
London Mathematical Society ISSN 1461–1570

USING PROGRAM SCHEMES TO CAPTURE POLYNOMIAL-TIME
LOGICALLY ON CERTAIN CLASSES OF STRUCTURES

IAIN A. STEWART

Abstract

In this paper, the study of the expressive power of certain classes
of program schemes on finite structures is continued, in relation to
more mainstream logics studied in finite model theory and to com-
putational complexity. The author shows that there exists a program
scheme – whose constructs are assignments and while-loops with
quantifier-free tests and which has access to a stack – that can accept
aP-complete problem, the deterministic path system problem, even
in the absence of non-determinism, so long as problem instances are
presented in a functional style. (The proof given here leans heav-
ily on Cook’s proof that the classes of formal languages accepted
by deterministic and non-deterministic logspace auxiliary pushdown
machines coincide.) However, whilst this result is of independent in-
terest, in that it leads to a deterministic model of computation captur-
ing P, whose non-deterministic variant also capturesP, the program
scheme can also be used to build a successor relation in certain classes
of structures (namely: the class of strongly connected locally ordered
digraphs, the class of connected planar embeddings, and the class of
triangulations), with the consequence that on these classes of graphs,
(a fragment of) path system logic (with no built-in relations) captures
exactly the polynomial-time solvable problems.

1. Introduction

One of the central open problems in finite model theory is whether there is a logic for
capturing the complexity classP (polynomial-time); that is, whether there is a logic such
that the class of problems definable in this logic coincides with the class of polynomial-time
solvable problems. Of course, one has to be precise about what one means by a ‘logic’ (the
generally accepted definition is given in, for example, [9]) but one sensible property that
any logic should have is that it should have a recursive syntax; that is, the well-formed
formulae of any logic should be recursively enumerable. This property immediately rules
out all existing ‘logical’ characterisations ofP based around ‘logics’ with built-in relations,
such as inflationary fixed-point logic with a built-in successor relation [4] and path system
logic with a built-in successor relation [12]. (Throughout, for convenience, we try to use [4]
as our main reference text for definitions and results in finite model theory and descriptive
complexity, and the reader is referred to this text for more details on the proper attribution
of results.)

Most of this research was completed whilst the author was at the University of Leicester. Supported by EPSRC
Grant GR/K 96564.
Received 21 February 2002, revised 15 November 2002;published10 March 2003.
2000 Mathematics Subject Classification 68Q19, 03C13.
© 2003, Iain A. Stewart

LMS J. Comput. Math. 6 (2003)40–67https://doi.org/10.1112/S1461157000000371 Published online by Cambridge University Press

http://www.lms.ac.uk
http://www.lms.ac.uk/jcm/
http://www.lms.ac.uk/jcm/6
https://doi.org/10.1112/S1461157000000371

Using program schemes to capture polynomial-time

Working on the assumption that there is a logic capturingP, one can approach this central
problem from two directions. One can try to develop more and more expressive logics (but
where the expressibility stays within polynomial-time), and hope that eventually a logic
capturingP will emerge; or one can consider existing logics, such as inflationary fixed-
point logic and path system logic (in the absence of built-in relations), and try to captureP
on certain classes of finite structures, in the hope that eventually such characterisations will
show exactly what has to be added to one of these logics (while still retaining the property
of being a logic) so as to captureP. Of course, it may be the case that no such logic exists
capturingP (with the consequence thatP 6= NP). If this is so, then it is clearly worthwhile
to discover on which classes of finite structures – and for which logics –P can be logically
captured. It is essentially this question that we are addressing here.

Existing results related to capturingPon restricted classes of structures are all concerned
with inflationary fixed-point logic. In particular, Immerman and Lander [8] proved that
inflationary fixed-point logic with counting (that is, where there is an additional universe
of numbers and a total ordering on this universe) capturesP on the class of trees; also,
Grohe [6] and Grohe and Mariño [7] proved that this same logic does likewise on the
class of planar graphs and the class of graphs of bounded tree-width, respectively. Grohe
[6] additionally proved that inflationary fixed-point logic (without counting) capturesP
on the class of 3-connected planar graphs. In this paper, we show that a fragment of path
system logic, which is itself a proper fragment of inflationary fixed-point logic (even on
the class of trees), suffices to captureP on the following classes of structures: strongly
connected locally ordered digraphs, connected planar embeddings, and triangulations. The
class of triangulations (that is, the class of planar graphs having a planar embedding whose
faces, including the outer face, are all cycles of length 3) forms a (significant) proper sub-
class of the class of 3-connected planar graphs, and so one might interpret our result as a
strengthening of Grohe’s result for this class of graphs. (We do not as yet know whether it
is the case that path system logic capturesP on the class of 3-connected planar graphs.)

Our results, mentioned in the preceding paragraph, are applications of another result in
this paper concerning program schemes.Program schemesessentially provide a model of
computation that is amenable to logical analysis, yet is closer to the general notion of a
program than a logical formula would be. They were extensively studied in the seventies,
without much regard being paid to an analysis of resources, before a closer complexity
analysis was undertaken, mainly in the eighties. There are connections between program
schemes and logics of programs, especially dynamic logic. Program schemes have since
been further developed to work on finite structures, in the light of advances in finite-model
theory (see, for example, [1, 13, 14] for more details). One appealing characteristic of
program schemes is that they form a model of computation for computing on unordered
data.

Our main result involving program schemes is that there is a deterministic program
schemeρ, whose constructs are assignments and while-loops with quantifier-free tests, and
which has access to a stack, with the property that it accepts aP-complete problem, the
deterministic path system problem, if the instances of this problem are presented as finite
structures over a signature consisting of a binary function symbol and two constant symbols.
Our proof is very close in essence to Cook’s proof [2] that the classes of formal languages
accepted by deterministic and non-deterministic logspace auxiliary pushdown machines
coincide; it is, however, much more rigorously presented than Cook’s proof. Whilst our
result is of independent interest, as it leads to a deterministic model of computation capturing
P, whose non-deterministic variant also capturesP, the actual program schemeρ, above,

41https://doi.org/10.1112/S1461157000000371 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000371

Using program schemes to capture polynomial-time

allied with results from [1] linking similar program schemes with path system logic, enables
us to build a successor relation canonically, in any graph, from one of the classes mentioned
above. Thus, we can logically captureP on these classes of graphs.

In the next section, we give the basic definitions pertaining to finite model theory and
program schemes, before proving in Section3 that we can solve the deterministic path
system problem in the manner described above. Our applications are detailed in Section4,
and we present our conclusions in Section5.

2. Preliminaries

Ordinarily, asignatureσ is a tuple〈R1, . . . , Rr , C1, . . . , Cc〉, where eachRi is a relation
symbol, of arityai , and eachCj is a constant symbol. However, we sometimes allow our
signatures also to contain function symbols. When we do, we explicitly denote that this is
the case by referring to the signature asσ ′; that is, we use a superscript′ to denote signatures
that might contain function symbols. Consequently, definitions, theorems and the like might
apply only to signaturesσ not involving function symbols, or they might apply to signatures
σ ′ where function symbols are allowed (though not necessarily present). For example,first-
order logic over some signatureσ , FO(σ), consists of those formulae built from atomic
formulae overσ using ∧, ∨, ¬, ∀ and ∃, and FO= ∪{FO(σ) : σ is some signature}.
Thus, according to our notation, we have defined FO(σ) and FO only for signatures not
containing function symbols. Of course, first-order logic can be defined over signatures
containing function symbols; our definition, however, suffices for our needs. The same can
be said of other subsequent definitions.

A finite structureA over the signatureσ , orσ -structure, consists of a finiteuniverseor
domain|A|, together with a relationRi , of arityai , for every relation symbolRi of σ of arity
ai , and a constantCj ∈ |A| for every constant symbolCj . (By an abuse of notation, we do
not distinguish between constants or relations, and between constant or relation symbols.) If
A is a finiteσ ′-structure for some signatureσ ′ (note: possibly containing function symbols),
then in addition to the above, for every function symbolFi of aritybi , there is a total function
Fi : |A|bi → |A|.

A finite structureA whose domain consists ofn distinct elements hassizen, and we
denote the size ofA by |A| also (this does not cause confusion). We only ever consider
finite structures of size at least 2, and the set of all finite structures over the signatureσ ′
of size at least 2 is denoted STRUCT(σ ′). A problemover some signatureσ ′ consists of a
subset of STRUCT(σ ′) that is closed under isomorphism; that is, ifA is in the problem,
then so is every isomorphic copy ofA. Throughout, all our structures are finite.

We are now in a position to consider the class of problems defined by the sentences of
FO; we denote this class of problems by ‘FO’ also, and we do likewise for other logics. It is
widely acknowledged that, as a means of defining problems, first-order logic leaves a lot to be
desired, especially when we have it in mind to develop a relationship between computational
complexity and logical definability. In particular, every first-order definable problem can be
accepted by a logspace deterministic Turing machine, yet there are problems inL (logspace)
that cannot be defined in first-order logic (one such being the problem consisting of all those
structures over the empty signature that have even size). Consequently, we now illustrate
one way of increasing the expressibility of FO: we augment FO with a uniform or vectorized
sequence of Lindström quantifiers, or ‘operator’ for short. (The reader is referred to [4] for a
fuller exposition on the limitations of FO, and on a number of different methods – including
this one – for increasing the expressibility of FO.)

42https://doi.org/10.1112/S1461157000000371 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000371

Using program schemes to capture polynomial-time

Our illustration uses an operator derived from a problem whose underlying instances
can be regarded as path systems. Apath systemconsists of a finite set ofverticesand a
finite set ofrules, each of the form(x, y, z), wherex, y andz are (not necessarily distinct)
vertices. There is a unique distinguished vertex called thesource, and a unique distinguished
vertex called thesink. The set ofaccessible verticesin any path system is built as follows.
Initially, the source is deemed to be accessible, and new vertices are shown to be accessible
by applyingthe rules as follows: ifx andy are accessible (possibly withx = y) and there
is a rule(x, y, z), thenz becomes accessible. Thepath system problemconsists of all those
path systems for which the sink is accessible from the source, and this was the first problem
to be shown to be complete forP via logspace reductions [2].

We encode the path system problem as a problem over the signatureσ3, that consists
of the relation symbolR of arity 3, and the constant symbols ‘source’ and ‘sink’. Aσ3-
structureP can be thought of as a path system where the vertices of the path system are
given by|P |, the source is given by ‘source’, the sink is given by ‘sink’ and the rules of the
path system are given by{(x, y, z) : R(x, y, z) holds inP }. Hence, we define the problem
PS as

{P ∈ STRUCT(σ3) : the vertex ‘sink’ is accessible from the vertex ‘source’

in the path systemP }.
Let us return to increasing the expressibility of FO. Corresponding to the problem PS is

an operator of the same name. The logic(± PS)∗[FO], orpath system logic, is the closure
of FO under the usual first-order connectives and quantifiers, and also the operator PS, with
PS applied as follows.

Given a formulaϕ(x, y, z) ∈ (± PS)∗[FO] over the signatureσ , where the variables of
thek-tuplesx, y andz, for somek > 1, are all distinct and free inϕ, the formula8 defined
as PS[λx, y, zϕ](u, v), whereu andv arek-tuples of (not necessarily distinct) constant
symbols and variables, is also a formula of(± PS)∗[FO], with the free variables of8 being
those variables inu andv together with the free variables ofϕ different from those in the
tuplesx, y andz. If 8 is a sentence, then it is interpreted in a structureA ∈ STRUCT(σ)
as follows. We build a path system with vertex set|A|k and set of rules

{(a, b, c) ∈ |A|k × |A|k × |A|k : ϕ(a, b, c) holds inA},
and we say thatA |= 8 if and only if the sinkv is accessible in this path system from the
sourceu. (The semantics can easily be extended to arbitrary formulae of(± PS)∗[FO]; see,
for example, [4] for a more detailed semantic definition of operators such as PS.) Note that
(± PS)∗[FO]defines a class of problems over signatures not containing function symbols.
Note also that there is nothing special about the problem PS: any problem can be converted
into an operator and used to extend first-order logic. Syntactically, such logics are very
similar, although their semantics depend on the operator in hand.

It is indeed the case that we have increased the expressibility, as we can define prob-
lems in(± PS)∗[FO] that cannot be defined in FO. (A simple Ehrenfeucht–Fraïssé game
shows that PS is not definable in FO; see [4] for more on such games.) In the presence
of a built-in successor relation, we can obtain a precise complexity-theoretic characterisa-
tion of the problems definable in(± PS)∗[FO]. We say that we have abuilt-in successor
relation if, no matter over which signature we happen to be working, there are always
a binary relation symbol ‘succ’ and two constant symbols 0 and ‘max’ available, such
that this relation symbol ‘succ’ is always interpreted as a successor relation, of the form

43https://doi.org/10.1112/S1461157000000371 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000371

Using program schemes to capture polynomial-time

{(a0, a1), (a1, a2), . . . , (an−2, an−1)}, in a structure of sizen, where all theai are distinct
anda0 = 0 andan−1 = max. Note that whether a structure satisfies a sentence in which the
relation symbol succ or the constant symbols 0 or max appear might depend upon the par-
ticular successor relation chosen as the interpretation for succ. Consequently, we consider
only those sentences of(± PS)∗[FO] which have a built-in successor relation, and which
define problems as being well-formed; that is, those sentences for which satisfaction is in-
dependent of the particular interpretation chosen for succ. We denote the logic(± PS)∗[FO]
with a built-in successor relation by(± PS)∗[FOs]. Whether or not(± PS)∗[FOs] should
really be called ‘a logic’ is highly debatable (for example, it is undecidable as to whether
a sentence of(± PS)∗[FOs] is order-invariant– that is, satisfies the property we want as
regards succ – and so this ‘logic’ does not have a recursive syntax); the reader is referred
to [4] and [9] for a detailed discussion of this and related points.

Theorem 1 (see[12]). A problem over the signatureσ is inP if and only if it can be defined
in (± PS)∗[FOs]. Moreover, any problem in(± PS)∗[FOs] can be defined by a sentence of
the form

PS[λx, y, zϕ(x, y, z)](0,max),

where|x| = |y| = |z| = k, for somek > 1. Here,0 represents the constant symbol0,
repeatedk times, andmax representsk repetitions ofmax; ϕ is a quantifier-free formula
of FOs .

Our notation for(± PS)∗[FO] is such that± denotes the fact that applications of the
operator PS can appear within the scope of negation signs, and∗ denotes the fact that we are
allowed to nest applications of PS as many times as we like. The fragment(± PS)k[FO],
for somek > 1, is obtained by allowing at mostk nestings of applications of PS, and the
fragment PSk[FO] is obtained by further disallowing any application of PS to appear within
the scope of a negation sign. Hence, by Theorem1, we see thatP = PS1[FOs].

The class of problems(± PS)∗[FO] is also intimately related with the class of problems
accepted by certain program schemes that have access to a stack. Aprogram schemeρ ∈
NPSS(1)involves a finite set{x1, x2, . . . , xk} of variables, for somek > 1, and is over a
signatureσ ′. It consists of a finite sequence ofinstructions, where each instruction, apart
from the first and the last, is one of the following:

• anassignment instructionof the form ‘xi := y’, wherei ∈ {1,2, . . . , k}, and where
y is a variable from{x1, x2, . . . , xk}, a constant symbol ofσ ′, or one of the special
constant symbols 0 and max, which do not appear in any signature;

• anassignment instructionof the form ‘xi := F(y1, y2, . . . , ym)’, where:i ∈ {1,2,
. . . , k}; eachyj is a variable from{x1, x2, . . . , xk}, a constant symbol ofσ ′ or one of
the special constant symbols 0 andmax; andF is a function symbol ofσ ′ of aritym;

• aguess instructionof the form ‘GUESSxi ’, wherei ∈ {1,2, . . . , k};
• a while instructionof the form ‘WHILE t DO α1;α2; . . . ;αq OD’, where t is a

quantifier-free formula of FO(σ∪ {0, max}), with σ the signatureσ ′ minus any
function symbols, whose free variables are chosen from{x1, x2, . . . , xk}, and where
each ofα1, α2, . . . , αq is another instruction of a form given here (note that there
may be nested while instructions); or

• astack instructionof the form ‘xi := POP’ or ‘PUSHxi ’, wherei ∈ {1,2, . . . , k}.
The first instruction ofρ is ‘INPUT(x1, x2, . . . , xl)’, and the last instruction is
‘OUTPUT(x1, x2, . . . , xl)’, for some l, where 16 l 6 k. The variablesx1, x2, . . . , xl

44https://doi.org/10.1112/S1461157000000371 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000371

Using program schemes to capture polynomial-time

are theinput-output variablesof ρ, the variablesxl+1, xl+2, . . . , xk are thefree variables
of ρ and, further, no free variable ofρ ever appears on the left-hand side of an assignment
instruction, or in a POP instruction, or in a guess instruction. Essentially, free variables
appear inρ as if they were constant symbols.

A program schemeρ ∈ NPSS(1)overσ ′ with s free variables, say, takes aσ ′-structure
A ands additional values from|A|, one for each free variable ofρ, as input; that is, an
expansionA′ of A by adjoinings additional constants. The program schemeρ computes
on A′ in the obvious way, except that the POP and PUSH instructions provide access to a
stack and:

• execution of the instruction ‘GUESSxi ’ non-deterministically assigns an element of
|A| to the variablexi ;

• when the instruction ‘PUSHxi ’ is encountered in some program scheme, the value
of the variablexi is placed on the top of the stack (so increasing the height of the
stack by 1) but so thatxi retains its value, and when the instruction ‘xi := POP’ is
encountered, the value on the top of the stack is removed (so decreasing the height of
the stack by 1) and the variablexi assumes this value (if the stack is empty when the
instruction ‘xi := POP’ is encountered, then the computation halts);

• the constants 0 and max are interpreted as two arbitrary but distinct elements of|A|;
and

• initially, every input-output variable is assumed to have the value 0.
Note that throughout a computation ofρ, the value of any free variable remains unchanged.
The expansionA′ of the structureA is acceptedby ρ, and we writeA′ |= ρ if, and only if,
there exists a computation ofρ on this expansion such that the output-instruction is reached
with all input-output variables having the value max. (We can easily build the usual ‘if’ and
‘if-then-else’ instructions by using ‘while’ instructions; see, for example, [11]. Henceforth,
we shall assume that these instructions are at our disposal.)

We want the sets of structures that are accepted by our program schemes to be problems
(that is, closed under isomorphism), and so we only ever consider program schemesρ

where a structure is accepted byρ when 0 and max are given two distinct values from
the universe of the structure, if and only if it is accepted no matter which pair of distinct
values is chosen for 0 and max. Let us reiterate: when we say thatρ is a program scheme
of NPSS(1), we mean thatρ accepts a problem, and the acceptance of any input structure
is independent of the pair of distinct values that we give to 0 and max. This is analogous to
how we build a successor relation into a logic. Indeed, we can build a successor relation into
our program schemes of NPSS(1) so as to obtain the class of program schemes NPSSs(1),
or alternatively we can build two constants into our logics. As with our logics, we write
NPSS(1)and NPSSs(1) to denote also the classes of problems accepted by the program
schemes of NPSS(1)and NPSSs(1), respectively. The reader is referred to [1] for more
details on program schemes such as those of NPSS(1), and for some illustrative examples.

Theorem 2 (see[1]). (a) A problem over some signatureσ is in NPSS(1)if and only
if it can be defined by a sentence of(± PS)∗[FO]with two built-in constants, of the form

PS[λx, y, zϕ(x, y, z)](0,max),

where|x| = |y| = |z| = k, for somek > 1. Here,0 represents the constant symbol0,
repeatedk times, andmax representsk repetitions ofmax; ϕ is quantifier-free first-order.

(b) A problem over some signatureσ is in P if and only if it can be accepted by a
program scheme ofNPSSs(1).

45https://doi.org/10.1112/S1461157000000371 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000371

Using program schemes to capture polynomial-time

It was also proven in [1] that the class of problems defined by the sentences of(± PS)∗[FO]
with two built-in constants is identical to the class of problems accepted by a (proper infi-
nite) hierarchy of classes of program schemes, the first level of which is NPSS(1); hence
our notation.

3. Deterministic path systems

Theorem2provides yet another characterisation of the complexity classP. However, this
characterisation is different in flavour from most characterisations ofP, in that it equates
P with the class of problems accepted by a ‘non-deterministic’ model of computation,
namely the program schemes of NPSSs(1). One question that immediately arises is: ‘What
can we say about the problems accepted by those program schemes of NPSSs(1) in which
the guess instruction does not appear?’ The immediate response to this question is that
without the ability to guess, no program scheme of NPSSs(1) can accept any ‘non-trivial’
problem. However, by representing our built-in successor relation in a functional style, we
can make this question meaningful. Instead of having a built-in successor relation, let us
assume that there are a built-insuccessor functionand assignment instructions of the form
‘x i := succ(xj)’. (Of course, we still have 0 and max denoting the least and greatest elements
of the ordering, respectively.) Clearly, whether we have a built-in successor relation or a
built-in successor function does not alter the class of problems accepted by the program
schemes of NPSSs(1).

Denote the class of program schemes of NPSS(1) in which the guess instruction does
not appear by DPSS(1), with DPSSs(1) defined likewise. Note that it makes no sense to
consider program schemes of DPSS(1)over signatures involving only relation and constant
symbols, as – again – no ‘non-trivial’ problems can be accepted by such program schemes.
However, if the underlying signatureσ ′ contains function symbols, then we have assignment
instructions of the form ‘xi := F(xj1, xj2, . . . , xjb)’, for every function symbolF of σ ′ of
arity b. In such a situation, it does make sense to examine the class of problems accepted
by the program schemes of DPSS(1).

In this section, we examine the classes of program schemes DPSS(1) and DPSSs(1).
(All the results in this section were proven in collaboration with S. R. Chauhan; they are
included here with her permission.) In Section4, we shall use results obtained in this section
to give logical characterisations ofP on certain classes of structures (where by ‘logical’ we
mean not involving any sort of built-in relations; or, more precisely, ‘logical’ in the sense
laid out in [4] and [9]).

We begin by defining a deterministic path system. Adeterministic path systemis a
path system such that for every pair of verticesx andy (where possiblyx = y), there is
exactly one vertexz such that either(x, y, z) or (y, x, z) is a rule. (This vertexz might be
identical to eitherx or y.) So in a deterministic path system there is at most one new vertex
that can be deduced as accessible from the known accessibility of any two vertices. The
deterministic path system problemconsists of all those deterministic path systems for which
the sink is accessible from the source. Define the signatureσ ′

3 = 〈F, source, sink〉, where
F is a binary function symbol, and source and sink are constant symbols. Aσ ′

3-structure
P encodes a deterministic path system in a similar way to aσ3-structure encoding a path
system, except that:

• there is a rule(x, y, z) if F(x, y) = z = F(y, x) andz 6= source (where possibly
z = x or z = y); and

• there is a rule(x, y, source) otherwise.

46https://doi.org/10.1112/S1461157000000371 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000371

Using program schemes to capture polynomial-time

The problem DetPS is defined as:

{P ∈ STRUCT(σ ′
3) : the vertex ‘sink’ is accessible from the vertex ‘source’

in the deterministic path systemP }.
Intuitively, in order to decide whether aσ3-structure is not in PS, or whether aσ ′

3-structure
is not in DetPS, we need to know not only that at some point in the process of building the
set of accessible vertices, every pair ofaccessedvertices (that is, those vertices that have so
far been shown to be accessible) has been checked – so that no new vertices can be shown
to be accessible from these accessed vertices – but also that the sink has so far not been
accessed. Hence, it appears to be necessary to build a set of accessed vertices dynamically,
and to keep a record of those pairs of accessed vertices that have already been checked.
Later on, in Subsection3.2, we show that we can actually do this for deterministic path
systems with a program scheme of DPSS(1) overσ ′

3. We derive this program scheme by
developing an algorithm (to be calledDFSearch) to solve the deterministic path system
problem, and then by showing that this algorithm can be implemented in DPSS(1).

3.1. An informal algorithm

Consider the following (informally presented) algorithm,DFSearch, which takes a
deterministic path system as input. In this algorithm, the order in which the vertices are
accessed plays a critical role. During an execution ofDFSearch on some input, there is
always, at any time, exactly one accessed vertex, which is described asactive. An accessed
vertex is the active vertex when it is the one currently being checked with each of the already
accessed vertices in turn, in order to see whether a new vertex can be shown to be accessible.
(Initially, source is the only accessed vertex, and hence it is the active vertex.) The main
feature of this algorithm is that as soon as a new vertex, sayx, is accessed, it becomes the
active vertex and is checked with each accessed vertex in turn (including itself), not in any
random order butin the order in which these vertices were accessed, either until a new
vertex is accessed, sayy (at which pointy becomes the active vertex, and we stop checking
pairs involvingx and start checking pairs involvingy), or untilx has been checked with all
the vertices that were accessed before it, including itself. In the latter case, our new active
vertex is taken to be the vertexz, which was active at the time thatx was accessed, and the
next pair involvingz is checked, after the pair that accessedx.

Example 3. Consider the following illustrative example (in our example, we do not stop if
we show the sink to be accessible, but continue to generate other accessible vertices; in fact,
we do not even specify a sink). Suppose that our deterministic program scheme is such that
the set of rules can be described according to Figure1, where the source isu (and where,
for clarity, anε denotes that the vertex made accessible by the corresponding pair is one of
the vertices of the pair, oru).

Our algorithm begins withu active and checks the pair{u, u}, with the result thatw is
shown to be accessible. Hence the vertices so far shown to be accessible are, in order,u and
w, with w now active.

According to our algorithm, we next check the pair{w, u}, which showsy to be acces-
sible. Hence the vertices so far shown to be accessible are, in order,u,w andy, with y now
active.

According to our algorithm, we next check the pair{y, u}, which yields no new accessible
vertex. So we check the pair{y,w}, which showsv to be accessible. Hence the vertices so
far shown to be accessible are, in order,u, w, y andv, with v now active.

47https://doi.org/10.1112/S1461157000000371 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000371

Using program schemes to capture polynomial-time

u xwv y

u w

v

w

x

y

y

y v

v

ε

x

w

w

w

y

y

ε

ε ε ε ε

ε

ε ε ε

εε

w

w

Figure 1: A deterministic path system; see Example3.

According to our algorithm, we next check the pairs{v, u}, {v,w}, {v, y} and{v, v},
yielding no new accessible vertex. Thus we makey active (since it was active whenv
was shown to be accessible), and resume checking the pairs involvingy (and the vertices
accessed beforey), starting from the pair{y, y}. This pair yields no new accessible vertex,
and so we makew active (sincew was active wheny was shown to be accessible) and
resume checking pairs involvingw (and vertices accessed beforey), starting from the pair
{w,w}, which showsx to be accessible. Hence, the vertices so far shown to be accessible
are, in order,u, w, y, v andx, with x now active.

According to our algorithm, we next check the pairs{x, u}, {x,w}, {x, y}, {x, v} and
{x, x}, yielding no new accessible vertex. Thusw becomes active. But all the pairs involving
w (and the vertices accessed beforew) have been checked, sou becomes active. However,
all the pairs involvingu have been checked, so the algorithm halts.

Note that in this case, all the accessible vertices are indeed shown to be accessible by
our algorithm, and if we repeated the algorithm on our input, then the vertices would be
shown to be accessible in exactly the same order.

Our algorithmDFSearch can be looked upon as a sort of depth-first search in a deter-
ministic path system; hence its name. However, the analogy is not exact, as the ‘depth-first
search’ is not given ana priori ordering of the elements upon which the search is performed
(as is usually the case in a depth-first search in a graph): it computes the visit-order for itself
as it progresses.

A less informal description of the algorithm than that shown in Figure1 is given in
Figure2. Throughout, we usex0 to denote source. Also, we write(x, y) 7→ z to denote the
fact thatz is the unique vertex such that there is a rule(x, y, z) or (y, x, z) andz is different
from x, y andx0; and we write(x, y) 7→ ε to denote the fact that the unique vertexz such
that there is a rule(x, y, z) or (y, x, z) is such thatz is identical to one ofx, y andx0. If
(x, y) 7→ z is used to show thatz is accessible, given thatx andy have already been shown
to be accessible, then we say thatx andy accessz and that(x, y) 7→ z is appliedto access
z: in such a case, the vertexx will always be the active vertex. Also, givenx andz, if x and
y accessz, for somey, then we say that (the active vertex)x accessesz.

48https://doi.org/10.1112/S1461157000000371 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000371

Using program schemes to capture polynomial-time

1 suppose that x0, x1, . . . , xi have been accessed so far

and xi is active;

2 check the ordered pairs (xi , x0), (xi , x1), . . . in turn;

3 IF (xi , xj) 7→ xi+1 where xi+1 is a vertex not yet accessed THEN

4 IF xi+1 = sink THEN

5 ACCEPT;

6 ELSE

7 add xi+1 to our list of vertices accessed so far;

8 make xi+1 the active vertex and repeat from line 2 (with xi+1
9 replacing xi) and starting with the pair (xi+1, x0);

10 FI

11 ELSE

12 it must be the case that each pair (xi , xj), for all j 6 i, has

13 been checked and nothing new has been shown to be accessible;

14 find the pair (xi1, xj1) such that (xi1, xj1) 7→ xi was applied to

15 access xi ;

16 make xi1 active;

17 IF xi1 = x0 THEN

18 REJECT;

19 ELSE

20 repeat from line 2 starting from the pair (xi1, xj1+1);

21 FI

22 FI

Figure 2: A less informal description of our algorithmDFSearch.

3.2. Proving our algorithm correct

Henceforth, we equate the algorithmDFSearch with the description in Figure2. The
following lemmas are used to prove thatDFSearch solves the deterministic path system
problem. In these lemmas, we writexi to denote that it is theith vertex to be accessed
during an execution ofDFSearch, andAccessedSet to denote the set of vertices shown
to be accessible by the algorithmDFSearch. (AccessedSet can be regarded as being
dynamically constructed, starting off as{x0} and ending up as the set of vertices shown to
be accessible byDFSearch.)

The following lemma proves that if we place the vertices accessed by the algorithm
DFSearch in a line in the order in which they are accessed, and we draw (above the line) a
directed arc from vertexx to vertexy if vertexx accesses vertexy, then no two arcs cross.

Lemma 4. Consider an execution ofDFSearch such that the algorithm terminates with
AccessedSet = {x0, x1, . . . , xk}. Suppose thatxi accessesxi+r , for somei such that
0 6 i 6 k − 2 and for somer > 2. Then it is not the case thatxi−t accessesxi+s , for any
s andt such that0< s < r and0< t 6 i.

Proof. Sincexi accessesxi+r , let xu be the paired vertex such that(xi, xu) 7→ xi+r is
applied to accessxi+r . Assume that the statement in the lemma is false, and lets be
the minimal suchs for which somexi−t accessesxi+s . Note that whenxi is accessed,
it becomes the active vertex, and the pairs(xi, x0), (xi, x1), . . . are checked in turn until

49https://doi.org/10.1112/S1461157000000371 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000371

Using program schemes to capture polynomial-time

either(xi, xj) 7→ xi+1 is applied to accessxi+1, for somej , or (xi, xi) has been checked
and(xi, xi) accesses nothing. Sincexi accessesxi+r , it must be the case thatxi accesses
xi+1, and sos > 2. In fact, by hypothesis, everyxp for which i < p < i+ s is accessed by
somexq for which i 6 q < p. Puttings0 = i + (s − 1) > i, we see thatxs0 is accessed by
somexs1 such thati 6 s1 < s0; xs1 is accessed by somexs2 such thati 6 s2 < s1, and so
on, untilxsv , for somev > 0, is accessed byxi .

Whenxs0(= xi+(s−1)) is accessed, it becomes active. Asxi−t accessesxi+s , we find that
xs0 accesses no vertices, andxs1 becomes active. Again, asxi−t accessesxi+s ,
xs1 accesses no vertices andxs2 becomes active, and so on, untilxi becomes active. Note that
the pair(xi, xu) has not yet been checked, as otherwise the elementxi+s would have been
accessed. Hencexi 7→ xi+s is applied to accessxi+s , which yields a contradiction.

As soon asxi is accessed,DFSearch starts to check the pairs(xi, x0), (xi, x1), . . . ,

(xi, xi) in turn. If at some timet during the execution ofDFSearch, all the pairs have been
checked, then we say thatxi is fully checked at timet . Note that once a vertex becomes
fully checked, it stays fully checked.

Lemma 5. Consider an execution ofDFSearch such that the algorithm terminates with
AccessedSet = {x0, x1, . . . , xk}. Suppose thatxi accessesxi+r , wherer > 1. Then at the
time at whichxi+r is accessed, all the verticesxp with i < p < i + r are fully checked.

Proof. We may assume thatr > 1. We give a proof using induction, where our induction
hypothesis IH(j) is as follows: ‘At the time at whichxi accessesxi+r , all the verticesxp
with i < j 6 p < i + r are fully checked’.

The base case of our induction is whenj = i+ r−1. Since it is not the case thatxi+r−1
accessesxi+r , it must be the case thatxi+r−1 does not access any new vertices, and hence
it becomes fully checked beforexi+r is accessed. Thus the induction hypothesis holds for
the base case.

Suppose that IH(j + 1) holds, wherej 6= i. The vertexxj is accessed beforexi+r .
Either xj does not access a new vertex, orxj accessesxj+1. If the former is true, then
we are done, sincexj is fully checked beforexi+r is accessed. If the latter is true, thenxj
accesses at least one new vertex. Letxs be any vertex such thatxj accessesxs . By Lemma4,
s < i + r and, by hypothesis,xs is fully checked beforexi+r is accessed. Whenxs is fully
checked,DFSearch resumes checking the vertex that accessedxs ; that is,xj . Let xq be
the last vertex such thatxj accessesxq . Sincexj does not access any more new vertices,
DFSearch continues checkingxj until it is fully checked, and at this pointxi+r is still to
be accessed. Hence the result follows by induction.

We can now obtain the following corollary.

Corollary 6. Consider an execution ofDFSearch. Suppose that at timet ,AccessedSet =
{x0, x1, . . . , xi+r}, and the vertexxi is active, wherer > 1. Then at timet all verticesxp
with i < p 6 i + r are fully checked.

Proof. Suppose thatxj accessesxi+r . Whenxi+r is accessed, it becomes active, and because
xi is active at timet , xi+r accesses no new vertices before becoming fully checked. At this
time (whenxi+r is fully checked, which is before timet), by Lemma5, the vertices of
{xp : j < p 6 i + r} are fully checked. Ifj 6 i, then we are done.

Suppose thati < j . After xi+r becomes fully checked,xj becomes active. Asxi is active
at (the later) timet , xj becomes fully checked. Suppose thatxj1 accessesxj . By Lemma5,

50https://doi.org/10.1112/S1461157000000371 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000371

Using program schemes to capture polynomial-time

whenxj is accessed, which is before timet , the vertices of{xp : j1 < p < j} are fully
checked. Ifj1 6 i, then we are done.

Continuing as above, we find that there exists somexjk such that:xjk accessesxjk−1, the
vertices of{xp : jk < p 6 i + r} are fully checked at some time not later than timet , and
jk 6 i. Hence the result follows.

Now we can prove the correctness of our algorithm.

Proposition 7. The algorithmDFSearch solves the deterministic path system problem.

Proof. Consider the execution ofDFSearchwith some deterministic path system as input.
Initially, DFSearch starts withAccessedSet consisting only of the source; if any more
vertices are added, then they must have been accessed by vertices that have already been
placed inAccessedSet . Hence,AccessedSet contains only vertices that are accessible
from the source. Suppose thatDFSearch accepts its input. Then the sink is accessed from
vertices inAccessedSet , and so the input is a deterministic path system in which the sink
is accessible from the source.

Conversely, suppose thatDFSearch rejects its input, and thatAccessedSet =
{x0,x1, . . . , xk} on termination. For termination to occur, eitherk = 0, or x0 must have
become active again. Ifk = 0, then clearly the input is a deterministic path system in which
the sink is not accessible from the source; so assume thatx0 becomes active again. By Corol-
lary 6, at the time at whichx0 becomes active again, all the vertices of{x0, x1, . . . , xk}
are fully checked. Hence,AccessedSet consists of all those vertices that can be shown to
be accessible from the source, and the sink is not inAccessedSet ; that is, the input is a
deterministic path system in which the sink is not accessible from the source.

3.3. Implementing our algorithm

Now that we have developed the algorithmDFSearch to solve the deterministic path
system problem, let us reconsider the demands on any DPSS(1)program scheme that might
implementDFSearch. Firstly, it will need to build a set of accessed vertices,AccessedSet ,
and then retrieve vertices from the set in the order in which they were inserted; and it must
do this where the only additional storage is the stack. Secondly, it will need to check whether
a vertex is already in the setAccessedSet . Thirdly, for any accessed vertex it should be able
to ascertain the pair from which this vertex was accessed. As we shall see, it is non-trivial
to implementDFSearch in DPSS(1).

However, we now describe such an implementation of the algorithmDFSearch; that
is, a program schemeρ0 ∈ DPSS(1)overσ ′

3 that solves the problem DetPS. The structure
of our program schemeρ0 is that it consists of the instruction ‘PUSHx0’ followed by one
while-loop that loops until the input structure is either accepted or rejected. Changes are
made to the stack (starting from an empty stack) during each while-loop iteration such that,
for any iteration, the changes to the stack are determined by the top (at most) two stack
elements, and these changes involve only the top two stack elements, with possibly one
extra element being pushed onto the stack. Consequently, we describe the program scheme
ρ0 using the table in Figure3 (the notation, and the underlying encoding, used in Figure3
are explained shortly). The ‘pre-loop’ column shows the top two stack elements, wherec is
the height of the stack; and the ‘post-loop’ column shows how the stack changes during one
iteration, given the ‘pre-loop’ conditions. So our program scheme essentially repeatedly
applies the operations specified in each row, depending upon the current conditions, as
defined in the ‘condition’ column.

51https://doi.org/10.1112/S1461157000000371 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000371

Using program schemes to capture polynomial-time

Top 2 items on stack Top 3 items on stack Condition satisfied
pre-loop post-loop by stack pre-loop

Row c − 1 c c − 1 c c + 1
1
1.1 −− item −− item x0 only one item
2
2.1 p q ACCEPT (p, q) 7→ sink
2.2 p q 〈p, q, r〉 −− −− (p, q) 7→ r ∧ r 6= sink
2.3 p p [p] −− −− (p, p) 7→ ε ∧ p 6= x0
2.4 x0 x0 REJECT (x0, x0) 7→ ε

2.5 p q p q x0 (p, q) 7→ ε ∧ p 6= q

2.6 p item p item x0 item not of type (i)
3
3.1 〈p, q, r〉 〈p, q, r〉 r −− −−
3.2 〈p, q, r〉 〈p′, q ′, r〉 p q x0 (p 6= p′ ∨ q 6= q ′) ∧ p 6= q

3.3 〈p, p, r〉 〈p′, q ′, r〉 [p] −− −− (p 6= p′ ∨ p 6= q ′)
3.4 〈p, q, r〉 item 〈p, q, r〉 item x0 item 6= 〈p′, q ′, r〉, ∀p′, q ′
4
4.1 [r] 〈p, q, r〉 p q x0 p 6= q

4.2 [r] 〈p, p, r〉 [p] −− −− p 6= x0
4.3 [r] 〈x0, x0, r〉 REJECT
4.4 [r] item [r] item x0 item 6= 〈p, q, r〉, ∀p, q

Figure 3: The program schemeρ0.

We give each row in the table in Figure3 a number. Leti be a row in our table, and let
β be a stack configuration (that is, the contents of the stack) that satisfies the ‘pre-loop’
condition of rowi. We say thatβ satisfiesrow i, or that rowi holdsfor β. In addition, ifρ0
is such that, prior to an iteration of the while-loop,β satisfies rowi, then any changes made
toβ in this iteration are said to bebyor via row i, and we say that rowi is applied. Note that
the rows in the table in Figure3 are mutually exclusive – that is, any stack configuration
can satisfy at most only one rule – and every possible combination of a pair of stack items
is considered in the table.

We now give a definition of the stack items that are introduced in Figure3. Note that
in the actual program schemeρ0 a suitable encoding scheme is used so as to realise the
different types of stack item below. Let the input to our program scheme be theσ ′

3-structure
P . We have stack items of the following types:

(a) p, wherep ∈ |P |;
(b) 〈p, q, r〉, wherep, q, r ∈ |P |; and

(c) [p], wherep ∈ |P |.
As an example of an encoding scheme alluded to above, we might encode the stack item:

(a) p ∈ |P | as the six stack itemsu, u, u, p, p, p, for some fixedu ∈ |P |;
(b) 〈p, q, r〉, wherep, q, r ∈ |P |, as the six stack itemsu, v, v, p, q, r, for some fixed

u, v ∈ |P | such thatu 6= v; and

(c) [p], wherep ∈ |P |, as the six stack itemsu, v, u, p, p, p, for some fixedu, v ∈ |P |
such thatu 6= v.

52https://doi.org/10.1112/S1461157000000371 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000371

Using program schemes to capture polynomial-time

u ywv

u w

v

w

y

y

y

ε

v

ε

ε

ε ε ε ε

ε

ε ε ε

ε

Figure 4: A deterministic path system; see Example8.

Consequently, popping an ‘item’ from the stack, for example, really means popping six
elements,u1, u2, u3, u4, u5 andu6, from the stack and then ascertaining, usingu1, u2 and
u3, the type of the encoded item, withu4, u5 andu6 yielding the parameters of the item.

Having described our program schemeρ0 ∈ DPSS(1)(it is clear that the above descrip-
tion can be implemented in DPSS(1)), let us now set about proving that it is an implemen-
tation of the algorithmDFSearch.

Some definitions are in order here, so that we may reason about stacks. Consider the
computation ofρ0, given someσ ′

3-structureP as input. Astack configurationsimply con-
sists of the contents of the stack at some particular point in the computation. If the stack
configurationβ = (β(1), β(2), . . . , β(m)) (with β(m) the top item), then ht(β) = m and
the element atpositioni, for 1 6 i 6 ht(β), is β(i). (The height of the empty stack con-
figuration is 0.) Thestack traceof ρ on inputP is the sequence of stack configurations in
the order in which they occur when the flow of control of the execution ofρ0 on inputP
is frozen immediately before executing the while-loop, and then immediately after every
iteration of the while-loop (and so the first non-empty stack configuration of any stack trace
is (x0)). That is, we do not consider the stack manipulations performedduringan iteration
of the while-loop, but we focus on the stack onlyimmediately afterthe iteration. Note that
it is conceivable that a stack trace might be infinite; that is,ρ0 might not halt on inputP .
In fact, this is never the case, but until we have proved this assertion, we must assume that
infinite stack traces are possible. Theith stack configuration in the stack trace6 is 6i ,
and the indices of the stack configurations yield a notion of time; that is, we say that the
stack configuration6i is the configuration at timei. If i < j , then we say that6i evolves
to6j . If α andβ are stack configurations of heightsi andj , respectively, then we denote
the stack configuration(α(1), α(2), . . . , α(i), β(1), β(2), . . . , β(j)) by α+ β; and ifx is
some stack item, then we denote the stack configuration(x, α(1), α(2), . . . , α(i)) byx+α.

Before proving that the program schemeρ0 simulates our algorithmDFSearch, we give
an example that illustrates the design of and the philosophy behind the program schemeρ0
(in relation to the algorithmDFSearch).

Example 8. Consider the deterministic path systemP described in Figure4, whose source
we take as the vertexu. We shall consider the execution of the program schemeρ0 on P .
To get the most from our example, we shall not specify a sink in our program scheme, but
will simply let the program scheme run until the input is rejected (if there is no sink, then
it can never be shown to be accessible).

53https://doi.org/10.1112/S1461157000000371 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000371

Using program schemes to capture polynomial-time

u

1.1 u 2.2 1.1 u 3.4 u 2.2
u → u → 〈u, u,w〉 → 〈u, u,w〉 → 〈u, u,w〉 →

1
〈u, u,w〉 3.1 1.1 u 2.2 1.1 u 3.4
〈u, u,w〉 → w → w → 〈w, u, y〉 → 〈w, u, y〉 →

2 3
u

u u u 〈u, u,w〉
u 2.2 〈u, u,w〉 3.4 〈u, u,w〉 3.4 〈u, u,w〉 2.2 〈u, u,w〉 3.1

〈w, u, y〉 → 〈w, u, y〉 → 〈w, u, y〉 → 〈w, u, y〉 → 〈w, u, y〉 →

u

w 3.4 w 2.2 〈w, u, y〉 3.1 1.1 u 2.5
〈w, u, y〉 → 〈w, u, y〉 → 〈w, u, y〉 → y → y →

4 5
u

u u u 〈u, u,w〉
u 2.2 〈u, u,w〉 2.6 〈u, u,w〉 3.4 〈u, u,w〉 2.2 〈u, u,w〉 3.1
y → y → y → y → y →

u

w 2.5 w 2.2 3.1 y 2.3 1.1
y → y → . . . → y → [y] →
6 7

u

u 4.4 u 2.2 〈u, u,w〉 4.4 2.2 〈w, u, y〉 4.1
[y] → [y] → [y] → . . . → [y] →

8
u

u 2.2 3.1 w 2.2 1.1 u 3.4
w → . . . → w → 〈w,w, v〉 → 〈w,w, v〉 →

9
u

u 2.2 2.2 〈w,w, v〉 3.1 1.1 u 2.5
〈w,w, v〉 → . . . → 〈w,w, v〉 → v → v →

10
u

u 2.2 3.1 v 2.3 1.1 u 4.4
v → . . . → v → [v] → [v] →

11
u

u 2.2 2.2 〈w,w, v〉 4.2 1.1 u 4.4
[v] → . . . → [v] → [w] → [w] →

12
u

u 2.2 〈u, u,w〉 4.3
[w] → [w] → halt

13

Figure 5: The stack trace ofρ0.

54https://doi.org/10.1112/S1461157000000371 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000371

Using program schemes to capture polynomial-time

We portray the execution ofρ0 onP in Figure5. In this figure, we depict the stack trace
of the execution. Each stack configuration is represented as a column of elements, and the
row that is applied in order to alter the stack at any configuration is denoted as a superscript
to the symbol→. Some stack configurations are given a breakpoint number (written below
the stack), which we shall use below in our description of the execution.

Initially, u is the only vertex so far shown to be accessible; this is signalled by the stack
configuration initially consisting solely of the itemu.

The computation begins so that the stack configuration evolves until it consists of one
item, namely the item〈u, u,w〉 (at breakpoint 1); this comes about because(u, u) 7→ w.
Essentially, this configuration is interpreted as ‘it may be the case thatw is the next vertex to
be shown to be accessible (but we must confirm this)’. The stack configuration now evolves
so that the whole computation, from the start, is repeated ‘above’ the item〈u, u,w〉, which
remains at the bottom of the stack.

This evolution continues until a stack configuration of the form(〈u, u,w〉, 〈−,−, w〉)
comes about (such a circumstance is shown at breakpoint 2). Generally, if the two items
are different, thenw must already have been shown to be accessible; otherwise, they are
the same andw has not so far been shown to be accessible. At breakpoint 2, the latter case
holds, and sow is made accessible, an event that is signalled by the stack configuration
consisting solely of the itemw.

The stack configuration now evolves so that the whole computation is repeated above
the itemw, until a previously accessed vertex is reached. This happens at breakpoint 3,
when the stack configuration is(w, u). As (w, u) 7→ y, the stack evolves so that it consists
solely of the item〈w, u, y〉, which signals that ‘it may be the case thaty is the next vertex
to be shown to be accessible’. The stack configuration now evolves so that the whole
computation is repeated above the item〈w, u, y〉 until a stack configuration of the form
(〈w, u, y〉, 〈−,−, y〉) comes about. This happens at breakpoint 4, when the configuration
is(〈w, u, y〉, 〈w, u, y〉), which signals thaty has not previously been shown to be accessible.
The vertexy is now made accessible.

The stack configuration now evolves so that the whole computation is repeated above
the itemy, until a previously accessed vertex is reached: this happens at breakpoint 5. In
this case,(y, u) 7→ ε, and so we continue the repetition, again until a previously accessed
vertex is reached (at breakpoint 6). Just as before,(y,w) 7→ ε, and so we yet again continue
the repetition. We eventually reach the stack configuration(y, y) (at breakpoint 7). As
(y, y) 7→ ε, the stack configuration evolves into([y]), which is interpreted to mean that
‘all pairs of the form(y,−), where the second component ranges over previously accessed
vertices, have been checked and no potentially new accessible vertices have been obtained’.
The computation now evolves so that the whole computation is repeated above the item
[y], until a stack configuration of the form([y], 〈−,−, y〉) comes about. This happens at
breakpoint 8, when the stack configuration is([y], 〈w, u, y〉). This signals that the pair of
vertices that accessedy was(w, u).

The stack configuration now evolves into(w, u, u), as if it were the case that(w, u) 7→ ε.
Of course, in reality(w, u) 7→ y but, given thatρ0 is intended to simulate the algorithm
DFSearch, we wishρ0 to search for the vertex accessedafter the vertexu, and then pair
this vertex with the vertexw. This means repeating the computation abovew, from the stack
configuration(w, u, u), until the next accessed vertex is obtained. The next vertex accessed
after vertexu is vertexw, and the stack configuration evolves into(w,w) (at breakpoint 9).
As(w,w) 7→ v, the stack configuration now evolves into(〈w,w, v〉) (with an interpretation
similar to that above). Asv has not previously been shown to be accessible, the stack

55https://doi.org/10.1112/S1461157000000371 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000371

Using program schemes to capture polynomial-time

configuration evolves into(〈w,w, v〉, 〈w,w, v〉) (at breakpoint 10), and then to(v).
As (v, u) 7→ ε, (v,w) 7→ ε, (v, y) 7→ ε and(v, v) 7→ ε, the whole computation is

repeated abovev until the stack configuration evolves to(v, v) (at breakpoint 11), and then
to ([v]). The whole computation is then repeated above[v] in order to ascertain the pair of
vertices that accessedv; this comes about at breakpoint 12, when the stack configuration
is ([v], 〈w,w, v〉). The stack configuration now evolves into([w]), and the whole compu-
tation is then repeated above[w] in order to ascertain the pair of vertices that accessedw.
This comes about at breakpoint 13, when the stack configuration is([w], 〈u, u,w〉). The
execution now halts. Note that this execution is indeed a simulation of the algorithm
DFSearch.

The following lemmas will be used to show thatDFSearch can be implemented as a
program scheme of DPSS(1).

Lemma 9. LetP be aσ ′
3-structure, and let6 be the stack trace ofρ0 on inputP . Suppose

that6i = (ι), for somei > 1 and for some stack itemι 6= x0. Then there existsk such that
i < k and:

• 6i+j = 6i +6j , for all j ∈ {1,2, . . . , k − i};
• ht(6k) = 2; and

• 6k evolves to6k+1 by one of the rows2.1 – 2.4, 3.1– 3.3and4.1 – 4.3.

Proof. We have61 = (x0) and62 = (x0, x0), and, by Figure3, 6i+1 = (ι, x0) and
6i+2 = (ι, x0, x0). The application of any row is dependent only upon the top two stack
items, and alters only (at most) the top two stack items (although a further item might be
pushed onto the stack, or the height of the stack might be lessened by 1). Letm be the least
m such thatm > 1 and ht(6m) = 1. (We know that such anm exists, as ht(6i) = 1.) Then
6i+1 = ι+61, 6i+2 = ι+62, . . . , 6i+m = ι+6m.

If 6i+m evolves to6i+m+1 by one of the rows 2.5, 2.6, 3.4 and 4.4 then, by Figure3,
6i+m+1 = ι + 6m+1 with ht(6i+m+1) = 3. Thus, we may assume that6i evolves to
6k = (ι, item) where6i+j = 6i +6j , for all j ∈ {1,2, . . . , k − i}, and6k satisfies one
of the rows 2.1 – 2.4, 3.1 – 3.3 and 4.1 – 4.3. The result follows.

Lemma 10. Let P be aσ ′
3-structure, and let6 be the stack trace ofρ0 on inputP . Fix

i > 1 and define:

T (i) = {t : 1 6 t 6 i and6t = (p), for somep ∈ |P |},
with T (i) ordered ast0 < t1 < . . . < tk, for somek > 0. Suppose that6tj = (xj), for
all j = 0, 1, . . . , k, and that at timei, AccessedSet = {x0, x1, . . . , xk}. Suppose further
that6i = (xl, xm, x0), for somel, m ∈ {0, 1, . . . , k}, wherem < l. Then6i evolves to6s
where:

• 6i+j = xl +6(tm+1)+j , for all j = 1,2, . . . , s − i; and

• 6s = (xl, xm+1).

Proof. We have6tm = (xm) and6tm+1 = (xm, x0), and so6i = xl +6tm+1. By Figure3,
the application of any row is dependent only upon the top two stack items, and alters only
(at most) the top two stack items (although a further item might be pushed onto the stack
or the height of the stack might be lessened by 1).

56https://doi.org/10.1112/S1461157000000371 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000371

Using program schemes to capture polynomial-time

Consequently,6i+1 = xl + 6(tm+1)+1, 6i+2 = xl + 6(tm+1)+2, . . . , 6i+t = xl +
6(tm+1)+t, for somet such that ht(6(tm+1)+t) = 1. (We know that such at exists, asm < l

andtm < tm+1 < i.)
If 6i+t evolves to6i+t+1 by row 2.6, then6i+t+1 = xl + 6(tm+1)+t+1, and we

can continue as above (as ht(6i+t+1) = 3). Hence6i evolves to6s where6i+j =
xl +6(tm+1)+j , for all j = 1,2, . . . , s − i, and6s = (xl, xm+1).

Lemma 11. LetP be aσ ′
3-structure, and let6 be the stack trace ofρ0 on inputP . Leti be

such that6i = (〈p, q, r〉), for somep, q, r ∈ |P |. Then there existsk such thati < k and:
• 6i+j = 6i +6j , for everyj = 1,2, . . . , k − i; and
• 6k = (〈p, q, r〉, 〈p′, q ′, r〉), for somep′, q ′ ∈ |P |.

Proof. By Lemma9,6i evolves by repeating the computation ofρ0 on inputP ‘above’
〈p, q, r〉 until the stack height is 2 and one of the rows 2.1 – 2.4, 3.1 – 3.3 and 4.1 – 4.3 is
to be applied; that is, in this case, one of the rows 3.1 – 3.3. The result follows.

Now we prove that the program schemeρ0 implements the algorithmDFSearch.

Theorem 12. For everyσ ′
3-structureP , the algorithmDFSearchaccepts the deterministic

path system encoded byP if and only ifP |= ρ0. Hence the program schemeρ0 accepts
the problem DetPS.

Proof. Suppose that on input (the deterministic path system encoded by)P , the algorithm
DFSearch halts withAccessedSet = {x0, x1, . . . , xk}, for somek > 0. Suppose also
that these vertices have been shown to be accessible in the order given. There are numerous
distinguished events in the computation ofDFSearch on inputP , namely:

• the events when the different vertices are shown to be accessible (line 7 of Figure2);
• the events when pairs of accessible vertices are checked to see whether a new vertex

might be accessed (line 2 of Figure2); and
• the events when the search is embarked upon for the pair of vertices that was used to

show that a vertex is accessible (line 14 of Figure2).
These events are all distinct, and have time-stamps associated with them, denoting when
they occur. Let these (finitely many distinct) time-stamps be ordered as:

t1 < t2 < t3 <

(Obviously,t1 is the time-stamp whenx0 is assumed to be accessible,t2 is the time-stamp
associated with the event when the pair(x0, x0) is checked,t3 is the time-stamp associated
with the event whenx1 is shown to be accessible, unlessk = 0, and so on.)

In order to prove our theorem, we shall proceed by induction. Let6 be the stack trace of
ρ0 on inputP . Our induction hypothesis IH(i) is as follows: ‘There exist non-zero natural
numberss1 < s2 < . . . < si such that for eachj ∈ {1,2, . . . , i}:

• if tj is the time-stamp associated with the event whenxl is shown to be accessible
then6sj = (xl);

• if tj is the time-stamp associated with the event when the pair(xl, xm) is checked to
see whether a new vertex might be accessed, then6sj = (xl, xm);

• if tj is the time-stamp associated with the event when a search is embarked upon for
the pair(xl1, xm1) that was used to show thatxl is accessible, then6sj = ([xl]); and

• if s is such that 16 s 6 si but s 6∈ {s1, s2, . . . , si}, then6s 6= (y),6s 6= (y, z) and
6s 6= ([y]), for anyy, z ∈ |P |.’

57https://doi.org/10.1112/S1461157000000371 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000371

Using program schemes to capture polynomial-time

The base cases of the induction, wheni = 1 andi = 2, are immediate, simply by following
the first few steps of the computation ofρ0 on inputP .

Suppose that the induction hypothesis IH(i) holds, for somei > 1. There are three
possibilities:

(1) 6si = (xl), for somel;

(2) 6si = (xl, xm), for somel andm; and

(3) 6si = ([xl]), for somel.

Case(1): 6si = (xl).
The next event in the computation ofDFSearch on inputP is when the pair(xl, x0) is
checked to see whether some new vertex might be accessed. As6si+1 = (xl, x0), IH(i+1)
holds.

Case(2) : 6si = (xl, xm).
There are four possibilities as regards the next event in the computation ofDFSearch on
inputP :

(a) (xl, xm) 7→ sink, and soDFSearch goes on to accept;

(b) (xl, xm) 7→ y 6= sink wherey has not yet been accessed, and so the next event is
wheny is shown to be accessible;

(c) l > m, and it is not the case that(xl, xm) 7→ y for somey that has not yet been
accessed, and so the next event occurs when the pair(xl, xm+1) is checked to see
whether a new vertex might be accessed; and

(d) l = m, and it is not the case that(xl, xm) 7→ y for somey that has not yet been
accessed, and so eitherxl = xm = 0 andDFSearch goes on to reject, or the next
event occurs when a search is embarked upon for the pair(xl1, xm1) that accessedxl .

Case(2a) : (xl, xm) 7→ sink.
In this case,DFSearch acceptsP andρ0 acceptsP .

Case(2b) : (xl, xm) 7→ y wherey has not yet been accessed.
We have6si+1 = (〈xl, xm, y〉). Suppose that6j = (〈p, q, y〉), for somej < si and
for somep, q ∈ |P |, and letj be the minimal suchj . By Lemma11 and Figure3, 6j
evolves to6s = (y), for somes < si . This yields a contradiction (asy has not yet been
accessed). Hence, by Lemma11,6si+1 evolves to(〈xl, xm, y〉, 〈xl, xm, y〉), so that none
of the intermediate stack configurations corresponds to any distinguished events, and then
(〈xl, xm, y〉, 〈xl, xm, y〉) evolves to(y) by applying row 3.1. Consequently, IH(i+1)holds.

Case(2c) : l > m, and it is not the case that(xl, xm) 7→ y for somey that has not yet
been accessed.
In this case,ti+1 is the time-stamp associated with the event of checking the pair(xl, xm+1).
There are two possibilities: either(xl, xm) 7→ ε, or (xl, xm) 7→ xr , for somexr ∈
AccessedSet (that is, the current version ofAccessedSet).

If (xl, xm) 7→ ε, then6si+1 = (xl, xm, x0), which, by Lemma10, evolves to the stack
configuration(xl, xm+1) such that no intermediate stack configuration corresponds to a
distinguished event; so IH(i + 1) holds.

58https://doi.org/10.1112/S1461157000000371 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000371

Using program schemes to capture polynomial-time

If (xl, xm) 7→ xr wherexr ∈ AccessedSet , then6si+1 = (〈xl, xm, xr 〉). As xr is in
AccessedSet , by the induction hypothesis,6sj = (xr), for somej 6 i; consequently, (by
consulting Figure3)6sj−1 = (〈p, q, xr 〉, 〈p, q, xr 〉), for somep, q ∈ |P |. Let s < sj − 1
be the minimals such that6s = (〈p, q, xr 〉), for somep, q ∈ |P |. (Such ans exists by
Figure3.) By Lemma11,6si+1 evolves to the stack configuration(〈xl, xm, xr 〉, 〈p, q, xr 〉),
so that no intermediate stack configuration corresponds to a distinguished event. Note that
6s−1 = (p, q), and so, by IH(i), we have(p, q) 6= (xl, xm). Hence the stack configuration
(〈xl, xm, xr 〉, 〈p, q, xr 〉) evolves to(xl, xm, x0) by applying row 3.2, which in turn, by
Lemma10, evolves to the stack configuration(xl, xm+1) such that no intermediate stack
configuration corresponds to a distinguished event. Thus IH(i + 1) holds.

Case(2d) : l = m, and it is not the case that(xl, xm) 7→ y for somey that has not yet
been accessed.
If l = m = 0, thenDFSearch rejectsP andρ0 rejectsP . Assume thatl = m 6= 0. The
next event in the computation ofDFSearch on inputP is the event where the search begins
for the pair(xl1, xm1) that was used to accessxl .

If (xl, xl) 7→ ε, then6si+1 = ([xl]) and IH(i + 1) holds.
If (xl, xl) 7→ xr andxr ∈ AccessedSet , then we proceed as we did in Case (2c), whence

6si evolves to the stack configuration(〈xl, xl, xr 〉, 〈p, q, xr 〉) (where(p, q) 6= (xl, xl)),
so that no intermediate stack configuration corresponds to a distinguished event. Row 3.3
is now applied so that the stack configuration becomes([xl]). Hence IH(i + 1) holds.

Case(3): 6si = ([xl]).
Suppose that the pair(xl1, xm1) accessedxl (note thatl 6= 0). There are three possibilities
for the next event in the computation ofDFSearch on inputP :

(a) if m1 < l1, then the pair(xl1, xm1+1) is checked to see whether a new vertex might
be accessed;

(b) if m1 = l1 6= 0, then the search for the pair(xl2, xm2) that accessedxl1 is begun; and

(c) if m1 = l1 = 0, then the input is rejected.

By the induction hypothesis, there is a time-stamptj , for somej < i, when the pair
(xl1, xm1) was checked and6sj = (xl1, xm1). Consequently,6sj+1 = (〈xl1, xm1, xl〉).
Suppose that6s = (〈p, q, xl〉), for somes < sj + 1 and for somep, q ∈ |P |, where
(p, q) 6= (xl, xm). Let s be the minimal suchs. By Lemma11 and Figure3,6s evolves
to6s′ = (xl) for somes′ < sj . This yields a contradiction, asxl would already have been
accessed when the pair(xl1, xm1)was subsequently checked. (Remember, we are assuming
that (xl1, xm1)accessesxl .) Hence, by Lemma9 and Figure3, 6si evolves to the stack
configuration([xl], 〈xl1, xm1, xl〉), so that no intermediate stack configuration corresponds
to a distinguished event.

Case(3a): m1 < l1.
The stack configuration([xl], 〈xl1, xm1, xl〉) evolves to(xl1, xm1, x0), which, by Lemma10,
evolves to(xl1, xm1+1), so that no intermediate stack configuration corresponds to a dis-
tinguished event. Hence IH(i + 1) holds.

Case(3b): m1 = l1 6= 0.
The stack configuration([xl], 〈xl1, xm1, xl〉) evolves to([xl1]) by row 4.2, and so IH(i + 1)
holds.

59https://doi.org/10.1112/S1461157000000371 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000371

Using program schemes to capture polynomial-time

Case(3c): m1 = l1 = 0.
The computation ofρ0, from the stack configuration([xl], 〈xl1, xm1, xl〉), leads to a rejection
of the input.

Thus, by induction, the program schemeρ0 simulates the algorithmDFSearch, and the
result follows by Proposition7.

The reader will no doubt have noted the similarities between the proof of Theorem12
and the proof of the main theorem in [2]. Cook uses a similar technique to simulate the
computation of a polynomial-time deterministic Turing machine as a computation of a log-
space deterministic auxiliary pushdown machine. However, note that we provide a much
more formal proof of our simulation than Cook does for his.

We can now use Theorem12 to show that removing non-deterministic guessing from
the program schemes of NPSSs(1) does not diminish the class of problems so captured.

Corollary 13. Let� be a problem over the signatureσ . The following statements are
equivalent.

• � ∈ P.

• � ∈ NPSSs(1).

• � ∈ DPSSs(1).

• � ∈ (± PS)∗[FOs].
Proof. LetP be aσ3-structure (that is, a path system, of sizen). We shall build aσ ′

3-structure
P ′ (that is, a deterministic path system), such thatP ∈ PS if and only ifP ′ ∈ DetPS. In
order that we define aσ ′

3-structure, our path systemP ′ will be such that: for every two
verticesx, y ∈ |P ′|, there is exactly onez ∈ |P ′| for which(x, y, z) is a rule; furthermore,
(x, y, z) is a rule if and only if(y, x, z) is a rule.

Our path systemP ′ has vertex set|P |3 and we partition this vertex set into the disjoint
union:

|P ′| =
⋃

u∈|P |
Qu,

where for everyu ∈ |P |,Qu = {(u, v,w) : v,w ∈ |P |}. We define the set of rules ofP ′
in three batches. The first two batches describe rules for which the first two components
belong to the sameQu; the third batch describes rules for which the first two components
belong to different sets,Qu andQv.

Batch1.

{((u, 0, 0), (u, v,w), (u, v, succ(w))), ((u, v,w), (u,0, 0), (u, v, succ(w))):
u, v,w ∈ |P |, w 6= max}

∪{((u, 0, 0), (u, v,max), (u, succ(v),0)), ((u,0, 0), (u, v,max), (u, succ(v),0)) :
u, v ∈ |P |, v 6= max}

∪{((u, 0, 0), (u,max,max), (u,0, 0)), ((u,max,max), (u,0, 0), (u,0, 0))}
The rules in Batch 1 are essentially such that for anyu ∈ |P |, if (u, 0, 0) is made accessible
in P ′, then so is every vertex ofQu.

60https://doi.org/10.1112/S1461157000000371 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000371

Using program schemes to capture polynomial-time

Batch2.

{((u, u,w), (u, u,w), (w,0, 0)) :
u,w ∈ |P |, (u,w) 6= (0, 0), R(u, u,w) holds inP }

∪{((u, u,w), (u, u,w), (0, 0, 0)) :
u,w ∈ |P |, (u,w) 6= (0, 0), R(u, u,w) does not hold inP }

∪{((u, v,w), (u, v′, w′), (0, 0, 0)), ((u, v′, w′), (u, v,w), (0, 0, 0)) :
u, v,w, v′, w′ ∈ |P |, (v, w) 6= (0, 0) 6= (v′, w′),¬(w = w′ andv = u = v′)}

The rules in Batch 2 complete the definition for rules whose first two components are in the
same setQu. They are mostly redundant (in that they are there so thatP ′ has the property
described in the first paragraph of this proof), except that ifR(u, u,w) holds inP and
(u, 0, 0) is accessible, then so is(w, 0, 0) (see the comment subsequent to the definition of
the rules in Batch 1).

Batch3.

{((u, v,w), (v, u,w), (w,0, 0)), ((v, u,w), (u,w,w), (w,0, 0)) :
u, v,w ∈ |P |, u 6= v, R(u, v,w) holds inP }

∪{((u, v,w), (v, u,w), (source, 0, 0)), ((v, u,w), (u,w,w), (source, 0, 0)) :
u, v,w ∈ |P |, u 6= v, R(u, v,w) does not hold inP }

∪{((u, v,w), (u′, v′, w′), (0, 0, 0)) :
u, v,w, u′, v′, w′ ∈ |P |, u 6= u′,¬((u, v) = (u′, v′) andw = w′)}

The rules in Batch 3 essentially ensure that if(u, 0, 0) and(v, 0, 0) are accessible inP ′,
whereu 6= v, andR(u, v,w) orR(v, u,w) holds inP , then(w, 0, 0) is accessible inP ′.
(Some rules are redundant in terms of making new vertices accessible inP ′.)

The source of the path systemP is the vertex(source, 0, 0) and the sink is the vertex
(sink, 0, 0).

A simple induction, with the vertices of{(u, 0, 0) : u ∈ |P |} ⊆ |P ′| corresponding to
the vertices ofP , yields that the sink is accessible in the path systemP if, and only if,
the sink is accessible in the path systemP ′. Moreover, this is true independently of which
particular successor function is chosen.

What is more, we can actually describe the deterministic path systemP ′ in terms ofP
using a quantifier-free formula of FOs . That is, there is a quantifier-free formulaψ(x, y, z) ∈
FOs , wherex = (x1, x2, x3), y = (y1, y2, y3) andz = (z1, z2, z3), such that for every
u, v,w ∈ |P ′|, F(u, v) = w in P ′ if and only if ψ(u, v,w) holds inP . In fact, given
variablesx1, x2, x3, y1, y2 andy3, we can write a portion of ‘DPSSs(1) code’ that gives
the variablesz1, z2 andz3 the valueF((x1, x2, x3), (y1, y2, y3)). Consequently, we can
clearly amend the program schemeρ0 of DPSS(1)so that it becomes a program scheme
ρ1 of DPSSs(1) overσ3 and accepts the problem PS. (In doing so, we essentially replace
single variables with 3-tuples of variables, and the built-in successor function with the
lexicographic successor function on 3-tuples obtained using succ. Such constructions are
commonplace in the literature.)

Let� be some problem inPover the signatureσ . By Theorem1, there exists a quantifier-
free formulaϕ(x, y, z) ∈ FOs , where|x| = |y| = |z| = k, for somek > 1, such that for

61https://doi.org/10.1112/S1461157000000371 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000371

Using program schemes to capture polynomial-time

everyσ -structureA: the path system with vertex set|A|k, with rules{(u, v,w) : u, v,w ∈
|A|k, ϕ(u, v,w) holds inA}, with source(0, 0, 0) and with sink(max,max,max) is such
that the sink is accessible from the source if, and only if,A ∈ �. By amending the pro-
gram schemeρ1, in the same way that we amended the program schemeρ0 to obtainρ1,
we can obtain a program schemeρ2 ∈ DPSSs(1) that accepts�. The result follows by
Theorems1 and2.

Notice what Corollary13 actually says: it states that the deterministic model of com-
putation DPSSs(1) captures exactly the complexity classP, and that the non-deterministic
extension of this model, NPSSs(1), capturesP too. This result can be interpreted as a
‘logical reformulation’ of Cook’s result, mentioned earlier, regarding deterministic and
non-deterministic logspace auxiliary pushdown machines.

4. Building an ordering

A different interpretation can be placed on the proof, given in Section3, that DetPS can
be solved by the program schemeρ0 of DPSS(1). By a simple modification ofρ0 so that
it does not accept if the sink is shown to be accessible, but simply continues exhibiting
new accessible vertices, we can build a canonical ordering of the accessible vertices in any
determinstic path system. If we knowa priori that our deterministic path system is such
that every vertex is accessible from the source, then we can build a canonical ordering of
the vertices whose minimal element is the source.

In more detail, letP be aσ3-structure with the property that for everyx, y ∈ |P | (where
possiblyx = y), there exists exactly onez such that eitherR(x, y, z) or R(y, x, z) holds.
That is,P encodes a deterministic path system. By the proof of Theorem12, there is clearly
a program schemeρ3 ∈ NPSS(1)overσ3 ∪ {C,D}, whereC andD are two new constant
symbols, such that on inputP :

• if C andD are accessible andC comes immediately beforeD in the canonical
ordering of accessible vertices ofP , then every terminating computation ofρ3 on
inputP signifies this fact, and there is at least one terminating computation; and

• if either one ofC andD is not accessible, or ifC does not come immediately be-
foreD in the canonical ordering of accessible vertices ofP , then every terminating
computation ofρ3 on inputP signifies this fact, and there is at least one terminating
computation.

This observation can be used to show that on certain classes of structures, any problem that
is solvable in polynomial-time can be defined by a sentence of(± PS)∗[FO] (in fact, in a
fragment of this logic).

First, we require some definitions. Let0 be a class ofσ -structures that is closed under
isomorphism. By aproblem involving structures from0 we mean an isomorphism-closed
subset of0. For any problem� involving structures over0, we say that a sentence9 of
some logicdefines� if, for every structureA ∈ 0,

A ∈ � if, and only if,A |= 9.

Note that we say nothing about which structures of STRUCT(σ) \ 0 satisfy9. There is
an analogous definition for a program scheme to accept some problem involving structures
from 0, or for a Turing machine to accept some problem involving structures from0.
Consequently, when we talk of, for example, ‘a logicL on a class of structures0’, we mean
the class of problems involving structures from0 that are definable inL.

62https://doi.org/10.1112/S1461157000000371 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000371

Using program schemes to capture polynomial-time

We begin by examining problems involving strongly connected locally ordered digraphs.
Let G be aσ3-structure with the following property: for everyx ∈ |G|, the set of pairs
N(x) = {(y, z) : R(x, y, z) holds inG} is of the form{(x, x)} or

{(x, y1), (y1, y2), . . . , (yk, x) : k > 1 and theyi are distinct and different fromx}.
The structureG can be considered to be a digraph with vertex set|G|, wherex has no
neighbours, ifN(x) = {(x, x)}, and where the neighbours ofx are ordered asy1, y2, . . . , yk,
otherwise. Such structures are calledlocally ordered digraphs. A locally ordered digraph is
strongly connectedif there is a path from any vertex to any other vertex in the underlying
digraph.

Theorem 14. Any problem involving strongly connected locally ordered digraphs that can
be solved in polynomial-time can be accepted by a program scheme ofNPSS(1), and can
also be defined by a sentence ofPS1[FO]with two built-in constants, of the form:

PS[λx, y, zψ](0,max),

where|x| = |y| = |z| = k, for somek > 1. Here,0 represents the constant symbol0,
repeatedk times, andmax representsk repetitions ofmax; ϕ is a quantifier-free formula
of FO. Consequently, on the class of strongly connected locally ordered digraphs,P =
PS1[FO] = NPSS(1), even when there are no built-in constants inPS1[FO].
Proof. Let G be a strongly connected locally ordered digraph. Defineψ(x′, y′, z′), where
x′ = (x′

1, x
′
2), y′ = (y′

1, y
′
2) andz′ = (z′1, z′2), as:

(x′
1 = y′

1 ∧ x′
2 = y′

2 ∧ x′
1 = z′1 6= z′2 ∧ R(x′

1, y
′
1, z

′
2)) ∨ (x′

1 = x′
2 = y′

1 6= y′
2 = z′1 = z′2).

The vertices of the path systemPG obtained by interpreting the formulaψ in G are|G|2,
and the rules are as follows:

• ((u, v), (u, v), (u,w)) if u 6= w andR(u, v,w) holds inG; and

• ((u, u), (u, v), (v, v)) if u 6= v.

For every pair of vertices ofPG, there is at most one rule that can be applied; and also every
vertex of the form(u, u) or (u, v), wherev is a neighbour ofu in G, is accessible no matter
which vertex (of the form(u′, v′), whereu′ = v′ or v′ is a neighbour ofu′) we choose for
the source.

We might be inclined to think that by amending the program schemeρ3, defined at the
beginning of this section (in a style similar to that used in the proof of Corollary13, so
that vertices are replaced by pairs of elements andψ defines the rules), we could obtain
a canonical ordering of the vertices ofPG (starting at any vertex we cared to choose).
However, the program schemeρ3 takes as inputσ ′

3-structures, and such structures encode
deterministic path systems (that is, path systems where there isexactlyone rule of the form
(u, v,w) or (v, u,w) for every pair of vertices{u, v}). More to the point, given two vertices
u andv, ρ3 has to ascertain whether there is a rule(u, v,w) with u 6= w 6= v. Actually,
by considering the proofs of the results in the previous section, we find thatρ3 needs only
to be able to ascertain whether there is a rule(u, v,w), with u 6= w 6= v, for accessible
verticesu andv. Such a predicate can easily be checked (in NPSS(1)) when the path system
is deterministic: we simply guess the unique vertexw, and then check to see whether there
is a rule(u, v,w) or (v, u,w), and whetherw is different from bothu andv. However,
when givenPG as input, this cannot be done, since for some pairs of vertices(u, v) ∈ |PG|,
there is no vertexw ∈ |PG| for which (u, v,w) is a rule.

63https://doi.org/10.1112/S1461157000000371 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000371

Using program schemes to capture polynomial-time

Hence let us add the following rules to our path systemPG. Choose somes ∈ |PG| so
that(s, s) is the source ofPG and add the rules:

• ((u, v), (u, v′), (s, s)) if v′ 6= u 6= v andv 6= v′; and

• ((u, v), (u′, v′), (s, s)) if u 6= u′.
These are essentially ‘dummy rules’ (involving accessible vertices), but their presence
allows us to apply the results of the previous section, as these new rules can be defined by
conjunctions of atomic and negated atomic formulae. The consequence is that we can obtain
a program schemeρ4 ∈ NPSS(1)that canonically orders the accessible vertices ofPG,
starting from the vertex(s, s). (In ρ4 we begin by guessings, and leaves fixed throughout.)
We can now use this ordering of the accessible verticesPG to obtain an ordering of the
vertices ofG. Our encoding scheme is such that a vertexu of G is identified with the vertex
(u, u) of PG. Hence, in a computation ofρ4 onG, we can always remember the last vertex
of PG of the form(u, u) that was shown to be accessible. Thus, to know whetheru comes
immediately beforev in the canonical ordering ofG, we simply need to know whether(u, u)
comes before(v, v) in the canonical ordering of the accessible vertices of|PG|, so that no
vertex of the form(w,w) is such that(u, u) < (w,w) < (v, v) in this canonical ordering;
this is whatρ4 tells us.

Let � be any problem involving strongly connected locally ordered digraphs that is
solvable in polynomial-time. By Theorem2,� can be accepted by a program scheme of
NPSSs(1). By replacing tests to see whether succ(x, y) or ¬ succ(x, y)holds with the code
ρ4, with 0 chosen as the source and max chosen as the last element in our canonical ordering,
we obtain a program scheme of NPSS(1) that accepts�. By Theorem2,� can be defined
by a sentence9 ∈ PS1[FO], as required. Hence, on the class of strongly connected locally
ordered digraphs,P = PS1[FO], even in the absence of two built-in constants, as we can
replace9 by:

∃0∃ max(‘ max is the last element in the canonical ordering starting at 0’∧9).
(Here, we are treating 0 and max as two new variables.)

Theorem14should be compared with a result of Etessami and Immerman [5] on strongly
connected locally ordered digraphs. Their notion of a locally ordered digraph, which they
call a one-way locally ordered graph, is the same as ours – that is, aσ3-structure with
identical restrictions onR – except that in addition they have at their disposal another
universe{0, 1, . . . , n− 1}, in a σ3-structure of sizen, and a built-in total ordering on this
universe (that is, their structures are two-sorted). Immerman had previously proved that
transitive closure logic(see [4] for more details) with a built-in successor relation defines
the class of problems solvable in non-deterministic logspace; that is, the complexity class
NL. The inclusion of this second universe (or ‘counting on the side’) meant that Immerman
and Etessami could prove that on the class of strongly connected one-way locally ordered
graphs,NL consists of those problems that are definable in transitive closure logic (without a
built-in successor relation). Looking at transitive closure logic on Etessami and Immerman’s
one-way locally ordered graphs is a way of removing the built-in successor relation while
retaining a weaker notion of ordering. Our result shows that if we dispense with ‘counting
on the side’ in one-way locally ordered graphs – that is, if we consider our locally ordered
digraphs – then, whilst we do not show that transitive closure logic capturesNL on this class
of structures, we do show that path system logic capturesP on the class of such digraphs.

We have another remark concerning Theorem14. Probably the most commonly occurring
locally ordered digraph is the planar graph when it comes with a plane embedding; that is,

64https://doi.org/10.1112/S1461157000000371 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000371

Using program schemes to capture polynomial-time

for every vertex of the graph, the neighbours are listed in clockwise order. Consequently,
Theorem14holds for the class of connected planar embeddings. But what if we are just given
a connected planar graphwithoutan embedding? That is, we are given a structureG over the
signatureσ2 = 〈E〉, whereE is a binary relation symbol, and we considerG as an undirected
graph with vertex set|G| and with edges{(u, v) : u, v ∈ |G|, E(u, v) orE(v, u) holds}.
Can we obtain a result similar to Theorem14on the class of planar graphs, or at least on a
significant sub-class of planar graphs?

A planar graphG is atriangulationif there is a plane embedding ofG such that every face
is a cycle of length 3 (in particular, triangulations are connected). A graph is 3-connectedif,
no matter which two vertices and their incident edges are removed, the graph remains con-
nected. By [10], for example, a triangulation is 3-connected; and by [3], for example, every
3-connected planar graph has a unique plane embedding up to topological isomorphism.
Hence we can talk about ‘the unique set of faces of a triangulation’.

Theorem 15. Any problem involving triangulations that can be solved in polynomial-time
can be defined by a sentence of(± PS)2[FO]with two built-in constants. Consequently, on
the class of triangulations,P = (± PS)2[FO](even in the absence of two built-in constants).

Proof. Let G be aσ2-structure encoding a triangulation. LetPG be a path system with
vertex set|G|4 × {X, Y,Z}. Fix c0, c1, c2 ∈ |G|, for which (c0, c1, c2) forms a face inG.
The path systemPG has rules:

(a) (X, (u, v,w, u), (v,w, u, v)) and((u, v,w, u),X, (v,w, u, v)), for all u, v,w ∈ |G|
for which (u, v,w) forms a face inG;

(b) (Y, (u, v,w, u), (u,w, v, u)) and((u, v,w, u), Y, (u,w, v, u)), for all u, v,w ∈ |G|
for which (u, v,w) forms a face inG;

(c) (Z, (u, v,w, u), (u, v,w′, u))and((u, v,w, u), Z, (u, v,w′, u)), for allu, v,w,w′ ∈
|G| for which (u, v,w) and(u, v,w′) form distinct faces inG;

(d) ((u, v,w, u), (u, v,w, u), (u, u, u, u)), for all u, v,w ∈ |G| for which (u, v,w)
forms a face inG;

(e) ((u, v,w, u), (u′, v′, w′, u′), X), for all u, v,w, u′, v′, w′ ∈ |G| for which (u, v,w)
and(u′, v′, w′) form distinct faces inG and where(u, v,w, u) 6= (u′, v′, w′, u′);

(f) ((u, u, u, u), t, X) and(t, (u, u, u, u),X), for all u ∈ |G| andt ∈ |PG|; and
(g) (X,X, Y), (Y, Y, Z), (Z,Z, (c0, c1, c2, c0)) and(s, t, X), for all s, t ∈ {X, Y,Z} for

which s 6= t .
The source of the path systemPG is the vertexX. The vertices of|G|4 of the form(u, v,w, u),
where(u, v,w) forms a face inG, can be viewed as rooted partial orientations of the faces
of G, via the fact that the vertex(u, v,w, u) is the pathu → v → w of length 2 partially
encompassing the face(u, v,w). The rules are such that they allow us to show that every
vertex of the form(u, v,w, u), where(u, v,w) forms a face inG, is accessible, with the
rules involvingX andY andZ used to generate all ‘rooted 2-paths’ around a face, and
the rules involvingZ used to ‘flip’ across neighbouring faces. Moreover, all vertices of the
form (u, u, u, u), whereu ∈ |G|, are accessible too.

The path systemPG can easily be defined in terms ofG using a formula of PS1[FO]. (To
check that(u, v,w) is a face inG, we need to check that for everyu′, v′ ∈ |G| \ {u, v,w},
there is a path inG from u′ to v′ avoidingu, v andw; this can be verified with a formula of
PS1[FO].) Additionally, the path system obtained fromPG by restricting the choice to the
vertices of{(u, v,w, u) : u, v,w ∈ |G|, (u, v,w) forms a face inG} ∪ {(u, u, u, u) : u ∈
|G|} ∪ {X, Y,Z} is deterministic.

65https://doi.org/10.1112/S1461157000000371 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000371

Using program schemes to capture polynomial-time

We can amend the program schemeρ3 (defined at the beginning of this section), as in
the proof of Theorem14, so that we obtain a program schemeρ5 that yields a canonical
ordering of the accessible vertices ofPG. However, this program schemeρ5 is not in
NPSS(1), as the tests in while-loops are allowed to be formulae of PS1[FO]. We can now
use this ordering to obtain a canonical ordering of the vertices ofG. In a computation of
ρ5 on G, we can remember the last vertex ofPG of the form(u, u, u, u) that was shown
to be accessible. This yields a canonical ordering of the vertices ofG. Hence, as in the
proof of Theorem14, any polynomial-time solvable problem involving triangulations can
be accepted by a program scheme of NPSS(1) with tests from PS1[FO], and thus – by
Theorem2 – by a sentence of(± PS)2[FO]. The rider in the statement of the result follows
as in the proof of Theorem14.

Theorem15should be compared with a recent result of Grohe [6], who proved that any
polynomial-time solvable problem involving 3-connected planar graphs can be defined by
a sentence of inflationary fixed-point logic. As was remarked in [1], path system logic is a
proper fragment of inflationary fixed-point logic (in fact, there are problems involving trees
that are definable in inflationary fixed-point logic but not in path system logic); however, it
is not known whether this is the case on the class of 3-connected planar graphs. Theorem15
shows that on the class of triangulations, a proper sub-class of the class of 3-connected planar
graphs, inflationary fixed-point logic and (the fragment(± PS)2[FO]of) path system logic
are equally expressive: they express exactly the polynomial-time properties of such graphs.

We end with a remark for those readers acquainted with the hierarchy of program schemes
NPSS, defined in [1]. An immediate corollary of the proof of Theorem15is that on the class
of triangulations, this hierarchy collapses to its second level, NPSS(2), and any polynomial-
time solvable problem on the class of triangulations can be defined by a program scheme
of NPSS(2).

5. Conclusions

In this paper we have essentially developed a new technique for building logically de-
finable successor relations in certain classes of structures. Our technique is established by
considering the relationship between certain program schemes with access to a stack and
path system logic; and it enables us (sometimes) to build successor relations that are de-
finable in path system logic, as opposed to (the more expressive) inflationary fixed-point
logic, as is usually the case in the literature.

Our analysis has resulted in a model of computation that takes arbitrary finite structures as
inputs, and that capturesP, but whose non-deterministic version has the same computational
power as its deterministic version. It is interesting to note that this equivalence of models
comes about essentially because there is a quantifier-free first-order translation (in the
parlance of [4]) from the problem PS to the problem detPS. Whilst this translation is not
particularly difficult to establish, it is the association of the problem PS and detPS with the
classes of program schemes NPSS(1) and DPSS(1)wherein the non-trivial aspects of the
equivalence result lie. Another interesting aspect of this equivalence result is that although
a program schemeρ of, for example, NPSSs(1) can solve any given problem ofP, the
computation ofρ need not itself be a polynomial-time computation. This point is worthy
of further consideration.

There are numerous other obvious directions for further research. For example, it would
be interesting to find other (natural) classes of structures over which path system logic
capturesP. (Such a contender has already been mentioned: the class of 3-connected graphs.)

66https://doi.org/10.1112/S1461157000000371 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000371

Using program schemes to capture polynomial-time

A slightly more involved question might be: ‘Can we find a class of structures over which
path system logic capturesP, but so that(± PS)i[FO] capturesP, for somei, whereas
within (± PS)i[FO] there is a proper hierarchy(± PS)1[FO] ⊂ (±PS)2[FO] ⊂ . . .?’ A
first step in this direction would be to prove that on the class of triangulations, there are
polynomial-time-solvable problems that are not definable in(± PS)1[FO].

References

1. A. A. Arratia-Quesada, S. R. Chauhan andI. A. Stewart, ‘Hierarchies in classes
of program schemes’,J. Logic Comput.9 (1999) 915–957.41,42,45,45,46,66,66

2. S. A. Cook, ‘Characterization of pushdown machines in terms of time-bounded com-
puters’,J. ACM18 (1971) 4–18.41,43,60

3. R. Diestel, Graph theory(Springer, 1997).65

4. H. D. Ebbinghaus andJ. Flum, Finite model theory(Springer, 1995). 40, 40, 42,
43,43,44,46,64,66

5. K. Etessami andN. Immerman, ‘Reachability and the power of local ordering’,Theo-
ret. Comput. Sci.148 (1995) 261–279.64

6. M. Grohe, ‘Fixed-point logics on planar graphs’,Proc. 13th Annual IEEE Symposium
on Logic in Computer Science(IEEE Computer Society, 1998) 6–15.41,41,66

7. M. Grohe andJ. Mariño, ‘Definability and descriptive complexity on databases of
bounded tree-width’,Proc 7th International Conference on Database Theory, Lecture
Notes in Comput. Sci. 1540 (ed. C. Beeri and P. Buneman, Springer, Berlin, 1999)
70–82. 41

8. N. Immerman andE. Lander, ‘Describing graphs: a first-order approach to graph
canonization’,Complexity theory retrospective(ed. A. Selman, Springer, 1990) 59–
81. 41

9. M. Otto, Bounded variable logics and counting, Lecture Notes in Logic 9 (Springer,
1997). 40,44,46

10. T. L. Saaty andP. C. Kainen, The four-colour problem(McGraw-Hill International,
1977). 65

11. I. A. Stewart, ‘Logical and schematic characterization of complexity classes’,Acta
Informatica30 (1993) 61–87.45

12. I. A. Stewart, ‘Logical description of monotone NP problems’,J. Logic Comput.4
(1994) 337–357.40,44

13. I. A. Stewart, ‘Program schemes, queues, the recursive spectrum and zero-one
laws’, Proc. 7th Annual International Computing and Combinatorics Conference,
(COCOON2001), Lecture Notes in Comput. Sci. 2108 (ed. J. Wang, Springer, Berlin,
2001) 39–48.41

14. I. A. Stewart, ‘Program schemes, arrays, Lindström quantifiers and zero-one laws’,
Theoret. Comput. Sci.275 (2002) 283–310.41

Iain A. Stewart i.a.stewart@durham.ac.uk
http://www.dur.ac.uk/i.a.stewart

Department of Computer Science
University of Durham
Durham DH1 3LE

67https://doi.org/10.1112/S1461157000000371 Published online by Cambridge University Press

mailto:i.a.stewart@durham.ac.uk
http://www.dur.ac.uk/i.a.stewart
https://doi.org/10.1112/S1461157000000371

	Introduction
	Preliminaries
	Deterministic path systems
	An informal algorithm
	Proving our algorithm correct
	Implementing our algorithm

	Building an ordering
	Conclusions

