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To draw concrete pictures of the hierarchy of multiscale coherent vortices in turbulence
behind a cylinder and to reveal their sustaining mechanism, we conduct direct numerical
simulations of the turbulence at the Reynolds number, which is defined by the uniform
inflow velocity and the cylinder diameter, 5000. The turbulence consists of three kinds
of hierarchies of coherent vortices in three distinct regions: namely, the downstream
region, the recirculation region just behind the cylinder and the separate shear layers.
By tracking the temporal evolution of multiscale vortices in each of these regions, we
demonstrate that, in all the three regions, smaller coherent vortices tend to align in the
direction perpendicular to larger ones. This implies that smaller vortices are stretched and
amplified in the strain-rate fields around larger ones. We also show the relevance of this
observation to the energy cascade. Smaller-scale vortices receive the kinetic energy in the
regions where they are stretched by larger-scale vortices; and, at the same time, they tend
to compress larger ones, thus reducing larger-scale kinetic energy.

Key words: wakes

1. Introduction

One of the most important unsolved issues on turbulence is to elucidate the energy
cascade. Many researchers have accumulated many pieces of knowledge on the energy
cascade in turbulence through various analyses from multifaceted perspectives. First, it
is evident that the kinetic energy cascades, on average, from large to small scales in
turbulence. This was verified in studies on the energy flux in wavenumber space (e.g.
Domaradzki & Rogallo 1990; Ohkitani & Kida 1992; Borue & Orszag 1998; Cerutti &
Meneveau 1998; Chen et al. 2003; Aoyama et al. 2005) and in a scale space defined
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by the two different locations in turbulence (e.g. Cerutti & Meneveau 1998; Yasuda &
Vassilicos 2018). However, there is no clear consensus on the energy transfer mechanism
in the instantaneous turbulent fields. In fact, although various analyses concluded that
interscale energy transfer can occur bidirectionally (e.g. Borue & Orszag 1998; Cerutti
& Meneveau 1998; Tao, Katz & Meneveau 2002; Chen et al. 2003; Aoyama et al. 2005;
Gomes-Fernandes, Ganapathisubramani & Vassilicos 2015; Alves Portela, Papadakis &
Vassilicos 2017; Yasuda & Vassilicos 2018), we do not fully understand the relevance of
these observations to the energy cascade. Here, we refer to some of the commonly used
methods for quantifying energy transfer. Studies on large eddy simulations (LES) often
quantify interactions between grid-resolved and subgrid scales to examine, for example,
their relationship to coherent flow structures (e.g. Piomelli, Yu & Adrian 1996; Lin
1999; Natrajan & Christensen 2006; Hong et al. 2012; Watanabe, Da Silva & Nagata
2020). There are also quite a few studies (e.g. Marati, Casciola & Piva 2004; Cimarelli,
De Angelis & Casciola 2013; Gomes-Fernandes et al. 2015; Hamba 2015; Cimarelli
et al. 2016; Yasuda & Vassilicos 2018; Hamba 2019; Zhou et al. 2020) arguing the
interscale energy transfer by using the Kármán–Howarth–Monin–Hill (KHMH) equation
(Hill 2002). For instance, in turbulence behind an obstacle, which is also the target of the
present study, Alves Portela et al. (2017) demonstrated that the energy transferred to larger
scales in the mainstream direction. In their subsequent study (Alves Portela, Papadakis
& Vassilicos 2020), they also showed the energy flux to small-scale turbulence due to
the largest-scale coherent structures. In addition to studies on LES and those using the
KHMH equation, there are also studies on interscale interactions of turbulence (Kawata
& Alfredsson 2018, 2019; Chan, Schlatter & Chin 2021) by the spectral analyses of the
scale-decomposed Reynolds stress. These studies have contributed to turbulence models
and theories (e.g. Kobayashi 2005; Kobayashi, Ham & Wu 2008; Marusic & Monty 2019;
Vela-Martín 2022). However, as mentioned above, it is still unclear how the energy is
transferred between different scales in physical space. This is because the energy fluxes
and transfers defined in most of the aforementioned studies denote the amounts of energy
passing across a scale per unit time and its derivative with respect to scale, respectively.
Hence, these quantities, in general, cannot capture the energy transfers between two scales.
An important point of the present study is to quantify the energy flux between two scales,
which may be estimated locally in space, to clarify the concrete picture of the energy
cascade.

We also investigated the generation mechanism of the hierarchy of coherent vortices
in turbulence. For turbulence in a periodic cube, not only our group (e.g. Goto 2008,
2012; Goto, Saito & Kawahara 2017) but also many authors (e.g. Leung, Swaminathan
& Davidson 2012; Cardesa, Alberto & Jiménez 2017; Doan et al. 2018; Hirota et al.
2020) identified vortical structures with various sizes by decomposing turbulent fields
obtained by the direct numerical simulations (DNS) into different scales. Such a scale
decomposition gives a clear picture of the hierarchy of coherent vortices. For example,
Goto et al. (2017) showed that at each level of the hierarchy, coherent tubular vortices
tend to form counter-rotating pairs. Since the counter-rotating vortex pairs induce a strong
strain-rate field around them, they effectively amplify smaller-scale vortices (Goto 2012;
Goto et al. 2017) due to vortex stretching. It is also evident that small-scale vortices tend to
be generated by being stretched by twice to eight times larger vortices (Leung et al. 2012;
Goto et al. 2017). Recently, Yoneda, Goto & Tsuruhashi (2022) quantified the spatially
averaged interscale energy transfer due to the vortex stretching. Under the assumptions
based on the generation mechanism of the hierarchy of vortices, they also derived the −5/3
power law of the energy spectrum without Kolmogorov’s similarity hypotheses. Thus,
these results are not inconsistent with the conclusion that the scale-local vortex stretching
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is the cause of the energy cascade. Incidentally, the scale decomposition of turbulence
also revealed the multiscale nature in near-wall turbulence (e.g. Lozano-Durán, Holzner &
Jiménez 2016; Lee, Sung & Zaki 2017; Motoori & Goto 2019, 2021). In turbulent boundary
layers (Motoori & Goto 2019) and turbulent channel flow (Motoori & Goto 2021), we
observed similar energy cascading events for vortices at small scales, i.e. vortices smaller
than the Corrsin length scale (Corrsin 1958) in the log layer.

The present study aims to elucidate (i) the concrete picture of the hierarchy of coherent
vortices in the turbulent wake behind a cylinder and (ii) the sustaining mechanism of
these vortices. Here, we must note that the sustaining mechanism of the large-scale
vortices, which are the origins of the energy cascade, can be different from that
in turbulence without flow separation, for example, periodic turbulence (Goto et al.
2017), zero-pressure-gradient turbulent boundary layers (Motoori & Goto 2019) and
turbulent channel flow (Motoori & Goto 2021). We must also note that the flow state
behind a cylinder is different depending on the ranges of the Reynolds number ReD =
U∞D/ν (Williamson 1996; Forouzi Feshalami et al. 2022), where U∞ is the upstream
uniform velocity magnitude, D is the diameter and ν is the kinematic viscosity of the
fluid. For ReD ≈ 50–190, Kármán vortices are shed alternately from the cylinder. The
laminar-turbulence transition occurs for ReD ≈ 190–260, where streamwise rib vortices
are formed between roller vortices, which correspond to the Kármán vortices at low
ReD. In this regime two modes are known. For ReD ≈ 190–230, roller vortices are
deformed to tongue-shaped vortex sheets (mode A), whereas, for ReD ≈ 230–260, they
stretch and amplify smaller rib vortices around themselves (mode B). In the turbulent
regime ReD ≈ 103–2 × 105, small vortices emerge in the separated shear layers due to the
Kelvin–Helmholtz (KH) instability. In particular, for ReD � 6000, the vortices generated
through the KH instability are advected into the downstream shear layer while keeping
their shape. In contrast, for ReD � 6000, the KH vortices are deformed in the upstream
shear layer due to the earlier transition to developed turbulence (e.g. Norberg 2003;
Rajagopalan & Antonia 2005; Thompson & Hourigan 2005). For the further developed
turbulence for ReD ≈ 2 × 105–106, the separated shear layer reattaches to the cylinder,
leading to the well-known drag crisis.

Although the transition mechanisms in a wide range of ReD have been extensively
investigated by experiments (see the reviews by Williamson 1996; Forouzi Feshalami et al.
2022) and LES (e.g. Breuer 1998; Lehmkuhl et al. 2014; Rodríguez et al. 2015), there are
only a few studies of DNS that focus on energy cascade and its relation to multiscale flow
structures. For example, Aljure et al. (2017) conducted the DNS of turbulence behind a
cylinder for ReD = 5000 to demonstrate that the shed vortices are distorted in the axial
direction (i.e. the so-called vortex dislocation). Aasland et al. (2022) also conducted
DNS of turbulence behind a single cylinder and tandem cylinders for ReD = 104 to
investigate the reattachment mechanism of the separated shear layers. In the present study
we investigate developed turbulence behind a cylinder at ReD = 5000, where vortices
emerge in the shear layer but they are hardly deformed. Here, we regard the present
turbulence as a developed one because, as will be shown below, the power spectrum
obeys a power law (see figure 2 in § 2), which implies a sufficiently large separation in
scales.

In the rest of the paper we first describe the numerical methods in § 2. Then, we
investigate qualitatively (§ 3) and quantitatively (§ 4) the generation mechanism of the
hierarchy of multiscale coherent vortices in the three distinct regions behind the cylinder.
In § 5 we investigate energy transfer in instantaneous fields to show the relevance of the
generation mechanism of the hierarchy of vortices to the energy cascade.
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Figure 1. Numerical configuration. We set the origin of the coordinate at the cross-point of a centreline in the
x2 direction and the axis of the cylinder.

ReD N1 × N2 × N3 L1 × L2 × L3 �t Δ

5000 8192 × 2560 × 1024 64 × 20 × 8 6.25 × 10−4 7.81 × 10−3

Table 1. Numerical parameters. Here Ni is the number of grid points in the xi direction, Li is the domain size
in the xi direction, �t is the time per step and Δ is the grid width.

2. Numerical methods

2.1. Direct numerical simulations
We conduct DNS of turbulence behind a cylinder at ReD = 5000 by numerically
integrating the non-dimensional forms of the Navier–Stoke equation,

∂u
∂t

+ u · ∇u = −∇p + 1
ReD

∇2u, (2.1)

and the continuity equation,
∇ · u = 0, (2.2)

of an incompressible fluid. Here, u(x, t) and p(x, t) are the non-dimensional fluid velocity
and pressure fields at position x and time t, where we use D, D/U∞ and ρD3 (ρ is the
mass density of the fluid) as the length, time and mass units, respectively.

Figure 1 shows the numerical configuration. We define the x1, x2 and x3 axes in the
streamwise, the normal to the cylinder and the axial directions, respectively. We list
numerical parameters of the DNS in table 1, where Ni and Li denote the number of grid
points and the side of the numerical domain in the xi direction, respectively.

We impose the uniform flow, u = (1, 0, 0), at the inlet and the convective condition,
∂ui/∂t + Um∂ui/∂x = 0, at the exit, where Um(t) is the spatial average of the u1 at the
exit plane. Under these boundary conditions, we numerically integrate (2.1) and (2.2)
by the simplified marker and cell method (see Amsden & Harlow 1970; Kajishima &
Taira 2017). For the global mass conservation in the computational domain, we correct
u1 at the exit plane (Simens et al. 2009) before we solve the Poisson equation for the
pressure. For the temporal integration, we use the second-order Adams–Bashforth method
for the advection term and the second-order Crank–Nicolson method for the viscous term.
We set a uniform Cartesian staggered grid, and employ the second-order central finite
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difference to evaluate the spatial derivatives. The grid width Δ is set to be smaller than
2.6η(x1, x2), and the time �t per step is smaller than 0.013τη(x1, x2). Here, η(x1, x2) and
τη(x1, x2) are the Kolmogorov length and time, which are estimated by (ν3/ε̄)1/4 and
(ν/ε̄)1/2, respectively. Here, ε̄(x1, x2) is the energy dissipation rate averaged over t and x3.
We express the cylinder using the immersed boundary method (Uhlmann 2005; Kempe &
Fröhlich 2012) to impose the non-slip boundary condition on the surface of the cylinder. In
this method we distribute Lagrangian force points uniformly on the cylinder surface with
the same spacing as the grid width of the DNS. We then impose body force on the fluid
grid points around the force points so that the fluid velocity at the force points satisfies the
non-slip boundary condition.

In the following, we show results in the statistically steady state. We define the origin
(t = 0) of time by the moment when about 3.42 washout times elapse since roller vortices
start shedding. We take statistics for the duration 0 � t � T with T = 81.24, during which
about 16 pairs of roller vortices are shed. We validate the present DNS in Appendix A.

2.2. Scale decomposition
We evaluate the power spectrum density,

E2(x, f ) = |û′
2(x, f )|2

T
, (2.3)

for the x2 component of the fluctuating turbulent velocity. Here,

û′
i(x, f ) =

∫ T

0
u′

i(x, t) exp(−2πift) dt (2.4)

denotes the Fourier transform of u′
i(x, t). Figure 2(a) shows the mean power spectrum

density of E2(x1, x2 = 0, f ), which is averaged over x3, at eight streamwise locations
(1 � x1 � 8). We see that the power spectrum densities have a peak at f = 0.20. This
means that the Strouhal number St is 0.20 for this ReD (= 5000), which is in good
agreement with the value 0.203 of the DNS results at Re = 3900 (Parnaudeau et al. 2008).
Incidentally, the secondary peak at f = 3St observed for x1 � 2 is also in good agreement
with the LES results (Parnaudeau et al. 2008). This secondary peak was also observed in
the experiment (Ong & Wallace 1996) and DNS (Lehmkuhl et al. 2013), though, to the best
of our knowledge, its origin is unknown. We also observe an approximate −5/3 power law
at all locations between x1 = 1 and 8. We can confirm the establishment of the power law
by looking at figure 2(b), where the compensated spectra E2f 5/3 show plateaus within a
factor of 2–3. This implies that there exists a hierarchy of vortices with various sizes in this
region. We cannot, however, observe such a hierarchy by using the raw data of the velocity
gradients. This is demonstrated in figure 3(a), which shows the isosurfaces of the second
invariant Q of the velocity gradient tensor. In this figure we can only observe fine tubular
vortices with the diameter approximately 10η (see figure 8 in § 3.2). The observation that
the raw values of Q only capture the smallest-scale vortices is common in many kinds
of turbulence; e.g. turbulence in a periodic cube (Goto et al. 2017), turbulent boundary
layers (Motoori & Goto 2019) and turbulent channel flow (Motoori & Goto 2021). This is
because the smallest-scale vortices determine the velocity gradients. Therefore, we need a
scale decomposition to observe the hierarchy of vortices.

There are many studies using scale decompositions for inhomogeneous turbulence (e.g.
Lee et al. 2014; Hwang et al. 2016; Lozano-Durán et al. 2016; Lee et al. 2017; Motoori
& Goto 2019, 2021). Here, we employ the Gaussian filtering method adopted by Motoori
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Figure 2. Power spectrum density (a) E2(x1, x2 = 0, f ) and (b) compensated by f 5/3: E2(x1, x2 = 0, f )f 5/3,
both averaged over x3 at x1 = 1, 2, . . . , 8. We have vertically shifted the curves for x2 ≥ 2. Blue dotted line
indicates the −5/3 power law.
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Figure 3. Coherent vortices with various sizes in the turbulent wake. (a) Isosurfaces of the second invariant Q′
of the velocity gradient tensor. (b–d) Isosurfaces of the second invariant Q′(σ ) of the scale-decomposed velocity
gradient tensor with (b) filter scale σ = σmax, (c) σmax/4 and (d) σmax/16. We set the thresholds in terms of
the root mean square of Q′

rms (or Q′(σ )
rms ) at (x1, x2) = (3, 0): (a) 1.53Q′

rms(= 75), (b) 0.60Q′(σ )
rms (= 5.0 × 10−3),

(c) 0.50Q′(σ )
rms (= 1.0 × 10−1) and (d) 1.42Q′(σ )

rms (= 2.0).

& Goto (2021) and Motoori, Wong & Goto (2022). First, we apply the three-dimensional
Gaussian filter to the velocity ui,

u[σ ]
i (x, t) = 1

(
√

2πσ)3

∫
ui(x′, t) exp

(−(x − x′)2

2σ 2

)
d x′, (2.5)
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to obtain low-pass filtered velocity components u[σ ]
i . Here, σ denotes the filter width. We

choose a constant σ irrespective of x because we will investigate Lagrangian tracking of
vortices on given scales in § 3.1. Note that u[σ ]

i only contains the velocity fields with scales
larger than σ . Note also that the Fourier transform of (2.5) leads to

û[σ ]
i (k, t) = ûi(k, t) exp

(−|k|2σ 2

2

)
, (2.6)

where X̂(k) denotes the Fourier transform of X(x) and k is the wavenumber vector. In the
present DNS, we use for the x1 direction the one-dimensional Gaussian filter in a discrete
form,

u[σ ]1D
i (x1, x2, x3, t) =

∑
x′

1
ui(x′

1, x2, x3, t) exp

(
−(x1 − x′

1)
2

2σ 2

)
Δ

∑
x′

1
exp

(
−(x1 − x′

1)
2

2σ 2

)
Δ

, (2.7)

and the Fourier representation (2.6) for the other (i.e. x2 and x3) periodic directions to
implement the three-dimensional Gaussian filter (2.5). In (2.7) we take the summation for
x′

1 over the whole domain; that is, the filter length is Lx.
Next, we take the difference between the filtered velocities with two different filter

widths σ and 2σ ,

ui
(σ )(x, t) = u[σ ]

i (x, t) − u[2σ ]
i (x, t), (2.8)

which corresponds to a band-pass filter, since it contains information only in the band
[σ, 2σ) of length scales. Hereafter, the superscript · (σ ) denotes the filter band of [σ, 2σ).

In the following analyses we first compute u(σ )
i (x, t), and then evaluate scale-

decomposed quantities, which are simply called quantities at scale σ , from u(σ )
i (x, t). For

example, we define the second invariant,

Q(σ ) = −1
2 D(σ )

ij D(σ )
ji = 1

2

(
W(σ )

ij W(σ )
ij − S(σ )

ij S(σ )
ij

)
, (2.9)

at scale σ of the scale-decomposed velocity gradient tensor,

D(σ )
ij = ∂u(σ )

i
∂xj

= S(σ )
ij + W(σ )

ij . (2.10)

Here, Wij = (Dij − Dji)/2 and Sij = (Dij + Dji)/2.
Recall that the present system has a mean flow. It is therefore important, in some cases,

to consider the scale decomposition of the fluctuation velocity u′
i(= ui − ui) obtained

by using the Reynolds decomposition. The band-passed fluctuation velocity u′(σ )
i (x, t) is

estimated by the difference between u′[σ ]
i and u′[2σ ]

i that are defined similarly to u[σ ]
i and

u[2σ ]
i , respectively. Accordingly, we also define Q′(σ ) by using u′(σ )

i .

3. Hierarchy of coherent vortices

In this section we demonstrate that the scale decomposition, which is introduced above,
captures the hierarchy of coherent vortices. First, we visualize vortices at different scales
(figure 3b–d) by using the isosurface of Q′(σ ). Here, we choose thresholds in terms of
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x2
x1

x3

x2
x1
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x2
x1

x3

x2
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x3

(i)

(i)

(ii)

(iii)
(iii)

(ii)

(a) (b)

Figure 4. Simultaneous plot of the vortices with different scales in figure 3(a–d). The subdomains (i)–(iii)
indicate the three distinct regions examined in §§ 3 and 4. See supplementary movie 1 available at https://doi.
org/10.1017/jfm.2023.824.

root-mean-square values at (x1, x2) = (3, 0) so that we can identify coherent vortices
in the three subdomains examined below. We set the filter scales as (b) σ = σmax, (c)
σmax/4 and (d) σmax/16. Here, we define the largest length scale σmax by D/(2πSt)
(Yasuda, Goto & Vassilicos 2020) with St = 0.20 (see § 2.2), which corresponds to the
diameter (σmax = 0.8D) of the shed roller vortices. On the other hand, the smallest scale
σ = σmax/16 corresponds to σ = 6.4Δ, which means that the three filter scales are well
resolved by the DNS grid width. The scale ratio, four, was also used in our previous
studies (Goto et al. 2017; Motoori & Goto 2019, 2021) because we can identify distinct
coherent vortices with this scale ratio. Incidentally, this is consistent with the observation
that small vortices are most likely to be perpendicular to four times larger ones (see
figure 14 in § 4.4). Figure 3(b) for σ = σmax shows that roller vortices are coherent even
in high-Reynolds-number turbulence, though they cannot be observed without the scale
decomposition (figure 3a). Figures 3(c) and 3(d) show that smaller vortices, which are
larger than the Kolmogorov-scale eddies (figure 3a), are also coherent.

Figure 4 simultaneously shows the vortices at four length scales shown in figure 3(a–d).
We see that these vortices show clear coherence; namely, blue rib vortices are located
between grey roller vortices and the axis of ribs is perpendicular to rollers; similarly,
further smaller yellow vortices are located around blue rib vortices and the axes of these
small vortices tend to be perpendicular to rib vortices. As will be shown in the following
sections, these tendencies are due to the creation mechanism that smaller-scale vortices
are amplified by being stretched around larger-scale ones. The supplementary movies 1–4
visualize the detailed dynamics.

We also emphasize that, although some smaller vortices exist within a larger vortex,
they do not cluster to form the vortex; in other words, even if we lower the threshold of
the isosurface for smaller-scale vortices, the isosurface gets connected but they do not
form a larger vortex. These observations are similar to turbulence in a periodic cube
(Goto 2008; Goto et al. 2017), turbulent boundary layers (Motoori & Goto 2019, 2020)
and turbulent channel flow (Motoori & Goto 2021). However, the turbulent wake is more
complex than these flows because the largest-scale vortices are different depending on
regions. To clarify this feature, we examine in the following subsections the sustaining
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Hierarchy of vortices in turbulence behind a cylinder

x2 x1

x3

x2 x1

x3

(a) (b)

Figure 5. Lagrangian tracking (with the velocity 0.82u1 at (x1, x2) = (5, 0.6)) of subdomain (i) that is framed
with black lines in figure 4. The subdomain is located in (a) 1.2 � x1 � 4.6 at t = 0 and in (b) 3.4 � x1 � 6.8
at t = 2.4. See supplementary movie 2.

x2 x1

x3

x2 x1

x3

x2 x1

x3

(a) (b) (c)

Figure 6. Vorticity direction at (a) σ = σmax and (b) σmax/4. (c) Stretching direction e(σ )
1 at σ = σmax. We

show the arrows only in vortices at scales (a) σ = σmax and (b,c) σmax/4 shown in figure 5(a).

mechanism of the hierarchy of vortices in three distinct regions: (i) the downstream region,
(ii) the recirculation region just behind the cylinder and (iii) the separated shear layer. We
show the magnified visualizations in each region (i.e. the regions labelled by (i)–(iii) in
figure 4) in figures 5–8, respectively.

Incidentally, in figures 3 and 4 we identify coherent vortices by using Q′(σ ), which is
estimated with the Reynolds decomposition. Appendix B shows that Q(σ ), without the
Reynolds decomposition, differs from Q′(σ ) for larger scales because Q(σ ) can capture
not only these vortices identified by Q′(σ ) but also a pair of quasi-stationary vortices just
behind the cylinder. As will be discussed in § 4.2, these quasi-stationary vortices play
crucial roles in the recirculation region. However, in this section we use Q′(σ ) to identify
vortices since the pair of large vortices identified by Q(σ ) prevent us from observing small
vortices near the cylinder.
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x2 = –1

1

x2 x1

x3

x2

x1

x3

(a) (b)

Figure 7. (a) Magnification of subdomain (ii) that is framed with blue lines in figure 4. (b) Further
magnification of the subdomain that is framed with blue lines in (a). See supplementary movie 3.

x2 = 0

x2
x1

x3

1

x2 = 0

x2
x1

x3

1

(a) (b)

Figure 8. (a) Magnification of subdomain (iii) that is framed with red lines in figure 4. The width of the black
grid indicates 20η at (x1, x2) = (0.8, 0.5). In (b) we show the vorticity direction of yellow vortices. Black
arrows indicate negative vorticity in the spanwise component (same as the vorticity of the shear layer), whereas
grey arrows indicate the positive one. See supplementary movie 4.

3.1. Downstream region of the wake
First, we examine the downstream region of the wake where roller vortices exist; see
figure 5(a), which corresponds to the subdomain labelled by (i) in figure 4. To see the
temporal evolution of coherent vortices in this subdomain, we track the subdomain with
0.9U∞ so that a pair of grey rollers remain in the frame. The subdomain is located in
1.2 � x1 � 4.6 (figure 5a) at t = 0, and it is in 3.4 � x1 � 6.8 (figure 5b) at t = 2.4. We
observe in figure 5(a) that blue rib vortices tend to align to the stretching direction around
the grey pairs of roller vortices. Figure 6 shows the direction of the vorticity ω(σ ) of (a)
roller and (b) rib vortices, and figure 6(c) shows the eigenvector e′(σ )

1 corresponding to the
maximum eigenvalue of S′(σ )

ij . We can see that the axes of rib vortices are indeed aligned
to the stretching direction induced by the roller vortices. This implies that the rib vortices
are amplified by vortex stretching, which will be quantitatively verified in the next section.
Similar events were also observed in experiments (Lin, Vorobieff & Rockwell 1996) of
the turbulent wake at ReD = 104. In the downstream region (figure 5b) blue rib vortices
also tend to form counter-rotating pairs (see also figure 6b), while the roller vortices are
weakened (see also figure 4), and further smaller vortices (yellow ones) are stretched
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Hierarchy of vortices in turbulence behind a cylinder

and amplified in the straining regions around these blue vortex pairs. In fact, yellow
vortices tend to perpendicularly align to blue ones, i.e. the stretching direction around
counter-rotating pairs of rib vortices. Thus, the scale-by-scale cascading events originating
from the shed roller vortices are evident in this downstream region. Supplemental movie 2
is also available online to observe these events.

The above observation may imply that the origin of the −5/3 power law of the power
spectrum (figure 2) in the downstream of the wake is similar to that in homogeneous
turbulence. Since vortex-stretching events at different scales simultaneously occur in
statistically steady turbulence, vortices at various ages coexist. This makes the observation
of each elementary process obscure in turbulence in a periodic cube. In contrast, in a
turbulent wake, since smaller-scale vortices are created successively as the flow develops
downstream, the elementary process of the cascade is rather clear (figure 5 and movie 2).
It is also important that, since the successive cascading events occur outwardly toward
the turbulent/non-turbulent interface, Kolmogorov-scale vortices are dominant at the
interface. This explains observation (Watanabe et al. 2014; Silva, Zecchetto & Da Silva
2018; Watanabe, Da Silva & Nagata 2019) that the interface is accompanied by a sharp
change of the vorticity.

3.2. Recirculation region
Next, we examine the recirculation region (i.e. −0.5 � x2 � 0.5) just behind the cylinder.
Recall that the power spectrum E2( f ) obeys the −5/3 power law even in this region
(figure 2).

In figure 7(a), which is a magnification of subdomain (ii) of figure 4, we visualize the
isosurface of Q′ (black objects) and Q′(σ ) with σ = σmax/4 (blue) and σmax/16 (yellow) in
the same region. In this region blue vortices with σmax/4 are quasi-stationary, which are
shedding as roller vortices with σmax in the downstream. It is evident in figure 7(a) and
its supplementary movie 3 that smaller yellow vortices tend to align in the x2 direction,
that is, the stretching direction in the velocity field induced by the quasi-stationary blue
vortices. This implies that the yellow vortices are stretched and amplified by them.

In figure 7(b) we further magnify a subdomain of figure 7(a). Further smaller (i.e. the
Kolmogorov-scale) black vortices tend to be perpendicular to yellow ones. This implies
that these vortices are also amplified by the vortex stretching. Incidentally, since the size
of yellow vortices is 10–20η, some yellow vortices are identical to black ones.

These observations in figure 7 are, again, similar to turbulence in a periodic cube except
that the origin of the cascading events is the blue paired vortices in the wake instead of the
largest vortices sustained by some external force in periodic turbulence. In other words,
flow in the recirculation region is statistically stationary turbulence, which explains the
immediate appearance of the −5/3 power law just behind a cylinder. More concretely,
the quasi-stationary counter-rotating roller vortices are the source of the energy cascade
to create the spectrum. This is consistent with the results obtained by the analysis of the
KHMH equation; for example, Alves Portela et al. (2020) demonstrated the coherent roller
vortices feed energy to stochastic motions, at smaller scales, in turbulence just behind the
square prism (x1 = 2). Incidentally, although Yasuda et al. (2020) suggested the possibility
that the interaction between the shed roller vortices and the smaller-scale vortices in the
shear layers (see the next subsection) led to the establishment of the −5/3 power-law
spectrum, the present visualizations (figure 7) suggest a simpler process of the small-scale
vortex generations.
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3.3. Separated shear layer
Next, we examine the region (0.2 � x1 � 1.5, 0 � x2 � 1) around one of the shear layers
attached to the cylinder; see figure 8, which is a subdomain labelled by (iii) in figure 4.
The transparent object in the figure is the cylinder. Figure 8(a) shows that upstream yellow
vortices are parallel to the cylinder. We also show in figure 8(b) the rotational direction
of these vortices identified by the vorticity. The black arrows show the same vorticity
direction as the mean shear layer, while the grey ones show the opposite. We can see that
these yellow vortices tend to form counter-rotating pairs. There also exist smaller black
vortices, whose diameter is approximately 10η, around these yellow vortices. Note that
the grid width drawn on the bottom of the subdomain is 20η at (x1, x2) = (0.8, 0.5). The
events of the amplification of smaller vortices are more evident in supplementary movie 4.
The observation suggests that the yellow shear layer vortices are parents and they stretch
and amplify smaller ones.

For ReD � 6000, vortices are deformed in the shear layer to interact with the shed
vortices in the recirculation region (Norberg 2003). In such a case, although these parent
vortices in the two regions can interact, the generation mechanism of sufficiently smaller
vortices may not be altered; that is, they are generated through the successive vortex
stretching. In fact, Aasland et al. (2022) demonstrated that smaller-scale streamwise
vortices are generated by being stretched by the shear layer vortices even for ReD = 104.

3.4. Summary of observations
We have unraveled the generation mechanism of the hierarchies of coherent vortices
in three distinct regions. In all of the regions, smaller vortices are generated by vortex
stretching due to about four times (recall that the scale ratio between the successive filter
scales is four in figures 3–8) larger vortices, but the origin of the cascading process is
different in these three regions: (i) the shed roller vortices in the downstream of the wake,
(ii) the counter-rotating pair of the quasi-stationary vortices in the recirculation region,
and (iii) the shear layer vortices in the shear layer.

Since the three regions overlap, around their boundaries, we observe different generation
mechanisms of vortices. For example, in figure 7 (i.e. recirculation region) yellow vortices
in the bulk are stretched by quasi-stationary pairs (around x2 ≈ 0), while we also observe
those are parallel to the cylinder in the shear layer (around x2 ≈ ±0.5). In figure 8 (i.e. the
separated shear layer), while the upstream yellow vortices are generated in the shear layer,
we also observe the downstream vortices aligned in the streamwise direction, which are
stretched by quasi-stationary vortices and/or shed rollers.

In addition, in figure 4 we can see some of downstream yellow vortices (σ =
σmax/16) stretched by grey roller vortices (σ = σmax). This is because, as will be shown
quantitatively in the next section, the vortex stretching contributes to a wide range of
scales, though the contribution is strongest with the scale ratio being about four.

Before closing this section, it is worth mentioning that many authors recently described
the energy cascade in terms of different mechanisms: for example, the reconnection of
anti-parallel vortices (Yao & Hussain 2022; Yao, Mollicone & Papadakis 2022) and the
elliptical instability due to interactions between vortices (McKeown et al. 2018; Mckeown
et al. 2020). It was also reported that strain-rate self-amplification plays a crucial role in
energy transfer (Carbone & Bragg 2020; Johnson 2021). Although the other mechanisms
can contribute to the energy transfer, in the following analyses we quantify the energy
transfer due to the vortex stretching to verify that the events shown in the present section
contribute to the transfer.
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Hierarchy of vortices in turbulence behind a cylinder

4. Scale-dependent energy transfer due to vortex stretching

To quantify the energy cascading events observed in the previous section, we define the
energy transfer rates due to the vortex stretching as

T ′(σS → σω) = (ω
′(σω)
i S′(σS)

ij ω
′(σω)
j )σ 2

ω. (4.1)

Here, ·̄ denotes the average over x3 and t. Since ω
′(σω)
i is the vorticity evaluated from u′(σω)

i
and since S′(σS)

ij is the strain-rate tensor evaluated from u′(σS)
i , the quantity ω

′(σω)
i S′(σS)

ij ω
′(σω)
j

in (4.1) indicates the contribution to the stretching of vorticity at σω from strain-rate fields
at σS on average. Here, we have assumed that the off-diagonal terms ω

′(σ ′
ω)

i S′(σS)
ij ω

′(σω)
j with

σ ′
ω /= σω and the advection term have smaller contributions to the enstrophy production

rate. The former assumption may be justified by the observation that vortices at different
scales are located in distinct regions (Yoneda et al. 2022). Although the amplification
of enstrophy due to vorticity advection seems weaker in three-dimensional turbulence,
quantitative evidence is needed to justify the latter assumption. We have also assumed
that the viscous effect is negligible in the inertial range (σω 	 η). This scale-dependent

enstrophy production rate ω
′(σω)
i S′(σS)

ij ω
′(σω)
j due to vortex stretching was also used to

investigate the generation mechanism of the hierarchy of vortices in periodic turbulence
(Goto et al. 2017), turbulent boundary layers (Motoori & Goto 2019) and turbulent channel
flow (Motoori & Goto 2021). In the present study we multiply the enstrophy production
rate by σ 2

ω to quantify the production rate of the energy at σω. Therefore, T ′ indicates the
interscale energy transfer rate due to vortex stretching. When T ′(σS → σω) is positive,
the energy of vortices at σω is amplified due to vortex stretching by strain rate at σS on
average; otherwise, the energy contained by vortices at σω is weakened due to the vortex
compression by vortices at σS. The definition of the energy transfer (4.1) is similar to the
quantity defined by Yoneda et al. (2022) for homogeneous isotropic turbulence.

Note that the mean strain rate Sij can also contribute to the enstrophy production in
addition to (4.1). To quantify this contribution, we define

TM (M → σω) = (ω
′(σω)
i


Sijω
′(σω)
j )σ 2

ω. (4.2)

Note that, since x3 direction is homogeneous (S13 = S31 = S23 = S32 = S33 = 0), only the
components of S12(= S21) and S22(= −S11) are non-zero. Figure 9 shows the distribution
of (a) S12 and (b) S22. In the downstream along the centreline (x2 ≈ 0), the mean strain
rates are small; whereas, around x2 ≈ ±0.5, the mean shear |S12| can be as large as O(1).
Hence, in the free shear layer in the downstream regions (i) and separated shear layer (iii),
TM indicates the contribution to the energy transfer from the mean shear S12.

In the recirculation region (ii) we do not use the Reynolds decomposition. This is
because TM in this region does not quantify the contribution from the mean shear S12
but from the quasi-stationary vortices behind the cylinder. We therefore evaluate

T̄ (σS → σω) = (ω
(σω)
i S(σS)

ij ω
(σω)
j )σ 2

ω (4.3)

in the recirculation region (ii) instead of T ′ and TM . Here, ω
(σω)
i is the vorticity evaluated

from the total velocity u(σω)
i at σω without the Reynolds decomposition and S(σS)

ij is the

strain-rate tensor evaluated from u(σS)
i . See Appendix B for the visualizations without the

Reynolds decomposition.
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Figure 9. Mean strain-rate fields (a) S12 and (b) S22. Only the region with u1 < 1 is shown.

In the following subsections, to quantify the energy transfer in the events observed in
figures 4–8, we evaluate T ′, TM and T̄ under the condition of Q′(σω) > 0 (or Q(σω) > 0).
We examine six scales (σmax, σmax/2, σmax/4, σmax/8, σmax/16 and σmax/32) at several
positions in the downstream region (§ 4.1), the recirculation region (§ 4.2) and the
separated shear layer (§ 4.3).

4.1. Downstream region of the wake

We show, in figure 10(a), T ′ (grey) at the location (x1, x2) = (3, 0), which is on the
centreline in the downstream region (figure 5a). Note that the vertical axis denotes T ′
normalized by the mean energy dissipation rate ε̄ and the horizontal one denotes σS/σω.
Looking at the black open squares (σω = σmax/32), we see that the twice-larger-scale
(σS/σω = 2) strain-rate fields contribute most to the energy transfer due to vortex
stretching. We also see that the four times larger-scale (σS/σω = 4) strain rates contribute
secondly. These trends are also the case for the smaller scales σω = σmax/16 (closed
squares), σmax/8 (open triangles) and σmax/4 (closed triangles). Therefore, vortices
smaller than the roller vortices (σω � σmax) are stretched in the twice and four times
larger-scale strain-rate fields, and through this process, they receive the energy. This is
consistent with the visualizations (figure 5); namely, blue rib vortices with size σmax/4
are stretched by the roller vortices, and further smaller vortices (yellow ones with size
σmax/16) are amplified by rib vortices.

It is also important that T ′(σS → σω) for σω � σmax/8 collapse. This implies that,
through a few steps of the scale-by-scale vortex stretching, small-scale statistics attain
self-similarity. This observation is similar to that in turbulence in a periodic cube (Yoneda
et al. 2022).

In addition, figure 10(a) shows that T ′ is negative for σS < σω. This implies that
smaller vortices, which are created by being stretched around larger vortices, are likely
to compress their parent vortices on average. The vortex compression by smaller vortices
is also consistent with the observations in figure 5 and movie 2; for example, pairs of
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Figure 10. Average energy transfer rate T ′ due to the vortex stretching by fluctuation strain rates at scale σS
to fluctuation vorticity at σω = σmax/32 (open squares), σmax/16 (closed squares), σmax/8 (open triangles),
σmax/4 (closed triangles), σmax/2 (open circles) and σmax (closed circles) at locations (a) (x1, x2) = (3, 0) and
(b) (3, 0.6). Blue symbols indicate the transfer rate TM from the mean strain rates.

rib vortices induce strong straining fields, where smaller vortices are generated; whereas
they also induce compressing fields on the other side of the pairs, where their parent
(roller) vortices are weakened. Note that the vortex compression by smaller vortices
implies the forward energy cascade. It is also important to see that, for small scales σω(�
σmax/8), the total energy transfer from larger scales (σS > σω) due to vortex stretching
is approximately balanced with the negative transfer from small scales (σS < σω) due to
the vortex compression; more precisely, although there is imbalance because of the viscous
effect for the present ReD, the energy transfer caused by vortex stretching and compression
is balanced in the inertial range for higher Reynolds numbers (see figure 1(b) in Yoneda
et al. 2022). We will develop further arguments on this point in § 5.

Next, we see, in figure 10(b), T ′ and TM at (x1, x2) = (3, 0.6) in the free shear layer in
the downstream region. Similarly to the downstream core region (figure 10a), vortices at
the small scales σω � σmax/8 receive the energy by being stretched by twice and four times
larger-scale strain rates. The difference is in TM; more concretely, TM for vortices at σω =
σmax/4 (closed triangles) is the largest among the six scales and this value is comparable to
T ′(2σω → σω). This means that rib vortices, which are stretched between counter-rotating
pairs of the roller vortices in the core region, are also stretched by the mean shear around
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Figure 11. Average energy transfer rate T̄ due to the vortex stretching by total strain rates at scale σS to
fluctuation vorticity at σω = σmax/32 (open squares), σmax/16 (closed squares), σmax/8 (open triangles), σmax/4
(closed triangles), σmax/2 (open circles) and σmax (closed circles) at location (x1, x2) = (0.65, 0).

x2 = ±0.6. We emphasize that, however, rib vortices are initially stretched around x2 ≈ 0
by the roller vortices (see movie 2).

4.2. Recirculation region
Next, we turn to the recirculation region (figure 7). Here, we evaluate T defined as (4.3),
which contains the contribution from the quasi-stationary vortices. Figure 11 shows T̄
at (x1, x2) = (0.65, 0). Looking at the black open squares (σω = σmax/32), we can see
that the twice-larger-scale strain-rate fields contribute most to the energy transfer, and the
four times larger-scale ones are next. These are also the case for σω = σmax/16 (closed
squares). These results are consistent with the events shown in figure 7 and supplementary
movie 3; namely, yellow vortices with size σmax/16 are stretched by the counter-rotating
quasi-stationary vortices and further smaller black vortices are stretched by yellow ones.

Here, we emphasize that the cascading events occur locally in the recirculation region.
We show in figure 12 the ratio of the advection time scale TA = D/U (U =

√
ui

2) to the

cascading time scale TC = 1/S (S =
√

Sij
2
). In the darker colour region with TA/TC > 1,

which is surrounded by the blue line (TA/TC = 1), the cascade is faster than the advection.
The spatial locality of the energy cascade explains that the −5/3 power law, which was
also observed in other wakes (e.g. Gomes-Fernandes et al. 2015; Alves Portela et al. 2017,
2020), is established immediately behind an obstacle. In contrast, in a downstream region
(x1 � 2), advection is faster than the cascade. This is the reason why we have tracked in
§ 3.1 vortices with the advection velocity.

4.3. Separated shear layer

Figure 13 shows T ′ (grey) and TM (blue) at (x1, x2) = (0.8, 0.65) in the separated shear
layer (figure 8). Similarly to the downstream and recirculation regions, to T ′ for small
vortices (the open squares, σω = σmax/32), the contribution from the twice-larger-scale
strain-rate fields is most significant. This verifies the observation (figure 8 and movie 4)
that the shear layer vortices stretch and amplify black smaller vortices. However, it
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Figure 12. Ratio between the cascading time (Tc) and the advection time (TA) by the mean flow in the
recirculation region. The blue line indicates TA/TC = 1.
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Figure 13. Same as in figure 10 but the results for (x1, x2) = (0.8, 0.65).

is evident that the transfer TM from the mean flow is also significant even for the
smallest-scale (σmax/32) vortices. This is because σω = σmax/32 ≈ 7.6η is comparable
with the Corrsin length scale Lc = ε̄1/2S12

−3/2
(σω = 0.24Lc). Motoori & Goto (2019)

showed that vortices larger than Lc are stretched mainly by the mean shear in turbulent
boundary layers, and this is also the case in the separated shear layer. Incidentally, if the
Reynolds number is higher, further smaller-scale (σω � Lc) vortices can be created by
twice-larger-scale vortices.

4.4. Alignment between stretching direction and vorticity
In §§ 4.1–4.3 we have demonstrated that smaller vortices are generated by being stretched
by larger (more, precisely, twice larger) vortices in all the three regions of the wake. Here,
we show that this is consistent with the observation in § 3 that small vortices tend to be
aligned in the straining regions induced by four times larger vortices.

To this end, we rewrite the scale-dependent enstrophy production rate in (4.1) as

ω
′(σω)
i S′(σS)

ij ω
′(σω)
j = s′(σS)

i (e′(σS)
i · ω′(σω))2, (4.4)

where s′(σS)
i (s′(σS)

1 � s′(σS)
2 � s′(σS)

3 ) are the eigenvalues of S′(σS)
ij and e′(σS)

i are the

corresponding eigenvectors. Note that s′(σS)
1 + s′(σS)

2 + s′(σS)
3 = 0 for incompressible fluids.
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Figure 14. (a) The p.d.f. of | cos θS,ω| for σω = σmax/16 in the region Q′(σω) > 0 at (x1, x2) = (3, 0.6). The
six lines show, from the thinner (and darker) to thicker (and lighter), σS/σω = 0.5, 1, 2, 4, 8 and 16. The dashed
line shows the self-alignment (i.e. σS/σω = 1). (b) Probability of 0.9 < | cos θS,ω| � 1 for σω = σmax/32 (open
squares), σmax/16 (closed squares), σmax/8 (open triangles) and σmax/4 (closed triangles).

We here define the alignment between the vorticity and stretching direction as

cos θS,ω(σS, σω) = e′(σS)
1 · ω̃′(σω), (4.5)

where ω̃′(σω) is the normalized vorticity ω′(σω)/|ω′(σω)|. A similar quantity was evaluated
in periodic turbulence (Leung et al. 2012; Goto et al. 2017) and turbulent boundary layers
(Motoori & Goto 2019) to show that small-scale vorticity tends to align with the stretching
direction at the four times larger scale. Goto et al. (2017) also quantitatively showed that
smaller vortices tend to be perpendicular to larger ones by using vortex axes identified
with the low-pressure method (Miura & Kida 1997; Kida & Miura 1998).

To demonstrate this tendency in the turbulent wake, we plot in figure 14(a) the
probability density function (p.d.f.) of | cos θS,ω| for σω = σmax/16 at (x1, x2) = (3, 0.6).
The probability P of | cos θS,ω| > 0.9 for σS/σω � 2 (darker lines) is larger than unity.
This implies that smaller-scale vortices tend to align with the stretching direction at larger
scales. Then, we show in figure 14(b) the probability P of 0.9 < | cos θS,ω| � 1 for vortices
at several scales (σω = σmax/4, σmax/8, σmax/16 and σmax/32). Looking at the results
(closed triangles, σω = σmax/4) for rib vortices, we see that these vortices are most likely
to be aligned to the stretching direction at the scale four times as large as themselves. We
also see vortices at scale σmax/16 align most to the stretching direction of rib vortices
(σmax/4). These observations are consistent with those in § 3.1, that is, blue rib vortices
are perpendicular to grey rollers; similarly, further smaller yellow vortices tend to be
perpendicular to rib vortices. We can also see a similar tendency of the alignment for
smaller-scale vortices (other symbols in figure 14b) and for other locations. In summary,
as observed in the visualizations (figures 5–8) and in the quantification (figure 14), smaller
vortices always tend to align perpendicular to four times larger vortices. However, this is
not inconsistent with the result that the twice larger vortices contribute most to the energy
transfer (figures 10, 11 and 13), since s′(σS)

i is larger for smaller scales. In other words,
as a result of the competition between the magnitude of s′(σS)

i and the alignment of e′(σS)
i

and ω′(σω), the strain rate at scales twice as large as the vortices is dominant in the energy
transfer due to vortex stretching.
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5. Relevance to the energy cascade

As shown in § 4, vortices are stretched by larger ones and compressed by smaller ones
on average. If this vortex stretching process corresponds to the energy cascade, the parent
vortices must lose their energy as smaller-scale vortices acquire it. The energy reduction
might be due to the vortex compression by smaller vortices, though our previous studies
(Goto 2008; Goto et al. 2017; Motoori & Goto 2019, 2021; Yoneda et al. 2022) did not
show clear evidence. Here, to describe the energy cascading process in instantaneous fields
in terms of the vortex stretching and compression, we examine the downstream region
where the multilevel hierarchy of coherent vortices exists.

First, to examine the energy transfer due to the vortex stretching by four times
larger-scale vortices, we define

TL→S =
(
ω

′(σ/4)
i S′(σ )

ij ω
′(σ/4)
j

)
σ 2. (5.1)

This is the unaveraged quantity in (4.1) with the fixed scale of strain rates as σS = 4σω;
recall that vortices tend to align in the straining regions induced by the four times larger
vortices (§ 4.4). When TL→S is positive, the larger vortices amplify the energy of smaller
vortices through the vortex stretching; otherwise, they reduce the energy of smaller ones
through the vortex compression.

We plot in figure 15(a) the active regions of positive and negative energy transfers due
to vortex stretching and compression by the isosurfaces of positive (yellow) and negative
(red) TL→S(= ±6.4 × 10−3) for σ = σmax, respectively. For visibility, we do not display
in panel (b) the yellow objects. Comparing these panels, we see that yellow isosurfaces
coincide with most of the blue rib vortices. We can also see that the red regions are fewer
than the yellow ones and they do not correlate with rib vortices. The observations are the
direct evidence that rib vortices are created by being stretched by roller vortices.

To show the relevance of the scale-local vortex stretching to the energy cascade, it is
necessary to demonstrate that the energy of larger vortices is reduced through the vortex
interactions. For this purpose, we define the energy transfer from smaller to larger vortices
as

TS→L =
(
ω

′(σ )
i S′(σ/4)

ij ω
′(σ )
j

)
σ 2, (5.2)

fixing the scale of strain rates to a quarter as large as that of vorticity for the unaveraged
quantity in (4.1). When TS→L is negative, the energy of larger vortices is reduced by
smaller ones through the vortex compression; otherwise, the energy of larger vortices is
amplified by smaller ones.

Figure 16 shows the positive (yellow) and negative (red) isosurfaces of TS→L for σ =
σmax. Both compression (red) and stretching (yellow) regions are alternatively observed
along the axis of roller vortices. This observation is quantified in figure 17(a) by the p.d.f.
of TS→L inside the roller vortices at σmax (see the lightest grey line). We can see that
the probabilities of both of TS→L > 0 and TS→L < 0 are not small. A rib vortex forms a
counter-rotating pair with adjacent vortices, and therefore, they stretch and compress the
roller vortices as observed in figure 16. However, we emphasize that, on average, the energy
of a single roller vortex is reduced by rib vortices. To show this, we evaluate the spatially
local average, 〈TS→L〉Q, of TS→L inside each of the individual vortices identified by the
isosurface of Q′(σ ), and we plot in figure 17(b) the p.d.f. of 〈TS→L〉Q. The lightest grey
line shows the results for σ = σmax. It is evident that negative values of 〈TS→L〉Q are more
dominant. This implies that rib vortices tend to compress roller vortices; consequently,
roller vortices are weakened in total even in instantaneous fields. This tendency is also
observed irrespective of the scale σ of vortices (see the other lines in figure 17b).
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x2

x3

x1

x2

(a)

(b)

Figure 15. Positive (yellow, shown only in panel a) and negative (red) isosurfaces of the energy transfer TL→S
for σ = σmax through the vortex stretching and compression, respectively. The thresholds are TL→S = ±6.4 ×
10−3. Grey and blue objects are the isosurfaces of Q′(σmax) and Q′(σmax/4), respectively. Their thresholds are the
same as in figure 3.

x3

x1

x2

Figure 16. Positive (yellow) and negative (red) isosurfaces of the energy transfer TS→L for σ = σmax through
the vortex stretching and compression, respectively. The thresholds are TL→S = ±6.3 × 10−3. Grey objects are
the isosurfaces of Q′(σmax), whose threshold is the same as in figure 3.

We have observed that larger vortices are not only compressed by smaller ones but also
stretched. The latter phenomenon is reminiscent of the backscatter of energy. However,
the present observation can be different from the backscatter observed in studies by LES
or the KHMH equation because we examine the energy transfer due to vortex stretching
and compression between two different scales. Nevertheless, since the stretching of larger
vortices by smaller ones (yellow regions in figure 16) and the compression of smaller
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Figure 17. The p.d.f. of (a) TS→L/ε̄ and (b) 〈TS→L〉Q/〈ε〉Q for scales σ = σmax (light grey), σmax/2 (grey),
σmax/4 (dark grey) and σmax/8 (black). We normalize the values of the horizontal axis by (a) ε̄ at (x1, x2) =
(3, 0) and by (b) the energy dissipation rate 〈ε〉Q averaged inside each single vortex. In (b) we exclude the
results for too small vortices (the volume of the identified vortices is smaller than (2σ)3) from the p.d.f.

vortices by larger ones (red regions in figure 15) are physically interpretable, these events
may provide clues about the physical mechanism of the backscatter of energy.

6. Conclusions

To investigate the hierarchy of coherent vortices in turbulent wake sustained behind a
cylinder, we have conducted DNS of fully developed turbulence for ReD = 5000. By
decomposing the obtained velocity fields with the band-pass filter (2.8), we extract vortices
at different scales. The isosurfaces of the second invariant of the scale-decomposed
velocity gradient tensor capture the three kinds of hierarchies of coherent vortices. To
elucidate the generation mechanism of these vortices, we track them (see figures 4–8 and
the supplemental movies) in the three distinct regions: (i) the downstream region in the
wake, (ii) the recirculation region just behind the cylinder and (iii) the separated shear
layers. In all the three regions, the generation mechanism of smaller vortices is common.
They are generated in the direction perpendicular to four times larger vortices, being
stretched by them (figures 5–8); however, the origin of the cascading process is different in
these regions: (i) the shed roller vortices in the downstream region, (ii) a quasi-stationary
pair of vortices in the recirculation region, and (iii) the large vortices in the separated
shear layers. We have quantitatively verified these observations by evaluating the energy
transfers (4.1) or (4.3) due to the vortex stretching (§ 4). More concretely, the twice and
four times larger strain-rate fields contribute most to the vortex stretching on average.
In conclusion, the generation mechanism of small-scale vortices in turbulence behind a
cylinder is similar to that in periodic turbulence (Goto et al. 2017), turbulent boundary
layers (Motoori & Goto 2019) and turbulent channel flow (Motoori & Goto 2021).

Although counter-rotating smaller vortices, which are created around larger ones,
compress and stretch their parent vortices locally in space (figure 16), the total contribution
to each parent vortex is dominated by the compression (figure 17b). Through this vortex
compression of larger vortices by smaller ones, the energy at large scales is reduced and
its energy is transferred to small scales due to the stretching of smaller vortices by larger
ones. Although we cannot deny the possibility that another mechanism also leads to energy
cascade, the present results, in particular the observation of the space-local energy transfer
(figures 15–17), may suggest that the vortex stretching/compression processes can explain
the energy cascade in turbulence.
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Figure 18. (a) Mean streamwise component u1 of velocity and (b) the average u′2
1 of the square of the

streamwise fluctuation velocity as functions of x2. Blue solid lines, the present DNS results (ReD = 5000)
at x1 = 1.06, 1.54 and 2.02; grey dotted lines, DNS (ReD = 3900) by Ma, Karamanos & Karniadakis (2000);
black squares, experimental data (ReD = 3900) by Lourenco & Shih (personal communication 1994) (data can
be found in Beaudan & Moin (1995) and Ma et al. (2000)). We show the results for x1 = 1.54 and 2.02 with
vertical shifts.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2023.824.
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Appendix A. Validations

To validate the DNS results, we define the mean velocity as

ui(x1, x2) = 1
TLz

∫ T

0

∫ Lz

0
ui(x, t) d x3 dt (A1)
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Figure 19. Coherent vortices with veracious sizes in the turbulent wake with quasi-stationary shedding
vortices. (b–d) Isosurfaces of the second invariant Q(σ ) of the scale-decomposed velocity gradient tensor with
(b) filter scale σ = σmax, (c) σmax/4 and (d) σmax/16. We set the thresholds: (b) 5.0 × 10−3, (c) 1.0 × 10−1 and
(d) 2.0. In (a) we superimpose the vortices identified in (b–d).

in time and the axial direction and its fluctuation as

u′
i(x, t) = ui(x, t) − ui(x1, x2). (A2)

We compare in figure 18(a) the present results of the mean streamwise velocity u1(x1, x2)
with experiments by Lourenco & Shih (personal communication 1994) (data can be found
in Beaudan & Moin (1995) and Ma et al. (2000)) and DNS by Ma et al. (2000) at
three streamwise locations: x1 = 1.06, 1.54 and 2.02. Note that the Reynolds number
(ReD = 5000) for the present case is similar to the previous one (ReD = 3900). The
present results are in good agreement with previous experimental and DNS data, although
we observe some discrepancy at x1 = 1.06 probably because of the difference in the
Reynolds numbers. Figure 18(b) shows the comparison of the x2 dependence of the average

u′
1

2
(x1, x2) of the squared streamwise component of the fluctuation velocity at the three

streamwise locations. The present results reasonably agree with the existing data. This
justifies the grid resolution of the present DNS.

Appendix B. Hierarchy of coherent vortices with quasi-stationary vortices

We visualize in figure 19 the hierarchy of vortices by using the isosurfaces of Q(σ )

(2.9) evaluated from u(σ )
i without the Reynolds decomposition. Panel (a) shows vortices

identified by Q(σ ) at scales σ = σmax, σmax/4 and σmax/16, which are visualized separately
in panels (b–d). We see in panel (b) a pair of vortices attached to both sides of the cylinder,
which are not identified by Q′(σ ) (see figure 3b). We can also see in panels (a,c) that their
cores can be identified by the isosurfaces of Q(σ ) at σ = σmax/4. This is the reason why
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we use the scale σ = σmax/4 to identify the quasi-stationary vortices in §§ 3.2 and 4.2. On
the other hand, smaller vortices are similar in the two cases with Q(σ ) and Q′(σ ).
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