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Abstract

A compound Poisson process whose randomized time is an independent Poisson process is
called a compound Poisson process with Poisson subordinator. We provide its probability
distribution, which is expressed in terms of the Bell polynomials, and investigate in detail
both the special cases in which the compound Poisson process has exponential jumps
and normal jumps. Then for the iterated Poisson process we discuss some properties and
provide convergence results to a Poisson process. The first-crossing time problem for
the iterated Poisson process is finally tackled in the cases of (i) a decreasing and constant
boundary, where we provide some closed-form results, and (ii) a linearly increasing
boundary, where we propose an iterative procedure to compute the first-crossing time
density and survival functions.
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1. Introduction

Stochastic processes evaluated at random times are receiving increasing attention in various
applied fields. There are many examples of processes with random times that could be modeled
in this manner:

(i) in reliability theory, the life span of items subject to accelerated conditions,

(ii) in econometrics, the composition of the price of a security and the effective economic
time,

(iii) in queueing theory, the number of customers joining the system during specific service
periods,

(iv) in statistics, for the random sampling of stochastic processes.

One of the first papers in this field is Lee and Whitmore [10], who studied general properties of
processes directed by randomized times. In the literature special attention is given to the case of
a Poisson process with randomized time. Another earlier example of a stochastic process with
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Compound Poisson process with a Poisson subordinator 361

a Poisson subordinator is given in Pickands [15]. Cox processes are also Poisson processes
with randomized times. These are also called ‘doubly stochastic Poisson processes’ (see [16]
and [7]). Kumar et al. [9] considered time-changed Poisson processes where the subordinator is
an inverse Gaussian process, i.e. the hitting time process of the standard Brownian motion. There
are fractional Poisson processes, which are processes with randomized continuous fractional
diffusions (see [2], [3], and [11]). There are examples where the random times are Brownian
motions (see [4]). For other types of iterated Poisson process; see, e.g. [8].

Let us consider a compound Poisson process (CPP),

Y (t) =
M(t)∑
n=1

Xn, t > 0

with M(t) a Poisson process, and Xn a sequence of independent and identically distributed
(i.i.d.) random variables independent of M(t). In this present paper we investigate the
distribution of the process Z(t) = Y [N(t)], where N(t) is an independent Poisson process.
Such a process is called a CPP with a Poisson subordinator. We provide explicit equations
of this distribution, its moments, and other characteristics. Precisely, after some preliminary
results concerning the distribution of the CPP Y (t) given in Section 2, in Section 3 we obtain the
probability distribution of the processZ(t) in terms of the Bell polynomials. Then in Sections 4
and 5, we develop the equations of the distribution of Z(t) in the special cases when Y (t) has
exponential jumps and normal jumps, respectively.

In order to demonstrate the usefulness of the CPP with a Poisson subordinator we now
provide two examples of applications in biomedical research and ecology.

Application 1. Assume that patients having the same disease arrive at a clinic at random times,
according to the Poisson process N(t). Each patient receives the same treatment and is under
inspection for one time unit (a year). The symptoms of the disease may reoccur at random times
during the inspection period, according to the independent Poisson process M(t). The total
number of occurrences and their severity is distributed for each patient as the random variable
(RV) Y (1). Thus, the process Z[N(t)] represents the total damage inflicted by the disease to
the patients after their inspection period.

Application 2. LetN(t) be a Poisson process describing the number of animals caught in [0, t]
during an investigation in ecology. A radio transmitter is attached to each animal for a period of
one time unit. A transmitter sends information at random, according to an independent Poisson
process M(t). The total number of occurrences and the amount of information is distributed
for each animal as the RV Y (1). Thus, the process Z[N(t)] represents the total amount of
information transmitted by the animals after the investigation period.

The second part of the paper is devoted to a special case, namely the iterated Poisson
process, which is a Poisson process whose randomized time is another independent Poisson
process. This is actually a CPP whose independent jumps are discrete RVs having a Poisson
distribution. An example in queueing theory involving the iterated Poisson process is provided
in Application 3. We remark that the probability law, the governing equations, its representation
as a random sum, and various generalizations of the iterated Poisson process have been studied
in [12] and [13]. For such a process, in Section 6 we express in series form the mean sojourn
time in a fixed state. Moreover, we also find conditions under which it converges to a regular
Poisson process. Stopping time problems for the iterated Poisson process are finally studied
in Section 7. In the case of constant boundaries we obtain the first-crossing time density and
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the mean first-crossing time in closed form. For linear increasing boundaries we develop a
computationally effective procedure able to determine iteratively the first-hitting-time density
and, in turn, the corresponding survival function.

2. Preliminaries

In the present section we bring some well-known results concerning the distribution of the
CPP, Y (t), and Bell polynomials, which are used later in the distribution of Z(t) = Y [N(t)].

Consider the CPP {Y (t), t ≥ 0} defined as

Y (t) =
M(t)∑
n=1

Xn, t > 0, (2.1)

where {M(t), t ≥ 0} is a Poisson process with intensity μ, and {Xn, n ≥ 1} is a sequence of
i.i.d. RVs independent of {M(t), t ≥ 0}. The probability mass function of M(t) at m will be
denoted as

p(m;μt) = P{M(t) = m} = e−μt (μt)m

m! , m = 0, 1, . . . . (2.2)

We assume that Y (0) = 0 and M(0) = 0. Let HY (y; t) denote the cumulative distribution
function (CDF) of Y (t), y ∈ R and t > 0. From (2.1) it follows that ifM(t) = 0 then Y (t) = 0
so that the distribution of Y (t) has an atom at 0 with P{Y (t) = 0} ≥ p(0;μt) = e−μt , t ≥ 0,
where P denotes the probability measure. Moreover, recalling (2.2) it follows that the CDF
of Y (t) is given by the following Poisson mixture:

HY (y; t) =
+∞∑
m=0

p(m;μt) F (m)X (y),

= 1{y≥0}e−μt +
+∞∑
m=1

p(m;μt) F (m)X (y), y ∈ R, t ≥ 0. (2.3)

Note that in (2.3) and throughout the paper, g(m) denotes the m-fold convolution of a given
function g. The indicator function is denoted by 1{·}.

If the RVs Xi are absolutely continuous with probability density function fX(·) then due
to (2.3),

(i) the absolutely continuous component of the probability law of Y (t) is expressed by the
density

hY (y; t) =
+∞∑
m=1

p(m;μt)f (m)X (y), y �= 0, t > 0,

(ii) the discrete component is given by P{Y (t) = 0} = p(0;μt) = e−μt , t ≥ 0.

Let MX(s) := E{esX} be the moment generating function of Xi , where s is within the
region of convergence of MX(s) and E is the expectation. From (2.1) it follows that the
moment generating function of Y (t) is

E{esY (t)} = exp{−μt[1 −MX(s)]}, t ≥ 0. (2.4)
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In the following section we study the process Y (t) when the time is randomized according
to a Poisson process. Precisely, we consider the stochastic process {Y [N(t)], t ≥ 0}, where
{N(t), t ≥ 0} is a Poisson process with intensity λ, independent of Y (t). We will express the
CDF of Z(t) in terms of Bell polynomials

Bn(x) =
∞∑
k=0

kn
xk

k! e−x, n ≥ 0. (2.5)

We therefore recall some properties of these polynomials (see, e.g. [5]). Let Bn(x), x ≥ 0,
represent the nth moment of a Poisson distribution with mean x. Obviously, B0(x) = 1,
B1(x) = x, and B2(x) = x + x2. Generally, Bn(x) is a polynomial of degree n of the form

Bn(x) = x + a2x
2 + · · · + an−1x

n−1 + xn, n ≥ 2.

We can determine Bn(x) by differentiating the moment generating function exp{−x(1 − eθ )}
with respect to θ , n times, and evaluating the derivative at θ = 0. From (2.5) we immediately
obtain the derivative

B ′
n(x) = −Bn(x)+ Bn+1(x)

x
, n ≥ 0. (2.6)

Hence, due to (2.6) the following recursive formula holds:

Bn+1(x) = x[B ′
n(x)+ Bn(x)], n ≥ 0, (2.7)

which is useful in obtaining the explicit form of the Bell polynomials. For instance, according
to (2.7), we have

B3(x) = x + 3x2 + x3,

B4(x) = x + 7x2 + 6x3 + x4,

B5(x) = x + 15x2 + 25x3 + 10x4 + x5,

etc. Moreover, we can also express these polynomials by the Dobiński formula,

Bn(x) =
n∑
k=0

S2(n, k)x
k for n = 0, 1, . . . , (2.8)

where

S2(n, k) =
{
n

k

}
= 1

k!
k∑
i=0

(−1)i
(
k

i

)
(k − i)n for k = 0, 1, . . . , n,

are the Stirling numbers of the second kind.

3. The distribution of Z(t) = Y [N(t)]
First of all we point out that, due to (2.1), the process {Y [N(t)], t ≥ 0} is identically

distributed to the CPP

Z(t) :=
N(t)∑
n=0

Wn, t ≥ 0, (3.1)
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where W0 = 0 almost surely (a.s.), and W1,W2, . . . are i.i.d. RVs distributed as

Y (1) =
M(1)∑
n=1

Xn.

Note that the CDF of Wn, n ≥ 1, is HY (y; 1). The n-fold convolution of this CDF is
HY (y; n), n ≥ 1. We denote by HZ(z; t) the CDF of Z(t).

Proposition 3.1. For all z ∈ R and t > 0 the CDF of process (3.1) is

HZ(z; t) = exp{−λt (1 − e−μ)}
[

1{z≥0} +
+∞∑
n=1

μn

n! Bn(λte
−μ)F (n)X (z)

]
. (3.2)

Proof. From (3.1) and (2.3) we have

HZ(z; t) =
+∞∑
n=0

p(n; λt)HY (z; n)

=
+∞∑
n=0

p(n; λt)
[

1{z≥0}e−μn +
+∞∑
m=1

p(m;μn)F (m)X (z)

]
, z ∈ R, t > 0.

In addition,
∞∑
n=0

p(n; λt)e−μn = e−λt (1−e−μ);

also, since all terms are nonnegative, and recalling (2.5),

∞∑
n=0

p(n; λt)
∞∑
m=1

p(m;μn)F (m)X (z) =
∞∑
m=1

μm

m! F
(m)
X (z)

∞∑
n=0

nme−λt (λte−μ)n

n!

= e−λt (1−e−μ)
∞∑
m=1

μm

m! Bm(λte
−μ)F (m)X (z).

This proves (3.2).

Corollary 3.1. If FX is absolutely continuous with density fX then the density of (3.2) for any
z �= 0 and t > 0 is

hZ(z; t) = exp{−λt (1 − e−μ)}
+∞∑
n=1

μn

n! Bn(λte
−μ)f (n)X (z). (3.3)

Remark 3.1. Note that if FX is continuous at 0 then HZ(z; t) has a jump of size e−λt (1−e−μ)

at z = 0.

Remark 3.2. We can easily prove that HZ(z; t) given by (3.2) is indeed a CDF.

Recalling that Wi is distributed as Y (1), by setting t = 1 in (2.4) we obtain the following
moment generating function:

MW(s) := E{esWi } = exp{−μ[1 −MX(s)]}, i = 1, 2, . . . .
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Hence, due to (3.3) the Laplace–Stieltjes transform of Z(t) is

E{e−θZ(t)} = exp{−λt[1 −MW(−θ)]} = exp{−t�(θ)}, t > 0,

where

�(θ) = λ[1 − e−μ[1−MX(−θ)]].
We recall that {Z(t), t ≥ 0} is a CPP time-changed by a Poisson process, and, thus, it is a Lévy
process (see, e.g. [1, Theorem 1.3.25]).

Let us now focus on the mean and the variance of Z(t). From (3.1) we have

E{Z(t)} = λμξt, var[Z(t)] = λμ[σ 2 + (μ+ 1)ξ2]t, t ≥ 0,

where we have set

ξ = E{X1} and σ 2 = var(X1).

Finally, by the strong law of large numbers, the following asymptotic result holds for process
Z(t):

lim
t→+∞

Z(t)

t
= λμξ a.s.

In the following sections we consider three special cases of interest, in which the distributions
of the jump variables Xi are assumed to be deterministic, exponential, and normal.

4. The compound Poisson process with exponential jumps

In this section we consider the CPP (2.1) when {Xn, n ≥ 1} are i.i.d. exponentially distributed
RVs with parameter ζ , i.e. fX(x) = ζe−ζx1{x≥0}. In this case, we have for x ≥ 0,

FX(x) = 1 − p(0; ζx), F
(m)
X (x) = 1 − P(m− 1; ζx), m = 1, 2 . . . ,

where p(n; λ) is defined in (2.2) and P(n; λ) is the CDF given by

P(n; λ) =
n∑
i=0

p(i; λ).

Hence, due to (2.3) the CDF of Y (t), t ≥ 0, is

HY (y; t) = e−μt +
+∞∑
m=1

p(m;μt) [1 − P(m− 1; ζy)], y ≥ 0,

Thus, the atom of such a function is HY (0; t) = e−μt . Generally, for n = 1, 2, . . .,

H
(n)
Y (y; 1) = HY (y; n) = 1 −

+∞∑
m=1

p(m; nμ)P (m− 1; ζy), y ≥ 0.
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Figure 1: Density (4.2) for μ = 1, ζ = 1, and various choices of t with (a) λ = 1, and (b) λ = 2. The
corresponding probability mass of hZ(z; t) is 0.4685, 0.7175, 0.8499, 0.9202, 0.9576 in (a), and 0.7175,

0.9202, 0.9775, 0.9936, 0.9982 in (b) for increasing values of t .

According to Proposition 3.1, the CDF of Z(t) can be expressed as

HZ(z; t) =
+∞∑
n=0

p(n; λt)
[

1 −
+∞∑
m=1

p(m; nμ)P (m− 1; ζz)
]

= 1 −
+∞∑
n=0

p(n; λt)
+∞∑
m=1

p(m; nμ)P (m− 1; ζz)

= 1 −
+∞∑
m=1

pm(t)P (m− 1; ζz), (4.1)

since pm(t) = ∑+∞
n=0p(n; λt)p(m; nμ) due to (6.1). Additional manipulations yield the

alternative equation

HZ(z; t) =
+∞∑
j=0

p(j ; ζz)
j∑

m=0

pm(t).

We pinpoint that the atom at 0 of (4.1) is HZ(0; t) = p0(t). Since (d/ dz)P (m− 1; ζz) =
−ζp(m− 1; ζz), the density of HZ(z; t) for z > 0 and t > 0, is expressed as

hZ(z; t) = ζ

+∞∑
m=1

pm(t)p(m− 1; ζz). (4.2)

Some plots of such density are presented in Figure 1, where the probability mass
∫ +∞

0 hZ(z; t) dz
is shown in the caption for some choices of t .

Finally, we note that the expected value of Z(t) is E{Z(t)} = λμt/ζ .

5. The compound Poisson process with normal jumps

Let us now investigate the CPP (2.1) when {Xn, n ≥ 1} are i.i.d. normally distributed RVs
with mean η ∈ R and variance σ 2 > 0, so

FX(x) = 	

(
x − η

σ

)
, F

(n)
X (x) = 	

(
x − nη

σ
√
n

)
, x ∈ R,
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Figure 2: Distribution function (5.1) for λ = 1, μ = 1, σ = 1, and η = 0, 0.5, 1 (from top to bottom)
with (a) t = 1, and (b) t = 2.

where 	(·) is the standard normal distribution function. Hence, for all y ∈ R,

H
(n)
Y (y; 1) = HY (y; n) = e−nμ1{y≥0} +

+∞∑
m=1

p(m; nμ)	
(
y −mη

σ
√
m

)
, t ≥ 0.

Note that the above distribution has support on (−∞,+∞), and it is absolutely continuous on
all y �= 0 with a jump (atom) at y = 0. According to (3.2), the CDF of Z(t) is

HZ(z; t) = p0(t)1{z≥0} +
+∞∑
n=1

pn(t)	

(
z− nη

σ
√
n

)
, z ∈ R, t ≥ 0, (5.1)

where pn(t) is given in (6.1). In Figure 2 we show some plots of HZ(z; t). In this case the
Lévy exponent of {Z(t), t ≥ 0} is

�(θ) = λ[1 − exp{−μ(1 − e−ηθ+σ 2θ2/2)}].
In conclusion, from (5.1) it follows that the density of Z(t), at z �= 0 is

hZ(z; t) = 1

σ

+∞∑
n=1

pn(t)
1√
n
φ

(
z− nη

σ
√
n

)
,

where φ(·) is the standard normal density.

6. The iterated Poisson process

In this section we suppose that in (3.1) the RVsWn, n = 1, 2, . . ., have a Poisson distribution
with parameter μ. This special case corresponds to the assumption that Xi = 1, i ≥ 1 a.s. so
that

FX(x) = 1{x≥1}, F
(n)
X (x) = 1{x≥n}, n = 1, 2, . . . ,

and, thus, Y (t) = M(t), t ≥ 0, a.s. Hence, in this case {Z(t), t ≥ 0} is a Markovian jump
process over the set of nonnegative integers with right-continuous nondecreasing sample paths.
This is called an ‘iterated Poisson process’ with parameters (μ, λ), since it can be expressed
as a Poisson process M(t) with intensity μ whose randomized time is an independent Poisson
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Figure 3: Probability distribution (6.1) for λ = 4 and for (a) μ = 3 and (b) μ = 4.

process N(t) with intensity λ, i.e. Z(t) = M[N(t)]. We point out that various results on this
process have been obtained in [12] and [13].

In analogy with (3.3), the probability function of the iterated Poisson process for t > 0 is
(cf. [12, Equation (8)])

pn(t) = P{Z(t) = n} = exp{−λt (1 − e−μ)}μ
n

n! Bn(λte
−μ), n = 0, 1, . . . . (6.1)

Note that
∑+∞
n=0 pn(t) = 1 for all t > 0. We recall that B0(x) = 1, and that Bn(x) can be

expressed in closed form by means of the Dobiński formula (2.8). Some plots of pn(t) are
shown in Figure 3 for t = 1, 2, 3.

As a special case of (3.2) we have the discrete CDF of Z(t), t ≥ 0:

Pn(t) = HZ(n; t) = exp{−λt (1 − e−μ)}
n∑
j=0

μj

j ! Bj (λte
−μ), n = 0, 1, . . . . (6.2)

Making use of (6.1) and (2.8) the following alternative form of Pn(t), t ≥ 0, can be obtained:

Pn(t) = exp{−λ(1 − e−μ)t}
[

1 + 1{n≥1}
n∑
k=0

(λe−μt)k
n∑
j=k

S2(j, k)
μj

j !
]
, n = 0, 1, . . . .

(6.3)
The Lévy exponent of the iterated Poisson process is

�(θ) = λ[1 − exp{−μ(1 − e−θ )]. (6.4)

Note that if μ → 0 and λ → +∞ such that λμ → ξ with 0 < ξ < +∞ then the right-hand
side of (6.4) tends to ξ(1 − e−θ ), which is the Lévy exponent of the Poisson process with
intensity ξ .

Remark 6.1. (i) Due to the following well-known recurrence formula of Bell polynomials,

Bn(x) = x

n∑
k=1

(
n− 1

k − 1

)
Bk−1(x), n = 1, 2, . . . , (6.5)

the probability distribution of the iterated Poisson process satisfies the recurrence relation

pn(t) = 1

n
λe−μt

n∑
k=1

μn−k+1

(n− k)! pk−1(t), n = 1, 2, . . . , t > 0.
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(ii) The following conditional probability holds for 0 < s < t and k = 0, 1, . . . , n:

P{Z(s) = k | Z(t) = n} =
(
n

k

)
Bk(λe−μs)Bn−k(λe−μ(t − s))

Bn(λe−μt)
. (6.6)

If t → +∞ and s → +∞ with s/t → θ ∈ (0, 1) then the right-hand side of (6.6) tends to a
binomial distributions with parameters n and θ , since Bn(x) ∼ xn for x large.

Recalling (see [13]) that the mean and the variance of Z(t) are given by E{Z(t)} = λμt

and var[Z(t)] = λμ(1 +μ)t , t ≥ 0, respectively, it follows that the iterated Poisson process is
overdispersed, since its dispersion index

var[Z(t)]
E{Z(t)} = 1 + μ

is larger than 1 and, in particular, is independent of time t .
Finally, let us denote by Sn the sojourn time of the iterated Poisson process Z(t) in state n.

Since Z(0) = 0 a.s. and

lim
h→0+

1

h
P{Z(t + h) �= k | Z(t) = k} = λ(1 − e−μ), k = 0, 1, . . .

then S0 is exponentially distributed with parameter λ(1 − e−μ). Moreover, Z(t) is a transient
Markov process over the nonnegative integers, so its mean sojourn time in state n is finite.
Indeed, due to (6.1),

E{Sn} =
∫ +∞

0
pn(t) dt = 1

λ

μn

n!
+∞∑
k=1

kne−μk < +∞.

We conclude this section with an example of an application of the iterated Poisson process to
queueing theory, which also highlights a context in which the results given in the next section
are relevant.

Application 3. Consider a M/D/1 queueing system having arrival rate λ and constant unity
service time. Assume that the service station is inactive during the time interval [0, t] so that
all waiting customers arriving in this period wait in a queueing room. At time t the bulk service
of all customers begins, and, thus, ends after a time period whose length is equal to the number
of customers arrived in [0, t]. Assume that during such service time other customers join the
system with rate μ. Thus, the iterated Poisson process Z(t) describes the number of customers
that join the system during the service period of those arrived in [0, t]. In this context, the
upward first-crossing time through a constant boundary is the first time that the number of
customers Z(t) crosses a fixed threshold, such as a waiting-room capacity.

7. Stopping time problems for an iterated Poisson process

Stimulated by the potential applications, in this section we study some stopping time
problems for the iterated Poisson process.

The problem of determining the first-passage time distribution for time-changed Poisson
processes through a constant boundary has been considered recently in [14] with detailed
attention given to the cases of the fractional Poisson process, the relativistic Poisson process,
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Figure 4: Plots of (7.2) for k = 2, 4, 6, 8, and 10 (from bottom to top) with μ = 1, λ = 2, and boundary
(a) βk(t) = k − t , and (b) βk(t) = k.

and the gamma Poisson process. Moreover, some results on the distributions of stopping times
of CPPs in the presence of linear boundaries are given in [6], [17], [18], and [19].

In this section we confront the first-crossing time problem through various types of boundary
for the iterated Poisson process Z(t) investigated in the previous section.

Let βk(t) be a continuous function such that βk(t) ≥ 0 for all t ≥ 0, and βk(0) = k with
k ∈ N

+. The first-crossing time of Z(t), defined as in (3.1), through the boundary βk(t) will
be denoted as

T = inf{t > 0 : Z(t) ≥ βk(t)}. (7.1)

Since Z(0) = 0 < βk(0), the first crossing occurs from below.

Proposition 7.1. Let Z(t) be the iterated Poisson process. If βk(t) is nonincreasing in t then
for all t ≥ 0,

P{T > t} = P�βk(t)−�(t), (7.2)

where �x−� is the largest integer smaller than x, and Pn(t) has been given in (6.3).

Proof. The proof follows immediately, since the sample paths of Z(t) are nondecreasing
and, thus, P{T > t} = P{Z(t) < βk(t)} for all t ≥ 0.

Some plots of the survival function of T are shown in Figure 4 for a linear decreasing
boundary and for a constant boundary.

7.1. Constant boundary

We now obtain the probability law of (7.1) when the boundary is constant. In this case the
first-crossing time density of T will be denoted by ψ(t).

Proposition 7.2. Let Z(t) be the iterated Poisson process. If βk(t) = k for all t ≥ 0 then for
k = 1 the first-crossing time density is exponential with parameter λ(1 − e−μ), whereas for
k = 2, 3, . . . ,

ψ(t) = p0(t)λ(1 − e−μ)
[

1 +
k−1∑
i=0

(λe−μt)iC(i; k − 1)

]

− p0(t)λe−μ
k−1∑
i=1

i(λe−μt)i−1C(i; k − 1) (7.3)
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where

C(i; k − 1) :=
k−1∑
j=i

S2(j, i)
μj

j ! .

Proof. From Proposition 7.1, which includes the case of constant boundaries, we have

P{T > t} = Pk−1(t) for all t ≥ 0. (7.4)

Due to (7.4) the first-crossing time density through state k can be expressed as ψ(t) =
−(d/dt)P{T > t} = −(d/dt)Pk−1(t). Hence, differentiating (6.3) with respect to t yields (7.3).

We remark that under the assumptions of Proposition 7.2, due to (6.2) and (7.4), T is an
honest RV. Let us then evaluate the mean of T .

Corollary 7.1. Let Z(t) be the iterated Poisson process. If βk(t) = k for all t ≥ 0 then

E{T } = 1

λ(1 − e−μ)

[
1 + 1{n≥1}

n∑
k=0

k!
(eμ − 1)k

n∑
j=k

S2(j, k)
μj

j !
]
, k ∈ N

+. (7.5)

Proof. Since E{T } = ∫ +∞
0 P{T > t} dt , making use of (6.3) and (7.4) after some calcula-

tions we obtain (7.5).

Recall that the iterated Poisson process Z(t) is a Markov process over the nonnegative
integers. We denote by

H = inf{t > 0 : Z(t) = k}, k ∈ N
+,

the first-hitting time of state k for Z(t). Let h(t) denote the density of H .

Proposition 7.3. Let Z(t) be the iterated Poisson process. The density of the first-hitting time
H for t > 0 is given by

h(t) = e−μμk

k! λ exp{−λ(1 − e−μ)t}B ′
k(λe−μt), k = 1, 2, . . . , (7.6)

where B ′
k(x) is defined in (2.6).

Proof. For any t > 0 and k = 1, 2, . . ., we have

h(t) dt =
k−1∑
j=0

P{Z(t) = j}P{Z(dt) = k − j}.

Making use of (6.1) and by setting i = j + 1 we obtain

h(t) = e−μμk

k! λ exp{−λ(1 − e−μ)t}
k∑
i=1

(
k

i − 1

)
Bi−1(λe−μt).

The density (7.6) then follows by recalling the recurrence equation (6.5).

Some plots of the first-hitting time density (7.6) are shown in Figure 5.
In the following proposition we evaluate the distribution function of the first-hitting time,

and express it in terms of the lower incomplete gamma function γ (a, z) = ∫ z
0 t

a−1e−t dt .
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Figure 5: First-hitting time density (7.6) with μ = 1 and (a) λ = 1 and (b) λ = 2 for k = 1, 2, 3, 4 (from
top to bottom near the origin).

Figure 6: First-hitting probability (7.8) as a function of μ for k = 1, 2, 3, 4 (from bottom to top).

Proposition 7.4. Let Z(t) be the iterated Poisson process. The distribution function of H for
k = 1, 2, . . . and t ≥ 0 is given by

FH (t) = μk

k!
[

exp{−λ(1 − e−μ)t}Bk(λe−μt)+
k∑
j=0

S2(k, j)
γ (j + 1, λ(1 − e−μ)t)

(eμ − 1)j

]
. (7.7)

Proof. Making use of (7.6) and setting λ eμτ = x we have

FH (t) =
∫ t

0
h(τ)dτ = μk

k!
∫ λe−μt

0
exp{−(eμ − 1)x}B ′

k(x) dx.

Integrating by parts and recalling the Dobiński formula (2.8) after some calculations, we finally
obtain (7.7).

From (7.7) it is not hard to see that the first-hitting probability is

πk := P{H < ∞} = μk

k!
k∑
j=1

S2(k, j)
j !

(eμ − 1)j
, k = 1, 2, . . . . (7.8)

It is interesting to note that this probability does not depend on λ. Plots of πk = πk(μ) are
shown in Figure 6 for some choices of k. Note that the first-hitting probability (7.8) is in general
less than unity.
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7.2. Linear increasing boundary

Let us now consider the first-crossing time T of Z(t) through a linear boundary with unity
slope βk(t) = k + t , where k is a fixed nonnegative integer. For all nonnegative integers j we
define the avoiding probability

g(j ; t) = P{Z(t) = j, T > t}, t ≥ 0. (7.9)

Clearly, we have g(j ; t) = 0 for all j ≥ k + t . Moreover, for all t ≥ 0 we have

g(j ; t) = pj (t) for 0 ≤ j ≤ k.

The case j > k will be investigated below.
We first give a recursive procedure able to evaluate probabilities (7.9) for integer values of t .

Proposition 7.5. LetZ(t) be the iterated Poisson process, and let βk(t) = k+ t . The following
steps provide an iterative procedure to evaluate g(j ; n) with n integer:

• for n = 0, g(0; 0) = 1;

• for n = 1, g(j ; 1) = pj (1) for 0 ≤ j ≤ k;

• for n = 2, 3, . . .,

g(j ; n) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

j∑
i=0

g(i; n− 1)pj−i (1), 0 ≤ j ≤ k + n− 2,

k+n−2∑
i=0

g(i; n− 1)pk+n−1−i (1), j = k + n− 1.

Proof. We recall that pn(t) = ∑n
j=0 pj (s)pn−j (t − s) for 0 < s < t . Hence, the proof

follows by the definitions of the involved quantities and the properties of Z(t).

Let us now determine the survival function of T under the assumptions of Proposition 7.5.

Proposition 7.6. LetZ(t) be the iterated Poisson process, and let βk(t) = k+ t . For any t > 0
the survival function of T is given by

P{T > t} =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

k+n−1∑
i=0

g(i; n), t = n,

k+n∑
i=0

g(i; t) =
k+n∑
i=0

i∑
m=0

g(m; n)pi−m(t − n), n < t < n+ 1,

(7.10)

where n denotes a nonnegative integer, and in the last sum we set g(k + n; n) ≡ 0.

Proof. From (7.9) we have

P{T > t} =
∑
j<k+t

g(j ; t).

Hence, the proof follows from Proposition 7.5 and the Markov property of Z(t).

In conclusion, in Figure 7 we show some plots of the survival function of T obtained by use
of Proposition 7.6.
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Figure 7: Plot of (7.10) forμ = 1 and λ = 2 with k = 1, 2, 3, 4 (from bottom to top), when βk(t) = k+t .
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