \ Jn�1
0 =Jn

0 . It will be enough to estimate

the number of generators of factors such as M 0 ¼ M=M0 ,! Jn�1
0 =Jn

0 and add up.

Note that the module Jn�1=Jn
0 is a homomorphic image of the module Fn�1 of

ðn� 1Þ-forms in d� 1 variables over the ring R=J0. ThereforeM
0 is a homomorphic

image of a submodule of Fn�1, all of which can be generated by lðR=J Þ � rankðFn�1Þ

elements. The rest of the proof is as in Proposition 2.1. &

If R is Cohen–Macaulay, lðR=J Þ ¼ eðI Þ, the multiplicity of the ideal I. Observe

in this case that x does not have to be chosen in I, it could be a parameter for the

maximal ideal of R=J0. In particular, if I � ms, we could replace in the formula

eðI Þ by ðeðI ÞÞ=s.

3. Number of Generators of Cohen–Macaulay Ideals

Let ðR;mÞ be a Cohen–Macaulay of dimension d and let I be an ideal of height

g > 0. If I is a Cohen–Macaulay ideal, there are at least two approaches that can

be used to bound the minimal number of generators of I in terms of the multiplicity

data.

A very general approach uses the method of extended multiplicities. These are

numerical functions (denoted by Degð�Þ) on modules that coincide with the classical

multiplicity of local rings or graded modules (denoted by degð�Þ). A typical expres-

sion from Doering et al. (1998) is

nðI Þ4 degðRÞ þ ðg� 1Þ degðR=I Þ þ ðd� r� 1ÞðDegðR=I Þ � degðR=I ÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
non-Cohen�Macaulay correction

where Degð�Þ is any extended degree function and r ¼ depthR=I. If I is a

Cohen–Macaulay ideal, DegðR=I Þ ¼ degðR=I Þ, and we have (see also Valla (1981))

nðI Þ4 degðRÞ þ ðg� 1Þ degðR=I Þ: ð7Þ
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The other method, which we already outlined, has a different character: Let J0 be

an ideal generated by a regular sequence of g� 1 elements, J0 � I. Preferably J0
should be part of a minimal reduction of I. We have

nðI Þ4nðI=J0Þ þ nðJ0Þ4 degðR=J0Þ þ g� 1; ð8Þ

since I=J0 is a maximal Cohen–Macaulay module of rank 1 over the Cohen–Macaulay

ring R=J0. The issue is to relate degðR=J0Þ to degðR=I Þ.

Let us consider the case of an ideal I that is equimultiple. The first approach is

somewhat not sensitive to this additional information. Let us consider two applica-

tions of the second method. First, let R be a Gorenstein ring and suppose J ¼

ðJ0; xÞ is a minimal reduction of I. Since x is regular modulo J0, we have

degðR=J0Þ4 degðR=J Þ,

nðI Þ4 degðR=J Þ þ g� 1:

Consider the exact sequence

0! ðJ : I Þ=J�!R=J�!R=ðJ : I Þ ! 0;

where ðJ : I Þ=J is the canonical module of R=I and therefore degððJ : I Þ=J Þ ¼ deg

ðR=I Þ that yields

degðR=J Þ ¼ degðR=I Þ þ degðR=ðJ : I ÞÞ:

If, for instance, I is equimultiple of reduction number 1, that is I2 ¼ JI, I � J : I and

therefore degðR=I Þ5 degðR=ðJ : I ÞÞ, since they are both modules of dimension

d� g. We thus obtain the estimate

nðI Þ4 2 degðR=I Þ þ g� 1

which is limited to this class of ideals.

The difference between the two approaches is more pronounced when we seek to

estimate the multiplicity of a Cohen–Macaulay ideal of the form R=I n for some posi-

tive integer n. The point is that the multiplicity of R=I n, for n large, is a polynomial

of degree g. On the other hand, using the second method we obtain

degðR=Jn
0 Þ ¼ degðR=J0Þ

nþ g� 1

g� 1

� �
;

and therefore

nðI nÞ4 degðR=Jn
0 Þ þ nðJn

0 Þ4 degðR=J0Þ
nþ g� 1

g� 1

� �
þ

nþ g� 2

g� 2

� �
; ð9Þ

which in the equimultiple case gives

nðI nÞ4 g! degðR= �II Þ degðRÞ
nþ g� 1

g� 1

� �
þ

nþ g� 2

g� 2

� �
: ð10Þ
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THEOREM 3.1. Let R be a Cohen–Macaulay local ring with infinite residue field and

let I be an ideal of height g > 0. If I is normally Cohen–Macaulay then

rðI Þ4 g � g! degðR= �II Þ degðRÞ � 2gþ 1:

The proof is similar to that in Doering et al. (1998) in the m-primary case.

If the ideal I is not normally Cohen–Macaulay the term DegðR=I Þ � degðR=I Þ in

(8) must be taken into account. The simplest case is that of an ideal I of dimen-

sion one. One may proceed as follows, using the function Degð�Þ ¼ hdegð�Þ of

Vasconcelos (1998) (A ¼ R=Jn
0 , oA the canonical module of A):

nðI nÞ4nðJn
0 Þ þ hdegðI n=Jn

0 Þ; ð11Þ

where

DegðI n=Jn
0 Þ ¼ degðI n=Jn

0 Þ þDegðExt1AðI
n=Jn

0 ;oAÞÞ þDegðExt2AðI
n=Jn

0 ;oAÞÞ:

The last term vanishes and Ext1AðI
n=Jn

0 ;oAÞ has finite length and therefore we may

write

DegðI n=Jn
0 Þ ¼ degðI n=Jn

0 Þ þ lðExt1AðI
n=Jn

0 ;oAÞÞ:

Finally an easy calculation shows that Ext1AðI
n=Jn

0 ;oAÞ ’ Ext2AðR=I
n;oAÞ, a module

which by local duality has the same length as H0
mðR=I

nÞ. To sum up, we have the

estimate

nðI nÞ4 degðR=J0Þ
nþ d� 2

d� 2

� �
þ

nþ d� 3

d� 3

� �
þ lðH 0

mðR=I
nÞÞ: ð12Þ

The last term in this expression, lðH0
mðR=I

nÞÞ, is not very predictable. We will now

give the method of Boratynski et al. (1979) that in dimension two is more suitable to

the purpose here.

THEOREM 3.2. Let ðR;mÞ be a Cohen–Macaulay local ring of dimension two and let

I be an ideal. If fx; yg is a minimal reduction of m then

nðI Þ4 degðRÞ þ lðI : ðx; yÞ=I Þ:

Proof. Let K be the Koszul complex associated to fx; yg. For any finitely

generated R-module M, the Euler characteristic of the complex KðM Þ ¼ K �M is

the multiplicity eðx; y;M Þ of the module M (see Bruns and Herzog (1993) Theorem

4.7.4),

eðx; y;M Þ ¼ lðH0ðKðM ÞÞ � lðH1ðKðM ÞÞ þ lðH2ðKðM ÞÞ:

SettingM ¼ I, observing that nðM Þ ¼ lðM=mM Þ4lðM=ðx; yÞM Þ ¼ lðH0ðKðM ÞÞ,

and noting that H1ðKðI ÞÞ ¼ H2ðKðR=I ÞÞ ¼ I : ðx; yÞ=I and H2ðKðI ÞÞ ¼ 0, we obtain

eðx; y; I Þ5nðI Þ � lðI : ðx; yÞ=I Þ:
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From the additivity of the function eðx; y; �Þ, we have eðx; y; I Þ4 degðRÞ, giving rise

to the desired inequality. &

We may refine the bound (12) as follows:

COROLLARY 3.3. Let ðR;mÞ be a Cohen–Macaulay local ring of dimension at least

two and let I be an ideal of dimension one. Let J0 be a subideal of I generated by a

regular sequence of d� 2 elements. If ðx; yÞ is a minimal reduction of m modulo J0,

then for all integers n5 1

nðI nÞ4 degðR=J0Þ
nþ d� 2

d� 2

� �
þ

nþ d� 3

d� 3

� �
þ lðI n: ðx; yÞ=I nÞ:

3.1. EQUIMULTIPLE IDEALS OF DIMENSION ONE

Let I be an ideal of dimension one as above but assume that I is equimultiple. Let

J ¼ ða1; . . . ; ad�1Þ be a minimal reduction. Let us discuss a reduction to the case

when the ideal can be generated by d elements. Consider the sequence

0! I n=Jn ,!R=Jn;

that gives

nðI nÞ4nðI n=JnÞ þ nðJnÞ4 degðR=JnÞ þ nðJnÞ;

since R=Jn is Cohen–Macaulay. As we have by Proposition 2.3 that

degðR=J Þ4 ðd� 1Þ! degðR= �II Þ degðRÞ;

degðR=JnÞ4 ðd� 1Þ! degðR= �II Þ degðRÞ
nþ d� 2

d� 1

� �
;

we solve

ðd� 1Þ! degðR= �II Þ degðRÞ
nþ d� 2

d� 1

� �
þ

nþ d� 2

d� 2

� �
<

nþ d

d

� �
;

and get a reduction L generated by d elements satisfying

r ¼ rLðI Þ4 d ! � degðR= �II Þ degðRÞ � 2dþ 1:

What is needed now is an estimate for the reduction number of L, since if K is a

minimal reduction of L, with rKðLÞ ¼ s, it would follows that rKðI Þ4 rþ s.

4. Rees Algebra of the Conormal Module and Multiplicities

Let ðR;mÞ be a quasi-unmixed local ring of dimension d and let I be an ideal of

codimension g that is generically a complete intersection. We denote by G the asso-
ciated graded ring of I. The conormal module I=I 2 of I has rank g and its Rees
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algebra RðI=I 2Þ is isomorphic to G modulo its R=I-torsion. For simplicity we

denote it by G 0,

0! HðI Þ �!G�!G 0
! 0: ð13Þ

When I is an ideal of dimension 1, or R=I has isolated singularities,HðI Þ ¼ H0
mðG Þ.

In this case, from the exact sequence in which the associated primes of G 0 do not con-

tain those of HðI Þ, we obtain the equality of arithmetic degrees

arith-degðGÞ ¼ arith-degðHðI ÞÞ þ arith-degðG 0
Þ:

Throughout this section, in order to have this description of HðI Þ we shall assume

that I=I 2 is torsionfree on the punctured spectrum. We want to make the case that

the examination of both HðI Þ and of G 0 play a role in the determination of the reduc-

tion number of I in terms of the arithmetic degree of G. A first observation is that if J

is a minimal reduction of I, then HðI Þ and G 0 are graded R½Jt�-modules and we will

seek the degrees of the equations of integral dependence of the elements of R½It�

acting as endomorphisms of these modules.

We will now pay attention to some of the general properties ofHðI Þ of G 0. We note

that dim G 0
¼ dim R ¼ d, and that

dim G 0=mG 0 < d;

since m contains regular elements on G 0. In the theory of Rees algebras of mod-

ules, the dimension of the special fiber of G 0 is called the analytic spread of the

module

‘ðI=I 2Þ ¼ dim G 0=mG 0:

DEFINITION 4.1. The inertial analytic spread of I is the dimension of the module

HðI Þ. We will denote it by hðI Þ ¼ dim HðI Þ.

A first observation is that since HðI Þ is annihilated by a power of m, it admits a
filtration whose factors are modules over G� R=m ¼ F ðI Þ. It follows that

hðI Þ ¼ dim HðI Þ4 dim F ðI Þ ¼ ‘ðI Þ:

A more concrete elementary observation is the following:

PROPOSITION 4.2. Let ðR;mÞ be a Noetherian local ring of dimension d and let I be

an ideal. If ‘ðI Þ ¼ d, then hðI Þ ¼ ‘ðI Þ.

Proof. Using the Artin–Rees lemma, choose s to be large enough so that

H \msG ¼ 0. This leads to the exact sequence

0! H�!G=msG�!G 0=msG 0
! 0;
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which shows that

dim H4 dim G=msG ¼ maxfdim H; dim G 0=msG 0
g:

But dim G=msG ¼ dim G=mG, and dim G 0=msG 0 < d sincem does not consist of zero

divisors of G 0. This shows that we must have hðI Þ ¼ ‘ðI Þ, as desired. &

COROLLARY 4.3. Let I be a non-m-primary ideal such that all the associated

primes of G have dimension d and HðI Þ 6¼ 0. Then hðI Þ ¼ ‘ðI Þ ¼ d and dim G 0
¼ d. In

particular degðG Þ ¼ degðHÞ þ degðG 0
Þ.

Proof. If HðI Þ 6¼ 0, it is a module of the same dimension as G, since the latter is
equidimensional. From Proposition 4.2, we have that d ¼ hðI Þ4 ‘ðI Þ, which proves

the first assertion.

Suppose now that dim G 0 < d. This means that HðI Þ is an ideal of height at least 1

and therefore must contain regular elements of G. On the other hand, msH ¼ 0,

which implies thatms � I, contradicting the assumption that I is not a primary ideal.

The asserted addition formula follows from the ways one computes multiplicities. &

PROPOSITION 4.4. Let ðR;mÞ be a Cohen–Macaulay local ring of dimension d, let I

be an unmixed ideal of codimension g and ‘ðI Þ ¼ d that is of linear type on the

punctured spectrum of R. If HðI Þ 6¼ 0, then ‘ðI=I 2Þ ¼ d� 1.

Proof. First, note that as ‘ðI Þ ¼ d, mG has codimension 0 and it is not a nil-

potent ideal. On the other hand, HðI Þ is not a nilpotent ideal either as this would

yield Gred ¼ G 0
red and therefore ‘ðI Þ would be at most d� 1. On the other hand,

since R is Cohen–Macaulay, the ring G is connected in codimension one (see

Brodmann, 1986, 2.5). This means that if A;B are nonnilpotent ideals with

A � B ¼ 0, then height ðAþ BÞ4 1. Applying this to the equation msHðI Þ ¼ 0, we

have that height ðmsGþHðI ÞÞ4 1, and therefore dimG 0=msGr 0 5 d� 1, as

desired. &

These observations will be useful for two reasons. First, we can use the theory of

Cayley–Hamilton polynomials to bound the degrees of endomorphisms on HðI Þ;

second, the fact that ‘ðI=I 2Þ is usually smaller than ‘ðI Þ permit us to get a simpler

reduction for the module than the ideal I itself allows.

4.1. IDEALS OF DIMENSION ONE

The first application of this setting is:

PROPOSITION 4.5. Let ðR;mÞ be a Cohen–Macaulay local ring and let I be an ideal

of dimension 1 that is generically a complete intersection. Let H ¼ H0
mðG Þ. If H 6¼ 0

then dimH ¼ d and the algebra defined by

0! H�!G�!G 0
! 0
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satisfies dimG 0
¼ d and degðR=I Þ ¼ degðG 0

Þ ¼ degðG Þ � degðH Þ.

Proof. We only have to show that degðR=I Þ ¼ degðG 0
Þ. The R=I-module

E ¼ I=I 2 (modulo torsion)

admits a reduction F � E which is a free module. Thus the Rees algebras RðF Þ �

RðE Þ have the same multiplicity. Since RðF Þ ’ R=I½T1; . . . ;Td�1�, we get the asser-

ted equality of multiplicities. &

THEOREM 4.6. Let ðR;mÞ be a Cohen–Macaulay local ring and let I be an ideal of

dimension 1 that is generically a complete intersection. Suppose further that R contains

a field of characteristic zero. Then

rðI Þ < degðG Þ:

Proof. We may assume that R is a complete local ring. Let J be a minimal

reduction of I and view the terms of the exact sequence

0! H�!G�!G 0
! 0;

as modules over the Rees algebra R½Jt�. We can also view H as a module over a ring

of polynomials k½T1; . . . ;Td� which is actually the special fiber of R½Jt�. This happens

because H is a module annihilated by a power of the maximal idealmr and therefore

is defined over the Artinian ring R=mr. Since R=m has characteristic zero, we can

find a field of representatives of R=mr.

After noting that the image of Jt in G 0 defines a reduction of the module E above,

we can choose a minimal reduction F of E contained in JtG 0. As R contains a field k

of representatives, there is a parameter z such that the inclusion k½½z�� � R=I makes

R=I free over k½½z�� of rank degðG 0
Þ ¼ degðR=I Þ. After changing notation in the

original Ti, let T1; . . . ;Td�1 be a set of generators of the module F. The ring G 0 is

a finitely generated torsionfree module over A ¼ k½½z��½T1; . . . ;Td�1�, of rank

degðR=I Þ.

Finally let at be an element of It and consider the mapping it induces as an endo-

morphism of H and of G 0. Applying the techniques of Cayley–Hamilton theorems of

Vasconcelos (1998b, Section 9.3), we get polynomials fðT Þ and gðT Þ monic and

graded over R½Jt�, of degrees degðHÞ and degðG 0
Þ respectively, such that fðatÞH ¼ 0

and gðatÞG 0
¼ 0. Thus fðatÞgðatÞG ¼ 0, which shows that pðatÞ ¼ fðatÞgðatÞ is the null

element of G. By lifting to R this gives an equation of integral dependence of a with

respect to J of degree n ¼ degðHÞ þ degðG 0
Þ,

an þ b1a
n�1 þ � � � þ bn 2 ðIR½It�Þn ¼ I nþ1; bi 2 J i:

In characteristic zero this implies, as remarked earlier, the desired inequality

rðI Þ < degðG Þ. &
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4.2. GORENSTEIN IDEALS OF DIMENSION TWO

It becomes considerably more complicated when the ideal has dimension greater

than one. To simplify we assume that R is a Gorenstein local ring, dimR=I ¼ 2, that

I is a perfect Gorenstein ideal and R=I is normal.

Let us make some general observations first. Let J be a minimal reduction of I. If

‘ðI Þ < d, I is a complete intersection. Indeed, if J is generated by d� 1 elements by

Vasconcelos (1994, Corollary 5.3.5), its associated primes have codimension at most

d� 1, which is impossible since R=I is normal.

We may then assume that I has a minimal reduction J ¼ ða1; . . . ; adÞ. In particular

this implies that H 0
mðG Þ 6¼ 0. The module

E ¼ I=I 2=(modulo torsion)

has analytic spread d� 1, so that d� 1 elements of Jt map into a reduction F of E.

Indeed a minimal reduction of E cannot be a free module F since then G 0 would be

integral over a ring of polynomials over a normal ring. This would imply that E is

also free which in turn would mean that

I=I 2 ’ ðR=I Þd�2 � L; L 6¼ 0;

a condition that would say that I contains a regular sequence of d� 1 elements.

Therefore we have ‘ðE Þ ¼ d� 1.

We claim that G 0 has a reduction that is a hypersurface ring over R=I,

RðF Þ ¼ R=I ½T1; . . . ;Td�1�=ð f Þ; f ¼
Xd�1
i¼1

aiTi:

Let F be a minimal reduction of E. F is a torsionfree module with a presentation

0! K�!ðR=I Þd�1�!F ! 0;

where K is a reflexive module of rank 1. Let f 2 ðR=I Þd�1 be a nonzero element of K,

and let L be the ideal generated by its coordinates as an element of ðR=I Þd�1. Note

that L�1f � K. Checking at the localizations of R=I at height one primes, it follows

easily that these modules are the same.

We now make use of the fact that E is an orientable module, and therefore so will

be its reductions. From the exact sequence above, L�1f is an orientable module as

well. Since it is reflexive, of rank one, it must be principal.

4.3. MULTIPLICITY OF ALMOST COMPLETE INTERSECTIONS

Let ðR;mÞ be a Cohen–Macaulay local ring and let E be a torsionfree R-module of

rank r > 0 with ‘ðE Þ ¼ rþ 1. We assume that E is an orientable module. This will

imply that any minimal reduction F has a free presentation

0! R�!Rrþ1�!F ! 0:
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We will assume further that the Rees algebra of F is an almost complete intersec-

tion, which means that

RðF Þ ¼ R½T1; . . . ;Trþ1�=ð f Þ; f ¼ a1T1 þ � � � þ arþ1Trþ1

where ða1; . . . ; arþ1Þ is an ideal of grade at least 2. From this description one has

degðRðE ÞÞ ¼ degðRðF ÞÞ ¼ degRðT1; . . . ;Trþ1Þ=ð f Þ:

We want however a different expression for this multiplicity. Let us explain the

goal of how to obtain a bound for the reduction number of E in terms of this multi-

plicity. We do this using a number of elementary observations.

Since the ring R is Cohen–Macaulay and RðF Þ is Cohen–Macaulay and the ideal

generated by its 1–forms has height r, there is (we are assuming that the residue field

of R is infinite) a submodule ~FF of F generating a regular sequence of height r.

Furthermore its generators can be chosen so that degðRðF ÞÞ ¼ degðRðF Þ=ð ~FF ÞÞ.

PROPOSITION 4.7. The R-module Cn defined by the exact sequence

0! ~FFn �!Fn �!Cn ! 0;

has multiplicity

degðCnÞ ¼
nþ r� 1

r

� �
degðC1Þ:

Proof. We note that the modules Fn all have projective dimension 1 so that the

projective dimension of Cn is also 1. So for the purpose of putting together degðCnÞ

through the usual associativity formula

degðCnÞ ¼
X

height p¼1

lððCnÞpÞ degðR=pÞ;

we may assume that dimR ¼ 1.

We recall that we may reduce to the case of modules over discrete valuation rings,

and the assertion is a simple calculation of determinants. &

PROPOSITION 4.8. Suppose further that dimR ¼ 2 and set a ¼ degðC1Þ. Then

rðE Þ4 ðrþ 1Þa� 2ðrþ 1Þ � 1:

Proof. We note that the module En= ~FFn is Cohen–Macaulay of dimension 1. Its

multiplicity is the same as that of Fn= ~FFn. This leads to the inequalities

nðEnÞ4nðEn= ~FFnÞ þ nð ~FFnÞ

4 degðEn= ~FFnÞ þ nð ~FFnÞ

4 a
nþ r� 1

r

� �
þ

nþ r� 1

r� 1

� �
:
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To apply Eakin and Sathaye (1976) again (we may have to replace F by

another minimal reduction F 0), since ‘ðF Þ ¼ rþ 1, is will suffice to set n ¼ rðE Þ þ 1

such that

nþ rþ 1

rþ 1

� �
> a

nþ r� 1

r

� �
þ

nþ r� 1

r� 1

� �
:

This is equivalent to

n > ðrþ 1Þa� 2ðrþ 1Þ;

which is the desired bound for the reduction number of E. &

We must now relate a ¼ degðC1Þ to the multiplicity of RðF Þ. We use the additivity

formula on RðF Þ=ð ~FF Þ. Let P be a minimal prime of ð ~FF Þ, p ¼ R \P. Note that
p 6¼ m since ~FF is generated by r elements in a minimal generating set for F. In par-

ticular C1 is a cyclic module.

There will be two kinds of minimal primes P of ð ~FF Þ, depending on whether

p ¼ R \P has height 0 or 1. If p is a minimal prime of R, P ¼ ðp;F Þ. In the other

case, P ¼ ðp; ~FF Þ, where p is an associated prime of C1.

We can now put together the multiplicity formula:

degðRðF Þ=ð ~FF ÞÞ ¼
X

height p¼0

lððRðF Þ= ~FF ÞPÞ degðRðF Þ=PÞ þ

þ
X

height p¼1

lððRðF Þ= ~FF ÞPÞdegðRðF Þ=PÞ

The first partial summation, since P ¼ ðp;F Þ, gives

X
height p¼0

lððRðF Þ=ðF ÞÞp ¼ RpÞ degðR=pÞ ¼ degðR=I Þ:

In the other partial summation, one has

lððRðF Þ=ðF ÞÞPÞ ¼ lððC1ÞpÞ;

and the degree factor is at least 1. Altogether we obtained:

PROPOSITION 4.9. The following estimation holds

degðRðF ÞÞ ¼ degðRðF Þ=ð ~FF ÞÞ5 degðR=I Þ þ a:

As a consequence, we derive the following bound for the reduction number of the

Gorenstein ideal that we treated:

THEOREM 4.10. Let R be a Gorenstein local ring of dimension d and let I be a

perfect Gorenstein ideal of dimension two such that R=I is normal. Suppose in addition
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that the residue field of R has characteristic zero. The following bound for the reduction

number of I holds

rðI Þ4 ðd� 1Þ � degðG Þ � 4dþ 5:

Proof. We are going to bound the reduction number of I by gluing it from the

reduction number of E and the multiplicity of HðI Þ in the exact sequence

0! HðI Þ �!G�!G 0
! 0:

For each element z 2 G, we have a monic, homogeneous, polynomial fðzÞ with

coefficients in a minimal reduction of I (in fact, any minimal reduction) such that

fðzÞHðI Þ ¼ 0. We proved earlier that f can be chosen of degree at most

eðHðI ÞÞ4 degðG Þ.

On the other hand, we also proved that Esþ1 ¼ FEs, where (recall r ¼ d� 2)

s ¼ ðd� 1Þa� 2ðd� 1Þ þ 1:

Lift F to a minimal reduction J � I. This is feasible with the assumption that R has

an infinite residue field and the manner in which the reductions F (or F 0) and J are

chosen as generic linear combinations of a set of generators of I. Thus for any ele-

ment Z 2 G1, we have that z ¼ Zsþ1 � gðZ Þ 2 HðI Þ, with the class of gðZÞ in RðE Þ

lying in FEs. Now we find an equation for z as described earlier. Altogether we

have an equation of integral dependence for Z over JtG, of degree

4 sþ 1þ eðHðI ÞÞ.

Since we proved that a4 degðRðF ÞÞ ¼ degðG Þ � degðHðI ÞÞ, we obtain a reduction

number

rðI Þ4 arith-degðHðI ÞÞ þ ðd� 1Þa� 2ðd� 1Þ þ 1

4 arith-degðHðI ÞÞ þ ðd� 1ÞðdegðG Þ � arith� degðHðI ÞÞ � 2dþ 3

4 þ ðd� 1Þ degðG Þ � ðd� 2Þarith-degðHðI ÞÞ � 2dþ 3

4 ðd� 1Þ � degðG Þ � 4dþ 5:

This is very similar to the formula of Doering et al. (1998) that considers the

primary case.
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