ON DEFINABILITY OF NONMEASURABLE SETS

HARVEY FRIEDMAN

In [1], Solovay constructed a model of ZFC in which every set of reals in $OD(\mathbf{R})$ is Lebesgue measurable. Here we construct a model in which every equivalence class of sets of reals modulo null sets that is in $OD(\mathbf{R})$ consists of Lebesgue measurable sets. This result immediately implies Solovay's, since the equivalence class of any set of reals in $OD(\mathbf{R})$ is itself $OD(\mathbf{R})$. As a consequence, one cannot provably explicitly define a nonmeasurable set modulo null sets within ZFC. We do not know whether this holds in the model Solovay uses (where an inaccessible cardinal is collapsed to ω_1). Instead, our model is a generic extension of his model.

In the model we construct, a somewhat stronger statement holds: every set in $OD(\mathbf{R})$ of sets of reals which has $< 2^{c}$ inequivalent elements modulo null sets, consists entirely of Lebesgue measurable sets of reals. Also just as in Solovay's work, everything works just as well for category. We therefore present a general result which encompasses these extensions.

Let I be a family of sets of reals closed under finite unions. Two sets of reals are called *I-equivalent* if their symmetric difference is included in an element of I.

THEOREM. Let M be a countable transitive model of $ZF + DC + V = L(\mathbf{R})$, and let α be any ordinal in M. Then there is a generic extension N of M such that a) the reals in N are the same as the reals in M b) choice, $c = \omega_1$ and $\alpha < 2^c$ hold in N c) let $I \in N$, $I \subseteq M$, be a family of sets of reals closed under finite unions, and let K be a family of sets of reals which has $< 2^c$ I-inequivalent elements, where K is in the OD(\mathbf{R}) of N. Then every element of K is I-equivalent to some set of reals in M.

We begin the proof by considering, for each cardinal κ , the notion of forcing \mathscr{P}_{κ} whose conditions consist of countable partial functions from κ into 2, under inclusion.

LEMMA 1. It can be proved in $ZF + (\exists x)(V = L[x])$ that there are arbitrarily large cardinals κ with $cf(\kappa) > \omega_1$ such that there is no set of pairwise incompatible conditions in \mathscr{P}_{κ} of power κ .

Proof. Let M be a countable model of $ZF + (\exists x)(V = L[x])$. Then M has a generic extension M^* which satisfies V = L[a] for some $a \subset \omega$, and hence choice and *GCH*. Therefore in M^* , if $cf(\kappa) > \omega_1$ and κ is a cardinal,

Received August 22, 1978 and in revised form July 29, 1979. This research was partially supported by NSF Grants MCS77-01638 and MCS78-02558.

then there is no set of pairwise incompatible conditions in \mathscr{P}_{κ} of power κ . It is obvious that these properties of κ hold also in M. So we have established the conclusion of the theorem in all countable models of $ZF + (\exists x)(V = L[x])$, and so we are done by the downward Skolem-Lowenheim theorem.

We now fix M to be a countable transitive model of $ZF + V = L[\mathbf{R}] + DC$, and let κ be as in Lemma 1. We force over M with \mathcal{P}_{κ} . We view the generic object as $\mathbf{f} : \kappa \to 2$. We write $N = M[\mathbf{f}]$.

LEMMA 2. In N, choice and CH hold. In addition, $\mathbf{R}^{M} = \mathbf{R}^{N}, \omega_{1}^{M} = \omega_{1}^{N},$ and κ remains a cardinal of cofinality $> \omega_{1}$.

Proof. $\mathbf{R}^{M} = \mathbf{R}^{N}$ follows from *DC* in *M*. Hence $\omega_{1}^{M} = \omega_{1}^{N}$. Obviously, every $g: \omega \to 2$ in *M* is of the form $(\lambda n)(\mathbf{f}(\lambda + n))$, for some ordinal $\lambda \leq \omega_{1}^{M}$. Hence $N = L[\mathbf{f}]$, and so *N* satisfies choice and *CH*. Also cf(κ) remains greater than ω_{1} in *N* since cf(κ) > ω_{1} in *M* and there is no set of pairwise incompatible conditions of power κ in *M*.

LEMMA 3. In N, $2^{\omega_1} = 2^c = \kappa$.

Proof. In N, for each ordinal $\alpha < \kappa$, consider the function

 $(\lambda\beta < \omega_1)(\mathbf{f}(\alpha \cdot \omega_1 + \beta)).$

These functions must all be different, and hence in N, $2^{\omega_1} \geq \kappa$. On the other hand, since $cf(\kappa) > \omega_1$, we see that every subset of ω_1 is in $M[\mathbf{f} \upharpoonright \lambda]$, for some ordinal $\lambda < \kappa$. Now each $M[\mathbf{f} \upharpoonright \lambda]$ can have at most $\max(\omega_2, \operatorname{card}(\lambda))$ subsets of ω_1 . Hence $2^{\omega_1} \leq \kappa$.

LEMMA 4. For every forcing term t there is an ordinal $\lambda < \kappa$ such that for every condition p and real number x in M, $p \parallel x \in t$ if and only if $p \upharpoonright \lambda \parallel x \in t$.

Proof. In *N*, we can construct an $A \subset \kappa$ of power ω_1 such that for conditions p with $\text{Dom}(p) \subset A$ and reals x, if some extension of p forces $x \notin t$ then some extension of p with domain $\subset A$ forces $x \notin t$. It is clear that $p \parallel x \in t$ if and only if $p \upharpoonright A \parallel x \in t$. Hence choose $\lambda < \kappa$ to be such that $A \subset \lambda$.

For ordinals λ , $\alpha < \kappa$ and conditions p, we let $p_{\lambda,\alpha}$ be the condition given by

$$p_{\lambda,\alpha}((\lambda \cdot \alpha) + \beta) \simeq p(\beta), \text{ for } \beta < \lambda;$$

$$p_{\lambda,\alpha}(\beta) \simeq p((\lambda \cdot \alpha) + \beta), \text{ for } \beta < \lambda;$$

$$p_{\lambda,\alpha}(\gamma) \simeq p(\gamma) \text{ for } \gamma \notin [0, \lambda) \cup [\lambda \cdot \alpha, \lambda \cdot (\alpha + 1)).$$

LEMMA 5. For every forcing term t, and ordinals λ , $\alpha < \kappa$, there is a term $t_{\lambda,\alpha}$ such that for all forcing statements $\psi(t)$ and conditions p, we have

 $p \models \psi(t)$ if and only if $p_{\lambda,\alpha} \models \psi(t_{\lambda,\alpha})$. (Here it is understood that $\psi(x)$ does not mention the generic object **f**.)

Proof. The mapping which sends each condition p to $p_{\lambda,\alpha}$ is an automorphism of the conditions, which induces an automorphism of the forcing terms and forcing statements in the standard way.

LEMMA 6. Let t and λ be as in Lemma 4, and let $t_{\lambda,\alpha}$ for $\alpha < \kappa$ be as in Lemma 5. Then for any condition p and real x in M, $p \parallel^{\sim} x \in t_{\lambda,\alpha}$ if and only if $p \upharpoonright [\lambda \cdot \alpha, \lambda \cdot (\alpha + 1)) \parallel^{\sim} x \in t_{\lambda,\alpha}$.

Proof. We have $p_{\lambda,\alpha} \models x \in t_{\lambda,\alpha}$ if and only if

 $p \parallel x \in t$

if and only if

 $p \upharpoonright [0, \lambda) \parallel x \in t$

if and only if

 $p \upharpoonright [0, \lambda)_{\lambda, \alpha} \Vdash x \in t_{\lambda, \alpha}$

if and only if

 $p_{\lambda,\alpha} \upharpoonright [\lambda \cdot \alpha, \lambda \cdot (\alpha + 1)) \Vdash x \in t_{\lambda,\alpha}.$

Since any condition is of the form $p_{\lambda,\alpha}$, we are done.

Towards the proof of the Theorem, we now let $I \in N$, $I \subset M$ be a family of sets of reals closed under finite unions, and let K be a family of sets of reals which has $< 2^{c}$ *I*-inequivalent elements, where K is in the $OD(\mathbf{R})$ of N. Let t be any forcing term such that $N \models t \in K$. We will assume that $N \models$ "t is not *I*-equivalent to any set of reals in M", and obtain a contradiction.

Let p be any condition such that $p \subset \mathbf{f}$, $p \parallel t \in K$, and p forces that t is not *I*-equivalent to any set of reals in M. Let $\lambda < \kappa$ be such that $\text{Dom}(p) \subset \lambda$ and for every condition p^* and real number x in M, $p^* \parallel x \in t$ if and only if $p^* \upharpoonright \lambda \parallel x \in t$.

LEMMA 7. In N, $\{\alpha < \kappa : p_{\lambda,\alpha} \subset \mathbf{f}\}$ has power κ .

Proof. It is enough to show that for each $\beta < \kappa$ there is an $\alpha \in [\omega_1 \cdot \beta, \omega_1 \cdot (\beta + 1))$ such that $p_{\lambda,\alpha} \subset \mathbf{f}$. This is obvious by the genericity of \mathbf{f} .

LEMMA 8. There are ordinals $0 < \alpha < \beta < \kappa$ and a condition $q \subset \mathbf{f}$ such that $p_{\lambda,\alpha} \cup p_{\lambda,\beta} \subset q$, and for some $A \in I$,

 $q \Vdash (\forall x) (x \in \mathbf{R} - A \to (x \in t_{\lambda,\alpha} \leftrightarrow x \in t_{\lambda,\beta})).$

Proof. By Lemma 7, choose $0 < \alpha < \beta < \kappa$ such that $p_{\lambda,\alpha} \cup p_{\lambda,\beta} \subset \mathbf{f}$

and such that in N, $t_{\lambda,\alpha}$ and $t_{\lambda,\beta}$ are *I*-equivalent. Let $A \in I$ be such that

 $N\models \ (\forall x)\,(x\in \mathbf{R}-A \rightarrow (x\in t_{\lambda,\alpha} \leftrightarrow x\in t_{\lambda,\beta})).$

Let $r \subset \mathbf{f}$ force

 $(\forall x) (x \in \mathbf{R} - A \rightarrow (x \in t_{\lambda,\alpha} \leftrightarrow x \in t_{\lambda,\beta})).$

Take $q = r \cup p_{\lambda,\alpha} \cup p_{\lambda,\beta}$.

We now fix the ordinals α , β , the set *A*, and the condition *q* of Lemma 8.

LEMMA 9. For all reals $x \notin A$, $q \parallel x \in t_{\lambda,\alpha}$ or $q \parallel x \notin t_{\lambda,\alpha}$.

Proof. Suppose $q \subset q_1$, $q \subset q_2$, $q_1 \parallel x \in t_{\lambda,\alpha}$, and $q_2 \parallel x \notin t_{\lambda,\alpha}$. We can assume without loss of generality that

$$q_1 \upharpoonright [\lambda \cdot \beta, \lambda \cdot (\beta + 1)) = q_2 \upharpoonright [\lambda \cdot \beta, \lambda \cdot (\beta + 1)) = q \upharpoonright [\lambda \cdot \beta, \lambda \cdot (\beta + 1)]$$

),

by Lemma 6. We now have $q_1 \parallel x \in t_{\lambda,\beta}$, $q_2 \parallel x \notin t_{\lambda,\alpha}$. But this contradicts Lemma 6.

LEMMA 10. q forces that $t_{\lambda,\alpha}$ is I-equivalent to an element of M.

Proof. It is clear that q forces that t is I-equivalent to

 $\{x \in \mathbf{R} : q \parallel x \in t_{\lambda,\alpha}\}.$

LEMMA 11. $q_{\lambda,\alpha}$ forces that t is I-equivalent to an element of M.

Proof. This follows from Lemmas 5 and 10.

We now have our desired contradiction, since $p \models "t$ is not *I*-equivalent to any element of M", and $p \subset q_{\lambda,\alpha}$. This concludes the proof of the Theorem.

COROLLARY. Assume that there is a model of ZFC in which there exists an inaccessible cardinal. Then there is a model of ZFC in which every equivalence class of sets of reals modulo null sets (meager sets) that is in $OD(\mathbf{R})$, consists of Lebesgue measurable sets (sets with the property of Baire). More generally, this is true of any family of sets of reals which has $< 2^{e}$ equivalence classes represented.

Proof. Immediate from the Theorem since from [1], there is a model of $ZF + DC + V = L(\mathbf{R})$ in which all sets of reals are Lebesgue measurable (have the property of Baire), and if a set of reals is measurable (has the Baire property), in M, it remains so in N.

References

1. R. Solovay, A model of set theory in which every set of reals is Lebesgue measurable, Annals of Math. 92 (1970), 1-56.

The Ohio State University, Columbus, Ohio

656