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Abstract

By means of piecewise continuous vector functions, which are analogues of the classical
Lyapunov functions and via the comparison method, sufficient conditions are found for
conditional, stability of the zero solution of a system of impulsive differential-difference
equations.

1. Introduction

The mathematical modelling of many real processes and phenomena in physics, bi-
ology, population dynamics, bio-technologies, control theory, etc., leads to the study
of differential equations whose solutions are discontinuous functions, such as the
so-called impulsive differential equations.

Impulsive differential-difference equations are a natural generalization of impul-
sive ordinary differential equations ([2, 3, 13]). These equations adequately model
processes which are characterized by jumps in state as well as by the fact that the
process under consideration depends on its history at each moment of time. Such
a generalization of the notion of an impulsive differential equation enables us to
study different types of classical problems as well as to "control" the solvability
of differential-difference equations (without impulses). For example, the scalar au-
tonomous ordinary differential-difference equation

Fl - N(f
K

 T ) 1 , t > 0,N(t) = rN(t) 1 - „ , t > 0, (1)
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commonly known as the logistic equation with time delay r, is most frequently
employed in modelling the population dynamics of a single species, where N(t) is the
population at time t, r is the growth rate of the species, and AT is the carrying capacity
of the habitat. The per-capita growth rate in (1) is a linear function of the population
N (and can be termed the density of the population).

Equation (1), called Hutchinson's equation [10], has been studied by many authors:
see for example Cunningham [8], Gopalsamy [9], Kuang [11], Zhang and Gopalsamy
[18, 19]. It can be used to describe certain control systems. Similar equations can
also be used in economic studies of business cycles. One can also use such models in
mathematical ecology.

If the population of a given species is regulated by some impulsive biotic and
anthropogeneous factors at certain moments of time it is not reasonable to expect a
regular solution. Instead, the solution must have some jumps at these moments and
the jumps follow a specific pattern. An adequate mathematical model of the dynamics
of the population in this case will be an impulsive differential-difference equation of
the form

J AT(r) = rN(t)[l -N(t- x)/K], t>O,t*tk,
\ AN(tk) = N(tk + 0) - N(tk - 0) = ak(N(tk - 0)), tk > 0, k = 1,2,... ,

where 0 < 11 < t2 < • • •, N (tk — 0) and N (tk+0) are respectively the population den-
sity before and after impulsive perturbations, and ak are functions which characterize
the magnitude of the impulse effect at the moments tk.

By means of models of type (2), it is possible to investigate one of the most
important mathematical ecology problem—the problem of ecological system stability
and consequently the problem of the optimal control of such systems.

A wider application of impulsive differential-difference equations in the description
of a number of real processes requires the formulation of effective criteria for stability
of their solutions ([1,4, 5,6,7]).

In the present paper we study the conditional stability of the zero solution of an
impulsive system of differential-difference equations with fixed moments of impulse
effect by means of vector Lyapunov functions. The priorities of this approach are
useful and well known in investigations into the stability of the solutions of differential
and differential-difference equations ([12, 14,15]).

The investigations of the present paper are carried out by virtue of piecewise con-
tinuous functions, which are analogues to the classical Lyapunov functions ([17]).
Sufficient conditions are proved for conditional stability of the zero solution for a sys-
tem of impulsive differential-difference equations with fixed moments of the impulse
effect, by means of comparison with an impulsive vector equation and differential
inequalities. A technique is applied, based on certain minimal subsets of a suitable
space of piecewise continuous functions, from which the derivatives of the piecewise
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continuous auxiliary functions are estimated ([14,16]).

2. Statement of the problem. Preliminary notes

Let R" be the n-dimensional Euclidean space with elements x = colfo,... ,xn)
and norm |x| = Q X i •*! )1/2-ljSt R+ - I°» °°)»he R+andtoeR.

We consider the system of impulsive differential-difference equations

[x(t)=f(t,x{t),x(t-h)), t>U>,t±Tk,
\ Lx(xk) = x(xk + 0) - x(Tt) = /t(x(Tft)), rt > to, k = 1,2,... ,

where / : Ob, oo) x R" x /?" -»• R"; Ik : R" -» R", k = 1 ,2 , . . . ; to == to < xx <
r2 < - - • and limt-nx, xk = oo.

Let PC(to) be the class of all piecewise continuous in (to — h, to) functions <p :
[to — h,to]-* Rn with points of discontinuity of the first kind 6U... , ds e (<b - h, to),
at which they are continuous from the left.

Let <po € PC(to). Denote by x(t; to, <po) the solution of system (3) satisfying the
initial conditions

( to-h<t<to,

(4)
The solution x(f) =x(t; to, Vo) of the initial value problem (3),(4) is characterized

by the following:
1. For to — h < t <tothe solution x(t) satisfies the initial conditions (4).
2. The solution x(t) is a piecewise continuous function for t > to with points of

discontinuity of the first kind i* > to, k = 1,2,..., at which it is continuous from the
left, that is, at the moments of impulse effect xk the following relations are valid:

x(xk-0)=x(xk), x(xk + 0)=x(xk) + Ik(x(xk)), * = 1,2,....

3. If for some positive integer,/ we have xk <Xj +h < xk+u k = 0,1,2,..., then
in the interval [T, + h, xk+i] the solution x(t) of problem (3), (4) coincides with the
solution of the problem

\y(t)=f(t,y(t),x(t-h
\y(Xj+h)=x(Xj+h),

and ifxj+h = xk foij =0,1,2, ...,k= 1,2,..., then in the interval [r, + h, ri+1]
the solution x(t) coincides with the solution of the problem

h(t)=f(t,y(t),x(t-h + O)),
\y(Xj +h)= x(xj +h) + h(x(xj + h)).
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We now introduce some notation.
Let JT be the class of all continuous and strictly increasing functions a : R+ -> R+,

such that a(0) = 0; ||̂ »|| = supieh_fc<lbj \<p(s)\ is the norm of the function <p € PCOb);
Gk = {(*, x) € [to, oo) x Rn: rt_i < t < xk), k = 1,2

We also introduce the following conditions.

HI. Thefunction/ is continuous in Ob, oo)xRnxR" and/ is Lipschitz continuous
with respect to its second and third arguments uniformly on t e Ob, oo).

H2. f(t,0,0) = 0,te(t0,oo).
H3. The functions lk are continuous in R", k = 1,2,
H4. Ik(0) = 0,k = l,2
H5. to = ib < Ti < r2 < • • •.
H6. lim^oo Tt = oo.

We define the sets

Ba(to, PC(to)) = {<pe PCOb) : ll̂ ll < a}, S(a) = {x € Rn : \x\ < a],

^ = {<pe PC(to) : ||^|| < a), S(a) = {x e R" : |JC| < a}.

Let M(n — l),l < n, be a (w — /)-dimensional manifold in R", containing the origin.
We set

M J n - /) = {<p € PC(«b)| <p : [«b - ft, to] -* M(n - I)},. .

DEFINTION 1. The zero solution of the system (3) is said to be:

(a) ConJiriowo/Zyrtafe/e with respect to the manifold M(n—Z), if for each *b € Rand
e > 0 there exists a positive function S = S(to, e) which is continuous in to for each
fixed s > 0 and such that if <p0 € B«(«b, PC(to)) (~l Mh(n -1), then*(f; t0, <p0) € S(e)
for t > to.
(b) Conditionally uniformly stable with respect to M(n — Z), if the function S in (a)

is independent of to.
(c) Conditionally globally equi-attractive with respect to M(n — I), if for each

to € 7?, a > 0 and £ > 0 there exists a positive number T = 7*(ib, a, e) such that if
Vo € Bo(*b, PCte)) n M J n - Z), then*(r,ib, «Po) € 5(e) for r > fe + T.
(d) Conditionally uniformly globally attractive with respect to M (n — Z), if the

number T in (c) is independent of to-
(e) Conditionally globally equi-asymptotically stable with respect to M (n — Z), if

it is conditionally stable and conditionally globally equi-attractive with respect to
M(n -1).
(f) Conditionally uniformly globally asymptotically stable with respect to M (n — I),

if it is conditionally uniformly stable and conditionally uniformly globally attractive
with respect to M(n — I).
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REMARK 1. If M(n -l) = R", then the definitions (a)-(f) are reduced to the usual
definitions of stability by Lyapunov for the zero solution of the system (3).

Together with the system (3) we shall consider the following system of impulsive
ordinary differential equations

\u = F(t,u), t^rk, t>to,

\ Au(tk) = Bk(u(tk)), k = 1,2,... , rk > to,

where u : (to, oo) -* Rm; F : (to, oo) x £2 -*• Rm; Bk : £2 -*• Rm, k = 1,2, . . . ; £2 is
a domain in Rm containing the origin, m < n.

Let M0 € Rm. We denote by u(t) = u(t; to, «o) the solution of the system (3), which
satisfies the initial condition u(fo + O;to, u0) = u0 and by J+(to, wo) the maximal
interval of the form [to, co) in which the solution u(t) = u(t; to, Uo) is defined.

We introduce into Rm a partial ordering in the following way: for the vectors
u,v € Rm we shall say that u > v if u,; > u, for each i = 1,2,... , m and u > v, if
M, > u, for each i = 1,2,... , m.

DEFINTION 2. The solution u+ : J+(to, uo) -*• Rm of the system (5) for which
u+(to + 0;2b, u0) = uo is said to be a maximal solution if any other solution u :
(to, a>) -> Rm for which u(to + 0; to, «o) = «o satisfies the inequality «+(f) > u(i) for
/ € J+(to, uo) D fa, a>).

DEFINTION 3. The function xjr : Si -*• Rm is said to be monotone increasing in £2 if
V (̂M) > ^r(u) for u > u and ^(w) > ty(v) for w > u, u, v € S2.

DEFINTION 4. The function rjr : Q -> Rm is said to be nondecreasing in fi if
r u>v,u,ve£l.

DEFINTION 5. The function F : (to, oo) x Q -> Rm is said to be quasi-monotone
increasing in («b, oo) x £2 if for each pair of points (t, u) and (t, v) from (to, oo) x
£2 and for j e {1,2, . . . ,m] the inequality Fj(t,u) > Fj(t,v) holds whenever
My = v, and My > u; for j = \,2,... ,m, i ̂  j , that is, for any fixed / e (to, oo)
and any y 6 {1,2,. . . , m) the function f} (f, M) is nondecreasing with respect to
(UX,U2,... ,Uj-UUj + i , . . . , U m ) .

Let e e /?m be the vector (1,1 1) and let £2 D [u € J?m : 0 < u < e}.
We introduce the sets

5(a) = [u € i?m : 0 < u <

B ( a ) = {ue Rm :0 <u < ae], a — const > 0,

R(m - /) = {M = (MI, . . . , um) e Rm : M, = u2 = • • • = u, = 0], I < m.
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We shall consider solutions u(t) of the system (S) for which u(t) > 0 and hence
the following definitions on conditional stability of the zero solution of this system
will be used.

DEFINTION 6. The zero solution u(t; 0,0) = 0 of the system (5) is said to be:

(a) Conditionally stable with respect to the manifold R(m — I), if for each to e R
and e > 0 there exists a positive function S = 8(to, e) which is continuous in to for
each e > 0 and such that if u0 e B(8) n R(m - /), then u+(t; to, «0) e B(s) for t > to.
(b) Conditionally uniformly stable with respect to R(m — I), if the function S from

(a) does not depend on to.
(c) Conditionally globally equi-attractive with respect to R(m — I), if for each

to e R, a > 0 and e > 0 there exists a positive number T = T(to, a, e) such that if
MO € £(a) n R(m - I), then u+(r; to, «0) € 5(e) for t > to + T.
(d) Conditionally uniformly globally attractive with respect to R(m — /), if the

number T in (c) does not depend on to.
(e) Conditionally globally equi-asymptotically stable with respect to R(m — I), if

it is conditionally stable and conditionally globally equi-attractive with respect to
R(m -1).
(f) Conditionally uniformly globally asymptotically stable with respect to R {m — I),

if it is conditionally uniformly stable and conditionally uniformly globally attractive
with respect to R(m — I).

Our attention will now turn to piecewise continuous auxiliary vector functions
which are analogues of the classical Lyapunov functions ([17]).

DEFINTION 7. We say that the vector function V : [to, co) x Rn -+ Rm, V =
(Vu ... , Vm), belongs to the class Vo if the following conditions are fulfilled:

1. The function V is continuous in Ujg^G*, V(t, x) > 0 and V(t, 0) = 0 for
t € [to, CO).

. 2. The function V satisfies the Lipschitz condition locally with respect to x on
each of the sets G*.

3. For each k = 1,2,... and x € R" there exist the finite limits

V(rk-0,x)= lim V(t,x), V(r* + 0,;t)= lim V(t,x).
( » ) ( ) ( » ) ( )

4. The equalities V(rk -0,x)= V(zk, x), k = 1,2,..., are valid.

Further on, we will also use the following functional classes:

PC[[to, oo), Rn] = [x : [to, co) -> R": x is a piecewise continuous function in
(to, co) with points of discontinuity of the first kind where
it is continuous from the left};
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£20 = [x € PC[[to, oo), /?"] : V(s,*(s)) < V(t,x(t)), t - h < s < t,
t>to,VeVo).

Let V € Vo for t € (to, oo), f ̂  r t, it = 1,2,... and at e PC[[Jb, oo), /?"]. We
also introduce the function

D.V(t,x(t)) = lim M-[V(t + o,x(t) + of(t,x(t),x(t-h)))- V(t,x(t))].

LEMMA 1 ([5,6]). Let the following conditions hold:

1. Conditions H1-H6 are met.
2. The function F : (to, oo) x £2 -»• /?m is quasi-monotone increasing in (to, oo) x £2,

continuous in each of the sets (tt-i, T*] X fi, and for k e N and v € Q there exists
the limit

lim F(t, u).
(»,«)-• (r»,i>)

3. The functions Bk : Q -*• Rm are continuous in Q and such that the functions
\(rk : Q -*• Rm, rfrk(u) = u + Bk(u), k= 1,2,..., are nondecreasing in Q.

4. The function u+ : (to, oo) - • Rm is the maximal solution of the system (5) for
which u+(to + 0) = «o € £2 and u+(xk + 0) e £2/or rt 6 (to, oo).

5. The Junction V e Vo is such that

V(to, <Po(to)) < «o,

V(xk + 0,x(xk) + Ik(x(xk))) < *k(V(Tk,x(Tk))), k = \,2,...,

and the inequality

D-V(t,x(t)) < F{t, V(t,x(t))), t * xk,

holds true as t € [to, oo), x € &o.

Then

V(t,x(t; to, <f>o)) < u+(t; to, MQ), r € (fo, oo).

3. Main results

THEOREM 1. Let the following conditions hold:

1. Conditions H1-H6 are fulfilled.
2. The function F : (to, oo) x £2 -> /?m w quasi-monotone increasing in (to, oo) x £2,

continuous in each of the sets (xk-i, xk] x £2, o/uf F(r, 0) = Ofor t e (to, oo).
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3. For k € N and v € Q there exists the limit

lim F{t, M).
(f,ii)-*(ii,»)

t>xt

4. The functions Bk : Q -*• Rm are continuous in J2, B*(0) = 0 and the Junctions
ifrk : £2 -* Rm, ^k(u) = u + Bk(u), k = 1 , 2 , . . . , are nondecreasing in £2.

5. The function V : [to, oo) x R" -> Rm, m < n, V = (VJ,... , Vm) belongs to the
class Vo, sap(t0OO)xR. \ V(t, x)\ = K < oo and J2 = {« e Rm : 0 < u < K).

6. The set M{n - I) = [x e R" : Vk(t + 0,x) = 0, ik = 1 , 2 , . . . , / } is (n - / ) -
dimensional manifold in R", containing the origin, I < n.

7. The following inequalities are valid:

a(\x\)e < V(t,x), (t,x) € [to, oo) x Rn, (6)

a € Jf;

D_V(f,x(r))<F(/, V(r,x(r))), r^r* . * = 1,2 (7)

for t > to and x G S2o5

V(Tt + 0, JC(Tt) + /t(x(Tt))) < irk( V(T4, JC(Tt))), it = 1,2 (8)

ASSERTION 1. #" r/ie zero solution of the system (5) is conditionally stable with respect
to the manifold R(m — l), then the zero solution of the system (3) is conditionally stable
with respect to the manifold M(n — I).
ASSERTION 2. If the zero solution of the system (5) is conditionally globally equi-
attractive with respect to the manifold R(m—I), then the zero solution of the system (3)
is conditionally globally equi-attractive with respect to the manifold M(n — I).

PROOF OF ASSERTION 1. L e t / b € / ? a n d e > 0 (a(e) < K) be chosen. Let the zero
solution of the system (5) be conditionally stable with respect to R(m — I). Then there
exists a positive function Si = 5i (to, e) which is continuous in to for given £ and is
such that if M0 e B(Si) D R(m — I), then u+(t; to, M0) < a(s)e for t > to.

It follows from the properties of the function V that there exists S = S(t0, e) > 0
such that if ^o(Jb) 6 S(E) then Vfo, <po(to)) € 5(6,).

LeUpo € Tisito, PC(Zb))nMlb(n-/). Then^oOb) € S(E) and therefore V(*o, ^ofo))
e B(5i). Moreover, Vk(to, (poih)) = 0 for k = 1,2 /.that is, V(«b, ?>o(Jb)) e
/?(m - /). Thus u+(t; to, Vfo, (Poik))) < a(s)e for t > to.

On the other hand, if x(t) = x{t; to, (po) is the solution of the initial problem (3)
and (4), then it follows from the conditions of Theorem 1 that the function V € Vo

satisfies all conditions of Lemma 1. Using this fact and (6), we arrive at

a{\x{t)\)e < V(t,x(t)) < u+(t;to, Vfo,«,(*,))) < a(s)e
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for t > to.

Hence \x(t; to,(p0)\ < e for t > to, that is, the zero solution of the system (3) is
conditionally stable with respect to the manifold M (n — /).

PROOF OF ASSERTION 2. Let to € R, a > 0 and e > 0 (a(e) < K) be given.
It follows from the properties of the function V that there exists ai = ai (to, a) > 0

such that if* 6 S(a), then V(*b, x) e fi(ai).
If the zero solution of the system (5) is conditionally globally equi-attractive with

respect to R(m — I), then there exists a number T = T(to, a,e) > 0 such that if
M0 6 BQoii) n R(m — I), then u+(t; to, «o) < a(s)e for t > to + T.

Let <p0 e ~Ba(to, PC(to)) n Af^n - /). Then <po(h) e S(a) n M(n - /) and
V(to,<Po(to)) € B(a,) D R(m - I). Therefore u+(t;to, V(to,<p0(to))) < a(e)e for
t > k + T.

If x (t) = x (t; t0, <po) is the solution of the initial problem (3) and (4), then it follows
from Lemma 1 that

V(t,x(t)) < u+(t;to, V(to,<po(to))), t > to.

The last inequality and (6) imply the inequalities

a(\x(t)\)e < V(t,x(t)) < u+(t;to, V(to,?00b))) < a(s)e

for t > to + T.
Therefore \x(t; to,<Po)\ < e foi t > to + T, which leads to the conclusion that the

zero solution of the system (3) is conditionally globally equi-attractive with respect to
the manifold M(n — I).

COROLLARY 1. Let the conditions of Theorem 1 be fulfilled. Then, if the zero
solution of the system (5) is conditionally globally equi-asymptotically stable with
respect to the manifold R(m — /), the zero solution of the system (3) is conditionally
globally equi-asymptotically stable with respect to the manifold M(n — I).

THEOREM 2. Let the conditions of Theorem 1 be fulfilled, and let there exist a
function b 6 X such that V(t,x) < b(\x\)efor (t,x) 6 [t0, co) x R". Then:

1. If the zero solution of the system (5) is conditionally uniformly stable with respect
to the manifold R(m — I), then the zero solution of the system (3) is conditionally
uniformly stable with respect to the manifold M(n — /).

2. If the zero solution of the system (5) is conditionally uniformly globally attractive
with respect to the manifold R(m — I), then the zero solution of the system (3) is
conditionally uniformly globally attractive with respect to the manifold M(n — I).
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The proof of Theorem 2 is analogous to the proof of Theorem 1. We shall just note
that in this case the function S and the number T can be chosen independently of to.

COROLLARY 2. Let the conditions of Theorem 2 be satisfied. Then, if the zero
solution of the system (5) is conditionally uniformly globally asymptotically stable with
respect to the manifold R(m — I), the zero solution of the system (3) is conditionally
uniformly globally asymptotically stable with respect to the manifold M(n — I).

4. Applications

4.1. A population system of two competing species We consider the population
system of two competing species modelled by the impulsive differential-difference
equations

Ni(0 = - M ( 0 + 2N2(t) + e-'Nt(t-h) + N2(t - h) sin t, t * tk,

N2(t) = 2NX(t) - N2(t) + Nr (t - h) sin t + e-N2(t -h), t^tk,

AJV,(r) = aNx(t) + bN2(t), t = tk, k = 1 ,2, . . . ,

f) + aN2(t), t = tk, k = 1,2,... ,

where t > 0, h > 0, Nx > 0 and N2 > Ofor t > 0,

a = - (Vl + ci + y/\ + c2 - 2) , b = - (yi + cx - y/1 + c2) ,

—1 < cj < 0, — 1 < c2 < 0,0 < h < t% < • •• andlimi_oori = 00. We also consider
the comparison system

K(0 = 2(e~' + sin t + \)u(t), t ^ tk,

v(t) = 2( - 3 + e- - sin t)v(t), t ± tk, (10)

Au(tk) = cMtk), Au(rt) = c2v(tk), k=l,2

where u, v > 0 for t > 0.
We will use the vector function V(t,x, y) = ((x + y)2, (x - y)2)T, (t,x, y) €

R+ x /?+ x R+. Then

Qo = {(x,y) € PC[R+,R+ x R+] : V(s,x(s),y(s)) < V(t,x(t),y(t)),
t - h < s < t, t > 0}.
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For f > 0 and (Ni, N2) e 120 the following inequalities are valid:

D.V(t,Ndt),N2(t))

-h) + N2(t -
-h)- N2(t - h)He

h))(e- + sint)\
h)He- - sin t)J

fott^tk,k = 1,2,... and

V(tk + 0, Ndtt) + aN>(tk) + bN2(tk), N2(tk) + bN^k) + aN2(tk))

Let

and

= V(tk, Ni(tk), N2(tk)) + fa ° J V(tk, N^h), N2(tk)), k = 1,2,.... .

M(3 - 1) = M(2) = [(Nu N2) eR+xR+:Nx = N2).

Since all the conditions of Theorem 1 are fulfilled and the zero solution of the
system (10) is conditionally stable with respect to the manifold R(2) ([2]), then the zero
solution of the system (9) is conditionally stable with respect to the manifold Af (2).

4.2. A second model In this section we study the physical model

z(t) = (cost-e-')x(t-h) + (e-'-cost)y(t-h) + (e"'+cost)z(t-h), t^tk,
Ax(t) = alkx(t) + blk(y(t) - z(t)), t = tk, k = 1, 2,. . . ,

= auy(t) + buizit) - x(t)), t = tk, k = 1,2
Az(r) = a3kz(t) + ht{x(t) - y(t)), t = tk, k = 1,2,... ,

where t >0,h > 0,x,y,z € R and for i = 1,2,3,

U ^ - 2 ) / 2 , bik =ait =

w i t h d o i t i n t e r p r e t e d a s d 3 t , — 1 < dik < 0 , 1 = 1 , 2 , 3 , k e N , 0 < tt < t2 < ••• a n d
limt-00 ^ = 00.
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We also consider the comparison system

4«i(0, u2(t) = 4e-'u2(t), ii3(t) = 4costu3(t), t ^ tk,
= dlkUl(tk), Au2(tk) = duu2(tk), (12)

A u 3 ( t k ) = d 3 k u 3 ( t k ) , * = 1 , 2

where u\, u2, u3 > 0for t > 0.
We will use the vector function

V(t,x, y,z) = (V,, V2, V3)
T = ((x+y- z)\ (-x+y + z)2, (x-y + z)2)T.

Then,

Go = i(x,y,z) € PC[R+, R3]: V(s,x(s),y(s),z(s)) < V(t,x(t),y(t),z(t)),
t-h<s<t, t > 0}.

For r > 0 and (x, y, z) € J20 the following inequalities are valid:

D.V(t,x(t),y(t),z(t))

(\ 0 0
= 4 0 *-' 0

\0 0 cosr

/I 0 0 \
<4 0 «- 0 V(t,x(t),y(t),z(t))

\0 0 cos t)

for r ?£ fc, it = 1,2,... and

V(ft + 0, x{tk)+alkx(tk)+blk{y{tk)-z(tk)),

t 0 0
0 du 0 \V(tk,x(tk),y(tk),z(tk)),

\ 0 0 d3k)

where A: = 1,2, Let

*(3 - 1) = R(2) = {(0, a,, u3) € /?3 : K2 > 0, M3 > 0}
and

M(3 - 1) = M(2) = {(x, y, z) e /?3: ^ + y = z}.

Since all the conditions of Theorem 1 are fulfilled and the zero solution of the
system (12) is conditionally stable with respect to the manifold R (2) ([2]), then the zero
solution of the system (11) is conditionally stable with respect to the manifold M (2).
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