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Abstract: The Australian Square Kilometre Array Pathfinder (ASKAP) presents a number of challenges in

the area of source finding and cataloguing. The data rates and image sizes are very large, and require

automated processing in a high-performance computing environment. This requires development of new

tools, that are able to operate in such an environment and can reliably handle large datasets. These tools must

also be able to accommodate the different types of observations ASKAP will make: continuum imaging,

spectral-line imaging, transient imaging. TheASKAPproject has developed a source-finder known as SELAVY,

built upon the DUCHAMP source-finder. SELAVY incorporates a number of new features, which we describe here.

Since distributed processing of large images and cubes will be essential, we describe the algorithms used to

distribute the data, find an appropriate threshold and search to that threshold and form the final source

catalogue. We describe the algorithm used to define a varying threshold that responds to the local, rather than

global, noise conditions, and provide examples of its use. And we discuss the approach used to apply two-

dimensional fits to detected sources, enabling more accurate parameterisation. These new features are

compared for timing performance, where we show that their impact on the pipeline processing will be small,

providing room for enhanced algorithms.

We also discuss the development process for ASKAP source finding software. By the time of ASKAP

operations, the ASKAP science community, through the Survey Science Projects, will have contributed

important elements of the source finding pipeline, and the mechanisms in which this will be done are

presented.
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1 A Source-Finder for ASKAP

The Australian Square Kilometre Array Pathfinder

(DeBoer et al. 2009) is an aperture synthesis radio tele-

scope currently under construction in the radio-quiet

Western Australian outback. It will be an array of 36

antennas, each equipped with a focal plane phased-array

feed (PAF), operating between 700MHz and 1.8GHz and

capable of a field-of-view of 30 square degrees. The first

five years of ASKAP operations will have at least 75% of

the time dedicated to large Survey Science Projects

(SSPs), each requiring more than 1 500 hours. Ten SSPs

have been identified, many ofwhich require the formation

of large (often all-sky) source catalogues.

ASKAP observations will produce very large data

rates, as a result of the large number of beams that give

the wide field-of-view, the large number of baselines, the

large instantaneous bandwidth and spectral resolution

(300MHz divided into 16 384 channels), together with

5-second sampling. At full spectral resolution, the visibil-

ity dataset will be,80 TB after 8 hours of observing, and

will be reduced to image cubes of ,1 TB that need to be

searched for astronomical sources. These data rates

necessitate processing in automated pipelines running

on a highly distributed parallel processing computer.

They also force the adoption of particular algorithmic

choices in the imaging, and resource availability will

inevitably lead to limitations in the processing capabili-

ties (For instance, the quoted value of,1TB for a cube is

for a spatial resolution of 3000. This is the highest possible
for the full spectral resolution imaging, but low-resolution

continuum imaging will be possible at ,1000).
The software pipelines for ASKAP are currently under

development, but prototypes exist of all the main ele-

ments, from ingest of visibility data, calibration, imaging

and source extraction. These pipelines will be used to

process data from BETA, the Boolardy Engineering Test

Array, which consists of the first six ASKAP antennas

equipped with phased-array feeds. BETA will have the

same field of view as ASKAP, but with much coarser

spatial resolution, meaning the number of spatial pixels

required will be smaller. However, BETA will have the

same number of spectral channels as ASKAP, and so

CSIRO PUBLISHING

Publications of the Astronomical Society of Australia, 2012, 29, 371–381

http://dx.doi.org/10.1071/AS12028

Journal compilation � Astronomical Society of Australia 2012 www.publish.csiro.au/journals/pasa

https://doi.org/10.1071/AS12028 Published online by Cambridge University Press

https://doi.org/10.1071/AS12028


the spectral-line images produced by the pipelines will be

comparable in size (despite the visibility data sets being

smaller by virtue of the reduced number of baselines).

This paper focusses on the last element of the pipeline

processing: the source extraction. This pipeline is built on

the software library of the stand-alone DUCHAMP source

finder (Whiting 2012), and adds features not included in

DUCHAMP. This paper describes the development process,

and details some of the new features that have been

implemented.

We give a brief description of DUCHAMP here, but

readers are directed to Whiting (2012) or the DUCHAMP

User’s Guide1 for specific details about the DUCHAMP

algorithms themselves.

DUCHAMP is a standalone program, developed at CSIRO

Astronomy and Space Science independently of the

ASKAP project, and publicly available.2 It was developed

primarily to find sources in three-dimensional spectral-

line data cubes, although it is able to process two- and one-

dimensional data as well. One of its key features is the

ability to pre-process the image data via smoothing or

multi-resolution wavelet reconstruction to minimise the

effects of noise and increase both the completeness and

reliability of the resulting source catalogue.

DUCHAMP, however, lacks certain features that would

make it suitable for ASKAP online processing, in partic-

ular parallel processing of data. It also lacks

certain features that ASKAP surveys would desire. We

have been developing an ASKAP source-finder that

builds on the DUCHAMP library, extending it in appropriate

areas. The current version of this source-finder is known

as SELAVY.3

SELAVY was developed specifically to operate in a

distributed environment, and also features improvements

to the detection and parameterisation algorithms. These

innovations are detailed in the following sections: Section

2 describes how the software is adapted to work in a

distributed environment; Section 3 describes changes to

the determination of the threshold, allowing it to operate

in a distributed environment and allowing the threshold to

vary from pixel to pixel; and Section 4 describes addi-

tional processing enabled for continuum images, that

allow better analysis of detected sources. Finally, Section

6 describes the development process, and how interac-

tions with the community are aiding the development.

2 Distributed Processing

2.1 Why Distributed Processing?

The large field of view and spectral coverage of ASKAP

place great demands on the processing capability, driving

us towards distributed processing. The size of the ASKAP

spectral-line data sets demands it, as a full cube (typical

size 3600� 3600 pix� 16 384 channels, or nearly

800GB) will not fit in memory for a single processor. The

ASKAP continuum data, being single-channel images

(at least, the images that result from the multi-frequency

synthesis imaging), will easily fit inmemory, but the large

field of view results in such a large number of sources

(Norris et al. (2011) predict the EMU survey will find

,70 000 sources per ASKAP field) that parallel

processing is required to meet the performance goals of

the pipeline.

In general, splitting up the data set allows it to be

processed in parallel, decreasing the processing time and

potentially allowing a number of different approaches, or

more computationally-intensive analyses to be used.

Finally, the ASKAP pipeline processing will take place

within a high-performance supercomputing environment

(this is driven more by the imaging, which has even

stricter requirements on distributed processing), and so

distributed source extraction will make the best use of the

available resources.

We describe in this section the framework and imple-

mentation that is being developed for theASKAPpipeline

source finder. This has been tested on large multi-core

machines such as the NCI4 National Facility Sun

Constellation Vayu and the iVEC5 Pawsey 1A machine

Epic — the latter being the machine that will be used for

processing data from BETA — and is the subject of

on-going development and evaluation.

2.2 Implementation

The systems the source-finding runs on are characterised

by having a large number of nodes, each comprising

typically 8–12 CPU cores with an average of 2–3GB of

memory per core. We therefore cannot assume that the

entire image will fit within memory. The source-finding

implements the master/worker pattern for workload dis-

tribution and coordination. A single processing task is run

usingN processes, one of which is designated the ‘master’

process and coordinates the processing, and the remaining

N� 1 are ‘worker’ processes and perform the compute

intensive work. The master/worker pattern has proved to

be more then adequate to meet the scaling goals, partially

owing to the fact that work tasks are loosely coupled and

relatively coarse-grained, requiring significant CPU time

to complete.

The first step in the distributed processing is to allocate

a subimage of the full input image to a given worker. This

is done by dividing the image at regularly-spaced inter-

vals in each axis direction, via parameters Nx, Ny and Nz

(where the x- and y-directions are the spatial directions,

such as right ascension and declination, and the

z-direction is the spectral direction, such as frequency or

velocity). The number of workers required is thus given

1
http://www.atnf.csiro.au/people/Matthew.Whiting/

Duchamp/DuchampUserGuide.pdf
2
http://www.atnf.csiro.au/people/Matthew.Whiting/

Duchamp
3
Rrose Selavy was a pseudonym of Marcel Duchamp, after whom

DUCHAMP was named.

4
http://www.nci.org.au
5
http://www.ivec.org
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by the product of these three parameters:N� 1¼NxNyNz.

The size of these worker images can be made larger than

necessary by allowing them to overlap by some specified

amount. This allows sources at or near the edge to be

better recovered (although see Section 2.3 for further

discussion on these sources), and allows complete cover-

age of the image when using the variable threshold

technique discussed in Section 3.2.

Each worker reads its subimage data from disk

independently, then processes its own subimage using

DUCHAMP algorithms as well as those described herein,

constructing a list of objects to be sent to the master. The

worker only sees the pixels within the subimage, although

it has information about where that subimage is located

within the complete input image, so that correct

pixel locations can be assigned (rather than just the pixel

locations within the subimage).

2.3 Sources at Subimage Edges

When dividing up an image for processing, one needs to

consider the effect of the edges of the subimages. It is

likely that these will lie on or near sources of interest, and

so care must be taken to ensure these sources are not

processed differently to sources away from the edges

(since the edges are arbitrary and not related to the

data itself).

For sources away from the edges of the subimages, the

processing is identical to the single-threaded case.

The worker has all the flux information for every pixel

in the source, and so the source can be fully parame-

terised. Any fitting (described in Section 4) is done by the

worker as well. The only additional impact is the work

involved in sending the information on the source to the

master node, which then writes it to the output.

When a source is close to the edge of a subimage,

however, it is likely that the entire source does not lie

in a single subimage, and so a single worker cannot

completely process the source. These sources are flagged

as edge sources and are handled by the master differently

to the non-edge sources. All edge sources are compiled

into a list, and then passed through the same merging

process used by DUCHAMP (see Whiting (2012)). This

provides a list of unique sources, distinct from the

non-edge sources.

Before the lists of edge and non-edge sources can

be combined, however, the edge sources need to be

parameterised. The sources are distributed to the

now-idle workers, who do the basic parameterisation of

each source individually. This is currently handled by the

DUCHAMP algorithms, which limit the parameterisation

(object extent, peak and integrated flux) to the detected

pixels only. A worker will only need the pixels that

immediately affect a given source, and so will not need

to load the full image, or even a full subimage. This will

keep the memory requirements tractable (we assume the

sizes of the objects are small compared to the size of

the cube).

3 Threshold Determination in SELAVY

The DUCHAMP software uses a single threshold, either

given as a flux value or a signal-to-noise level, for the

entire dataset that is being searched. This approach results

in an output catalogue with a uniform selection criterion.

It is best suited to data that has uniform noise, which often

requires some form of preprocessing (for instance,

division through by the sensitivity pattern). In practice,

for ASKAP processing, there are at least two issues with

this approach. One is that the image data is distributed, so

that no single worker process has access to all the pixel

values. Secondly, it is likely that the assumption of

uniform noise everywhere will not hold. While it may be

possible to divide through by the ASKAP sensitivity

pattern, additional effects such as sidelobes will contrib-

ute to the noise in different ways at different locations In

this section, we discuss two approaches SELAVY can

implement to address these issues.

3.1 Statistics in the Distributed Case

A signal-to-noise threshold is defined by measuring the

image statistics and setting the flux threshold to be a

certain number of standard deviations above the mean.

The mean m and standard deviation s of the pixel values

can be measured directly via the standard relations:

m ¼ 1

N

XN
i¼1

Fi

and

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

ðFi � mÞ2
vuut ;

where Fi are the pixel flux values. Or they can be esti-

mated robustly using the median and the median absolute

deviation from the median (MADFM):

m ¼ medðFÞ

and

s ¼ med jF � mjð Þ � 0:6744888;

where the correction factor 0.6744888 converts the

MADFM to the equivalent standard deviation of a Normal

distribution (Whiting 2012). The robust methods avoid the

strong bias that can be present from the inclusion of source

pixels (which do not form part of the noise background

anyway), albeit at the expense of additional computation.

If one wishes to apply a single signal-to-noise

threshold for the entire image, in the fashion of

DUCHAMP, then the global image statistics need to be

known. In the distributed processing case, no single

worker process can see the entire image, and having each

worker calculate their own statistics would lead to

large-scale discontinuities in the detection threshold.

There must, instead, be a way of estimating the global
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statistics from the noise properties of the individual

images.

First, each worker finds the mean or median of their

subimage, and sends this to the master. The master then

forms a weighted average of the workers’ means

(weighting by the number of pixels in each subimage):

mM ¼
P

i miNiP
i Ni

;

where the subscript M refers to the value at the master,

while i refers to a given worker. This provides an estimate

of the global mean (in fact, when means are used instead

of medians, this is identical to the overall mean).

This mean is then distributed to the workers, who use it

to find the ‘spread’ (either the standard deviation or the

MADFM) within their subimage and provide this to the

master. The master then forms a weighted average of

the workers’ variances:

sM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i s
2
i NiP

i Ni

s
:

When using the mean and standard deviation, these

quantities come out to the same values one would get by

looking at the entire image at once. However, the robust

statistics will be different. It is not possible to find the

overall median without looking at all the data (since at

least partial sorting of the entire dataset would be

required), but taking the weighted average of the

medians provides a better estimate than the median of

the medians.

The accuracy of the distributed approach is affected by

the number of workers used. In Table 1 we look at how the

estimates of the overall image statistics, estimated with

the robust methods described above, change with the

number of workers used. This is done for two cases, taken

from the 2011 ASKAP simulations:6 one, a continuum

image that has many sources present, with signal-to-noise

values ranging up to,105; and two, a single channel of a

noise-dominated spectral cube. In both cases, the estimate

of the standard deviation increases with the number of

workers, and increases more strongly in the source-

dominated case. Even though we are using robust statis-

tics, the estimates in subimages with bright sources are

still slightly affected, and their inclusion increases the

calculated global value. Even though there are no sources

in the second case, the estimated noise still increases,

albeit by only a tiny amount. Note that using non-robust

statistics in the source-dominated image gives a standard

deviation almost two orders of magnitude larger than the

robust statistics.

These considerations are important only in the case of

determining the global noise properties, or in applying a

global signal-to-noise threshold. In Section 3.2we discuss

an alternativemethod of setting the threshold that depends

only on the local noise properties.

3.2 Variable Thresholds

3.2.1 Rationale

One of the key aims of source extraction is to provide

a catalogue that is as complete and reliable as possible.

To do this, one needs to go as deep as possible (to

increase the completeness), but not so deep that one

finds large numbers of false detections (which would

reduce the reliability). If the noise varies as a function of

position, then the detection threshold should also vary.

By ‘noise’, here, we mean not just the random, thermal

noise that is inevitably a part of any image, but also non-

random, unwanted signal such as sidelobes or interfer-

ence. Thus, at locations where there is a relatively large

amount of noise or additional signal (e.g. near the edge

of the field or near a bright source), the threshold can be

set higher to avoid spurious sources, but at other loca-

tions it can be set as low as the thermal noise permits,

allowing the source extraction to be as complete as

possible.

An important application of a variable detection

threshold is for non-interlaced observations with ASKAP.

The phased-array beamswill be separated by (l/D), rather
than the (l/2D) required to image without aliasing. This

leads to variations of ,20–30% in the sensitivity across

6
These simulations were provided by the ASKAP team, and are

available from http://www.atnf.csiro.au/people/

Matthew.Whiting.

Table 1. Image statistics in distributed processing

# Workers Noiseþ Sources Noise only

mM sM mM sM

1 �5.0509� 10�6 3.3746� 10�5 �1.9926� 10�7 7.8009� 10�4

2 �5.0929� 10�6 3.3807� 10�5 �2.0099� 10�7 7.8025� 10�4

4 �5.1624� 10�6 3.4080� 10�5 1.5316� 10�7 7.8024� 10�4

9 �5.2095� 10�6 3.4454� 10�5 �2.1657� 10�7 7.8028� 10�4

16 �5.2548� 10�6 3.4394� 10�5 �1.0837� 10�7 7.8282� 10�4

30 �5.3137� 10�6 3.4641� 10�5 �1.7546� 10�7 7.8485� 10�4

1a 1.5374� 10�5 3.0777� 10�3 2.3859� 10�7 8.0582� 10�4

aCalculated with non-robust statistics.

mM is the estimate of overall mean, calculated by the master process.

sM is the estimate of overall standard deviation, calculated by the master process.
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the field. To maximise the completeness and reliability of

any catalogue, the detection threshold must be able to

track these variations. Note that interlacing multiple

observations will provide a flat sensitivity response, and

this will be considered in planning ASKAP surveys.

3.2.2 Implementation

SELAVY approaches the goal of maximising the com-

pleteness and reliability by finding, for each pixel, the

image statistics within a ‘box’ of a given size centred on

that pixel. The image statistics are used to set a signal-to-

noise threshold, which then determines whether that pixel

is part of an object or not. This is repeated for each pixel in

the image, thereby providing a different flux threshold at

each location.

The implementation of this uses the CASACORE library’s

slidingArrayMath functions, which allow efficient sliding

of a box over an array. Although described as ‘boxes’,

these can be either two- or one-dimensional, to match the

method of searching done by the DUCHAMP algorithms

(which search a 3D dataset either one channel image at a

time or one spectrum at a time).

Applying a fixed box size to the arraymeans that pixels

within half the box width of the edge cannot have a full

box centred on them without it extending past the image

borders. These pixels have their signal-to-noise ratio set

to zero, and so will yield no detections. This has implica-

tions for the distributed processing discussed in Section 2,

but problems can be avoided by using an overlap between

neighbouring worker subimages of at least the box width.

The edge of the image, however, will always have a

border area that exhibits no detections.

The box size should be chosen carefully. If it is too

small, a source may fill a large fraction of the box and so

the noise estimate will not sample the true background. If

it is too large, any sensitivity variations present (see

Figure 1) may get smoothed out and the utility of the

approach diminished.

At present, only a single box size is applied to the data,

but there is the risk that this may impose a preferred scale

on the output catalogue, particularly if there is underlying

large-scale diffuse structure in the image that may be

comparable in size to the box. An improved algorithm

would make use of a range of box sizes and appropriately

account for the different detection thresholds that would

result — this is an area of ongoing research within the

ASKAP source-finding community.

3.2.3 Examples

We consider here two different situations where apply-

ing this technique can be beneficial. Figure 1 shows how

sensitivity variations can be accounted for in an ASKAP

image. The left-hand image shows a sensitivity pattern

taken from an ASKAP simulation; in this case, a single

channel from the spectral-line simulation. The lighter

areas are the PAF beams, where the noise (indicated by

the colour scale) is lowest, with the darker areas the

increased noise in between beams. These areas of

increased noise are more likely to contribute spurious

sources, particularly at lower (i.e. more interesting) detec-

tion thresholds.

The right-hand image shows the ratio of the variable

flux threshold at each pixel, determined as in Section

3.2.2 using a 4� signal-to-noise threshold, to the single 4

threshold (as a flux value) determined from the entire

image. A single contour line marks the locations where

the thresholds are equal. One clearly sees that the flux

threshold now tracks the noise variations closely (note

that the left-hand side image shows the theoretical noise,

whereas the right-hand side reflects a particular instance

Figure 1 An illustration of the effect of applying the variable threshold technique in the presence of sensitivity variations. The left-hand plot

shows the variations in sensitivity (i.e. the theoretical noise level) due to a 3� 3 grid of beams, taken from a simulated ASKAP observation.

White is more sensitive. The right-hand side shows the result of the variable threshold determination on a particular noisy image with this

sensitivity pattern. The image shows the ratio of the variable threshold (calculated as described in the text, with a box width of 101 pixels) to the

single threshold determined from the whole image. A 4� threshold was used. The single contour line indicates where the two thresholds are

equal. Darker pixels have a higher variable threshold, and lighter pixels have lower.
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of the random noise ), which will increase the number of

real sources detected (in the PAF beam directions) and

decrease the number of false detections in the higher-

noise regions between the beams.

Figure 2, meanwhile, shows the effect of applying this

variable threshold approach to data from the Australia

Telescope Large Area Survey (ATLAS, Norris et al.

2006). We use the image of the Chandra Deep Field

South (CDFS), as it provides a good illustrative example

of sources with strong sidelobes. (Although note that the

sidelobes in this Australia Telescope Compact Array

image are much more prominent than any expected in

ASKAP images, due both to the design of the ASKAP

array, with many more baselines and 3rd-axis rotation of

the feed, and to the use of a skymodel in the imaging. This

example can be considered a worse-case scenario for

ASKAP imaging.) When we apply a single threshold to

this image (with the noise determined from a part of the

image away from bright sources), these sidelobes appear

either as separate detections or extensions to the primary

object (see Figure 2b). Raising the threshold around this

object means that we detect just the central part, but we

still detect the faint sources in the field where the detec-

tion threshold remains low (Figure 2c). Huynh et al.

(2012) have made a detailed examination of this algo-

rithm in looking at source extraction from ASKAP

simulations.

4 Two-Dimensional Source Fitting

4.1 Motivation

The principle aim of the DUCHAMP source-finder is to

locate sources of interest within an image. It makes no

assumptions as to the nature of the sources themselves,

and so does not perform any fitting to the detected sources

to do parameterisation. Instead, all parameterisation is

done solely from the pixels in the image.

The rationale here is that the source finding segments the

image into ‘object’ pixels and ‘background’ pixels, and that

the objects of interest are, by definition, made up of the

detected pixels, so parameterising them by those pixels

shouldbe sufficient. In the absenceof any assumption about

their true nature, this is all that can be done. DUCHAMP then

leaves the analysis here, and provides the user with enough

information (such as mask images) to go and do further,

more detailed parameterisation (e.g. through fitting)

according to the science they want to do.

In practice, however, there are often assumptions that

can be made about the nature of the sources being

detected. A common one in radio imaging is that the

sources’ spatial structure can be decomposed into a small

number of Gaussian components, particularly when they

are unresolved (or only marginally resolved). This has

been done with many continuum surveys such as NVSS

(Condon et al. 1998), FIRST (Becker et al. 1995; White

et al. 1997) and SUMSS (Mauch et al. 2003), and in many

spectral-line surveys, such as HIPASS (Barnes et al.

2001), where the fitting is done on the moment-0 map

of a spectral-line source.

The key to this approach is to represent the sky

accurately with a minimal number of easily-quantifiable

components. This will facilitate the cataloguing of the

image (as each component can be readily expressed as a

single catalogue entry), and makes the parametrisation of

sources an easier task as well. The Gaussian shape,

moreover, closely approximates the response of radio

interferometers, either after deconvolution, or, in the case

of good u–v coverage (such as long integrations with

ASKAP), even before deconvolution, and so provides a

natural basis for representing the image brightness.

We have therefore implemented two-dimensional

Gaussian fitting in the ASKAP source finder, to act as

the parameterisation step following the identification of

sources. In the following section we describe the imple-

mentation, with particular emphasis on how to run this

within the ASKAP pipeline environment. The details of

the implementation are, at this point, not final, and are

most likely not yet the optimal solution. Testing is

on-going (see, for instance Hancock et al. 2012, who

present a very promising alternative algorithm) and the

final version of the ASKAP pipeline will depend strongly

on community input (see Section 6).

(a) (b) (c)

Figure 2 An illustration of the effect of applying the variable threshold technique in a situationwhere sidelobes are a problem. Panel (a) shows

an excerpt from the ATLAS CDFS field (Norris et al. 2006), showing a bright source surrounded by a sidelobe pattern as well as fainter real

sources. Panel (b) shows the mask resulting from source detection done with a constant 5� threshold, while panel (c) shows the effect of a 5�
threshold applied using the local noise technique. The dotted line indicates the border of the valid area, pixels outside this will not be detected.
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4.2 Fitting Algorithm

The Gaussian fitting routine starts with the result of the

source finding. This provides, for a given object, a set of

pixels (commonly referred to as an ‘island’) that meet the

detection criteria. These will be surrounded by back-

ground pixels that are, by definition, not part of the source.

The fitting can be done in one of two ways. Either just

the detected pixels (their locations and fluxes) are passed

to the fitting algorithm, or all the pixels within a rectan-

gular box surrounding the object (padded out by some

pre-defined number of pixels) are used instead.

The former is preferred, as the fitting then is only

constrained by the pixels known to make up the object.

This does, however, require a certain numberof pixels tobe

detected for the fit to be reliable – a source that has only the

top few pixels of its profile detected may not have enough

pixels for the fit to be constrained, and even if it does itmay

not provide a good estimate of the position and shape of the

Gaussian. For this reason, extending detections out to some

secondary flux threshold (known in DUCHAMP as ‘growing’)

is used to provide as much information on the source as

possible.

The alternative method of fitting within a box includes

all pixels without applying this secondary threshold, and

so hopefully includes in the fitting all pixels (with

significance below the detection threshold) that contrib-

ute to the source. The downside is that if neighbouring

sources encroach into the box, without merging with the

source under consideration, then they will also affect the

result of the fit, and may end up having components

erroneously fitted to them.

4.3 Initial Guesses

For accurate results, most fitting algorithms (including

the CASACORE algorithms used by SELAVY) benefit from a

good a priori guess for the result. This allows the opti-

misation to converge to the global minimum x2 value,

rather than some local, but not global, minimum. This is

particularly important when fitting to confused or merged

sources. That is, the island of pixels comprises several

components that are joined at some flux level. If the

algorithm can start with relatively accurate guesses of the

location and size of theGaussian components present then

it will converge faster and more accurately.

The initial guesses are determined by a process of sub-

thresholding, illustrated by Figure 3. This figure shows a

one-dimension representation of an object comprising

two partially-merged components, both of which peak

above the threshold. The algorithm starts with the island

of detected pixels, and applies a series of thresholds

spaced evenly between the source-detection threshold

and the peak pixel (the spacing can be even in either

linear- or log-space). At each threshold, simple source

extraction is done to find the number of components. Each

component is referenced by its peak location, which will

remain constant for different thresholds. If the source has

just one component, each sub-threshold will also return

a single source. If there is a secondary component that

is sufficiently well separated, then there should be a

sub-threshold that separates them and returns two com-

ponents. The location of each of these are recorded (based

on the peak pixel, so that different sampling of a source

does not affect its location) and will provide a separate

initial component to the fitting algorithm.

The drawbacks of this approach are if the second

component is not sufficiently separated from the primary

to provide a ‘dip’ in flux between the two. If this is the

case, no sub-threshold will be able to separate them. It is

also highly dependent on the specific sub-thresholds used,

such that the sub-threshold increment is able to resolve the

gap between the peak and trough of the secondary

component.

TheAegean source-finder (Hancock et al. 2012) has an

alternative method of finding subcomponents. It uses a

Laplacian filter to construct a curvature map, searching

for local maxima. This algorithm is under consideration

for inclusion in the ASKAP pipeline.

4.4 Accepting the Fit

A given fit is primarily judged as acceptable based on its

goodness-of-fit measure, the x2 value. This is the

parameter minimised in the fitting procedure. However,

other factors are taken into account in accepting a fit

(these largely follow the procedure of White et al. (1997)

for the FIRST catalogue):

� Fit must converge and have an acceptable x2 value.
� The centre of each fitted component must be within the

extent of the island.

� The separation between any pair of components must

be at least two pixels.

Figure 3 An illustration of the sub-thresholding approach used

to obtain initial guesses for the Gaussian components present.

The figure shows a simplified one-dimensional source for clarity.

A series of subthresholds (dashed lines) are applied between the

source’s peak and its detection threshold. The location of each

distinct peak is indicated by the filled circle, and would be recorded

as a separate subcomponent.
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� The FWHMof each component must be at least 60% of

the minimum FWHM of the beam.

� The flux of each component must be positive and more

than half the detection threshold.

� The peak flux of each component must be less than

twice the peak flux of the detected object and the sumof

all component fluxes must be less than twice the total

flux of the detected object.

SELAVY can fit for different numbers of Gaussians, and

choose the best fit according to one of two rules. One is to

look at the reduced-x2 value (x2/n) for each fit. Here, n is
the number of degrees of freedom in the fit, defined by the

number of pixels fitted to, n, and the number of para-

meters being fitted. In the case of fitting all six parameters

of the two-dimensional Gaussian, a fit with g Gaussians

has n¼ n� 6g� 1 degrees of freedom. Of the acceptable

fits (judged according to the above criteria), the one with

the lowest x2/n is chosen as the best fit.

This approach has its problems, particularly for radio

data that is correlated over the size of the beam. This

breaks the assumption underlying the use of the

x2-minimisation technique, namely that the data points

be independent. While the minimisation procedure will

still work, the comparison of different fits with different

numbers of Gaussians tends to give stronger weight to fits

with more Gaussians.

The alternative approach is to start with a single

Gaussian, then only consider fits with more Gaussians

when the fit is not acceptable according to x2 and RMS

criteria. This way the acceptable fit with the smallest

number of Gaussians is chosen. Of course, if a larger

number of Gaussians provides a better fit than a smaller

number, but the smaller one yields an acceptable fit, the

better fit will never be realised.

4.5 Related Parameterisation

The Gaussian fitting can also be used, in certain circum-

stances, to find the spectral index and spectral curvature

of components. The imaging pipeline for ASKAP will

process continuum data using the multi-scale multi-

frequency synthesis algorithm (see Rau et al. (2009);

Rau (2010) for a description). This produces a series of

Taylor term images, reflecting the frequency dependence

of the data.

If one expresses the frequency dependence of a con-

tinuum source’s spectrum as

Ið�Þ ¼ I0
�

�0

� � �þ� log �
�0

� �h i
;

which is a quadratic function in log-space:
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� �
þ � log
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�0
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where n0 is the reference frequency, I0¼ I(n0), a is the

spectral index and b the spectral curvature. Then the

Taylor expansion about n0 becomes
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The Taylor term images that come out of the pipeline then

have I0, I0a and I0ð12�ð�� 1Þ þ �Þ. The source-finding

and fitting of Gaussian components is performed on the

first (Taylor-0) image, and then each component has a

a and b value measured. This is done by taking the

component fitted to I0, keeping all parameters fixed

except the peak flux, and fitting it to the I0a (Taylor-1)

image. The ratio of the integrated fluxes of this and the

original component provides the spectral index for the

component. Similarly, the spectral curvature can be cal-

culated by fitting in the Taylor-2 image.

5 Performance Considerations

In this section we briefly consider the impact on

processing time of the different features discussed in the

previous three sections. While processing time can be

very dependent on the system being used, we conducted

these trials on Epic, being the machine that will be used

for the BETA processing.

We present the results of two sets of tests. One is run on

a two-dimensional image from the 2011 ASKAP simula-

tions, being the 4096� 4096 central portion of the Stokes

I Taylor-0 continuum image (this just excludes the outer

regions of the full 5500� 5500 image, where there is

minimal coverage from the PAF beams). The second set is

run on the continuum-free spectral-line simulation, using

the trimmed cube of size 1248� 1248� 4096 (or

,24GB). Both sets were searched to 10� and 5�, with
detections grown out to 3�. The continuum image was

also searched to 3�. Doing this on the spectral-line cube

provides far too many false detections to be feasible.

This search was done in a number of different ways.

Firstly, the processingwas split over a different number of

CPU cores. The continuum image used either 1, 4, 9, 15 or

35 worker processes, while the spectral-line cube used a

smaller set of 60, 168 or 455. For each arrangement, we

consider three search types: a ‘basic’ search, with no pre-

processing and a single threshold for the entire field; a

2-dimensional or 1-dimensional wavelet reconstruction

(for the continuum and spectral-line cases respectively)

followed by a search with a single threshold; and a search

using the variable threshold technique from Section 3.2

(using ‘boxes’ in two or one dimensions for the continuum

and spectral-line cases respectively). For each case in the

two-dimensional tests, we run the search both with and

without Gaussian fitting to the detected sources. The

wavelet reconstruction is included to give a feel for what
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additional time is required for pre-processing — this is

completely separate work from the searching and/or

fitting, and so the excess time in the reconstruction case

for otherwise identical searches provides the time spent

doing the reconstruction. Relative scaling of different

DUCHAMP pre-processing techniques can be found inWhit-

ing (2012).

The results are compiled in Table 2 and Table 3,

where we quote the times taken by various search types,

as well as the number of sources found in each. These

searches have not been optimised in any way, and so

the number of sources do not represent the results of

a complete or reliable search. Note also that these

tests were run on a shared system, and so some variability

in the timing is expected. The values are averages over

several runs, but even so some variation from the expected

trends can be seen when the durations are small. For the

three-dimensional results, we see considerable variability

between the different runs (communication delays may

play a part here), and so quote the middle value of the

three times as well.

This variability aside, the first thing to note is that the

search times are fairly small, certainly compared to the

time required to do the imaging (which will be several

hours at least). The exception here are the single-node

(1� 1) 2D searches with the variable threshold. This is

because the median calculations, in a box of size

101� 101 in this case, for each pixel in the image is quite

computationally intensive. However, we clearly see that

with even a modest amount of distributed processing

allows the image to be done in under 10 minutes. And

note that the results are the same for all distributed

processing arrangements, since whether each pixel is

detected or not depends only on the box surrounding

Table 2. Execution times on Epic for different configurations of two-dimensional source finding

n�a Configb Basic search Reconstruction Variable threshold

No fitc Fitd # Sourcese No fit Fit # Sources No fit Fit # Sources

10 1� 1 2.9 37.7 1484 87.0 143.8 2358 5732.6 5848.0 1367

2� 2 1.8 11.5 1462 20.2 40.5 2327 1358.3 1363.9 1367

3� 3 1.6 7.2 1434 9.9 20.3 2300 637.8 641.8 1367

3� 5 2.2 6.0 1429 6.4 15.4 2301 382.6 390.4 1367

5� 7 1.4 5.3 1421 4.1 10.1 2282 165.6 178.7 1367

5 1� 1 4.9 85.6 3547 90.7 344.0 7119 5468.6 5534.3 3133

2� 2 3.1 32.0 3510 23.4 114.1 6927 1372.4 1379.6 3133

3� 3 2.7 21.6 3438 12.7 93.3 6703 635.0 649.9 3133

3� 5 2.5 20.8 3405 8.5 77.6 6673 383.2 403.8 3133

5� 7 2.8 15.9 3370 5.7 56.1 6576 165.2 213.3 3133

3 1� 1 14.6 324.3 10 464 125.2 996.0 20 926 5515.1 5759.2 8200

2� 2 8.8 124.9 10 309 39.9 470.3 20 372 1416.7 1463.2 8200

3� 3 7.3 106.9 9966 25.5 265.6 19 738 641.0 698.1 8200

3� 5 7.1 84.4 9852 21.1 263.1 19 767 390.7 474.6 8200

5� 7 7.8 79.0 9701 18.3 217.4 19 392 169.8 374.5 8200

aThe detection threshold as a signal-to-noise ratio.
bThe distributed worker arrangement: the number of subdivisions in the x- and y-directions.
cThe time (in seconds) taken to perform the search, without doing the 2D fitting.
dThe time (in seconds) taken to perform the search and fit each source.
eThe number of sources found in the search.

Table 3. Execution times on Epic for different configurations of three-dimensional source finding

n�a Configb Basic search Reconstruction Variable threshold

Av.c Mediand # Sourcese Av. Median # Sources Av. Median # Sources

10 5� 3� 4 207.9 216.2 13 594.4 593.4 14 1322.5 1297.2 11

7� 6� 4 190.9 179.0 13 53.0 53.0 14 480.6 466.5 11

5� 7� 13 3.6 3.6 13 22.1 22.0 14 175.7 163.7 11

5 5� 3� 4 177.5 179.7 434 737.4 743.0 37 1346.8 1377.2 271

7� 6� 4 166.0 95.0 435 94.3 69.0 37 1372.0 1261.2 273

5� 7� 13 4.4 4.4 421 22.3 22.2 34 398.4 396.3 274

aThe detection threshold as a signal-to-noise ratio.
bThe distributed worker arrangement — the number of subdivisions in the x-, y- and z-directions.
cThe average time (in seconds) of three trials taken to perform the search.
dThe median time (in seconds) of three trials taken to perform the search.
eThe number of sources found in the search.
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them. This does not apply to the other searches, as the

threshold is determined from the statistics, which are

calculated in the distributed fashion.

The additional time for the fitting is governed primari-

ly by the number of sources to be fitted. Note that these are

from a ,10 square degree image resulting from a simu-

lated 12-hour integration with the full ASKAP array. For

the distributed cases, we see an average of a few to 10

milliseconds per source, which in absolute terms does not

prove to be a big additional cost, and allows the consider-

ation of additional, more complex, fitting algorithms.

The spectral-line tests demonstrate the need to perform

three-dimensional source-extraction on a distributed sys-

tem. We have been able to search a 24GB cube, often in a

matter of minutes or less, and we see that increasing the

number of available processors does lead to faster

execution.

These results are encouraging for considering proces-

sing pipelines, as they allow a lot of flexibility in algo-

rithmic approaches (particularly for two-dimensional

searches), without impinging on the time available to

run the entire pipeline. This provides leeway in designing

source-finding algorithms that can operate within the

pipeline environment yet still deliver results appropriate

for different science cases. We discuss in the next section

the processes governing the incorporation of new algo-

rithms into the pipeline.

6 The Development Process and Community

Involvement

The ASKAP telescope is expected to have at least 75% of

its first five years of operation devoted to Survey Science

Projects (SSPs), each requiring at least 1,500 hours of

observing time. Ten such projects have been selected to

participate in aDesign Study, where the detailed scientific

and technical aspects of their survey, including the pro-

cessing that is required, will be developed.

To assist communication both between different

SSPs and between SSPs and the ASKAP team, working

groups were established in a small number of key

areas, one of which being source finding. A large part

of the technical work of the Design Study has been the

investigation of source-finding techniques, with the

aim of providing recommendations to the ASKAP

computing team on the capabilities of the source-

finding pipeline.

Since the prototype ASKAP pipeline is built on the

DUCHAMP library, the DUCHAMP package has formed the

basis of much of the testing, as can be seen in numerous

papers in this issue (Allison et al. 2012; Popping et al.

2012; Westmeier et al. 2012; Westerlund et al. 2012;

Walsh et al. 2012).

However, such testing does not capture the new

features implemented in SELAVY. To facilitate testing of

these features, SELAVY access was provided as a service

rather than an installable software package. This service

enables the Survey Science Teammembers to access both

the software and a modest size compute cluster provided

by CSIRO. This service is delivered via a script

interface enabling uploading of images, submission of

source-finding jobs, and the retrieval of results. This

provides a mechanism to test the new features described

herein and evaluate whether they are appropriate for the

relevant science case. At least two papers (Huynh et al.

2012; Hancock et al. 2012) have made use of this service

to test the continuum image processing of SELAVY.

This testing process is partly designed to allow the

science teams to develop algorithms that are either

missing from the current design of the ASKAP source-

finder, or do not work to the level required by the

science. We have instituted a process whereby, once

such algorithms have been identified, they can be

provided to ASKAP computing for possible inclusion

in the pipeline prior to ASKAP or BETA observations.

In this way we aim to provide a source-finder that

will have all features required by the various science

cases.

New features that are currently planned to be imple-

mented (many of which are detailed in papers in this

issue) include:

� Optimal extraction of spectra around detected

continuum sources, for the purposes of further proces-

sing and analysis (such as one-dimensional searches, or

rotation measure synthesis).

� Mask optimisation routines, to find the optimal mask

for an extended object, particularly in three

dimensions. This will address the issues with the

measurement of integrated flux identified by

Westmeier, Popping & Serra (2012).

� An alternate wavelet reconstruction algorithm, the

2D–1D algorithm (Fl€oer & Winkel 2012), that allows

the treatment of the spectral axis differently to the

spatial axes.

� An alternative searching technique for one-

dimensional spectra that applies Bayesian Monte Carlo

methods to detect absorption lines (Allison, Sadler &

Whiting 2012).

� Alternative Gaussian fitting algorithms, such as those

used in the Aegean source finder (Hancock et al. 2012).

The current plan is to have as many of these features as

possible available within the ASKAP pipeline in time for

science observations with BETA. Their performance will

be evaluated during the commissioning phase to plan

what further work is required for ASKAP-scale proces-

sing.We expect that algorithm development will continue

within the Survey Science Teams, and anticipate further

input as ASKAP operations approach.

7 Summary and Future Work

Wehave presented the key algorithmic developments that

have gone into SELAVY, the prototype ASKAP source-

finder. These features, including distributed processing,

variable threshold determination and two-dimensional
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Gaussian profile fitting, have been implemented in a

prototype system that has been made available to the

ASKAP Survey Science Teams for testing purposes.

The development of the SELAVY source-finder is

continuing as we move closer to ASKAP operations.

Several Science Teams have provided feedback and

specifications for additional or refined algorithms,

covering pre-processing, source extraction and parame-

terisation and addressing some of the issues identified in

this paper. At time of writing, we are incorporating these

algorithms into SELAVY, with the aim of providing a more

fully fledged source-finder in time for BETA

observations.
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