A THEOREM ON FINITE GENERATION OF A RING

MASAYOSHI NAGATA

Dedicated to late Professor TApast NAKAYAMA

The fourteenth problem of Hilbert asked finite generation of a certain class
of rings and had a counter-example (cf. [4]). On the other hand, many mathe-
maticians gave various sufficient conditions for finite generation of such rings
(see, for instance, [9], [5] and [8]). The purpose of the present paper is to
give a new sufficient condition. The class of rings to be treated is much more
general than those treated before, except for the one in [8].

As for the terminology, we use mainly the one used in our book [7], hence
a ring means a commutative ring with identity and a local ring means a Noe-
therian local ring. When B is a ring, we shall understand by a B-algebra a
ring which is a B-module, and by a B-algebra of finite type a B-algebra which
is finitely generated over the natural homomorpic image of B.

. Our main result can be stated as follows" :

MaiIN TueoreM. Let B be a pseudo-geometric ring and let A be a B-algebra
of finite type. For a B-subalgebra R of A, R modulo its radical is a B-algebra
of finite type if R is strongly submersive in A.

Here, the strong submersiveness is defined as follows:

We say that a ring R is strongly submersive” in a ring A if (i) A is an
R-algebra and (ii) it holds that if p is a prime ideal of height 0 in R and if V
is a valuation ring of the field of quotients K(p) of R/p such that V2 R/p, then,
there is a pair of a valuation ring V” (of a field containing K(p)) which dominates
V and a homomorphism ¢ from A in V' such that the natural homomorphism

Received May 24, 1965.

) The case where B is a field or a pseudo-geometric Dedekind domain was established
by the writer while he was staying at Woods Hole, Mass. in order to attend 1954 A.M.S.
Summer Institute on Algebraic Geometry. The writer likes to express his thanks to Dr.
David Mumford for the discussion on the condition to be supposed.

2) The term “strongly submersive” is introduced because our condition implies uni-
versal submersiveness in the sense of Grothendieck [2], Exposé 9.
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from R into V'’ through V coincides with the one through A __9‘;) V.

§1. Some preliminary results on valuation rings

LemMma 1.1. Let K and K' be fields such that K< K' and let x be a trans-
cendental element over K'. If valuation rings V' and V' of K' and K(x) re-
spectively are given so that they dominate a valuation ring V of K in common,
then there is a valuation ring V* of K'(x) such that V* dominates both V' and
V.

Proof. If the assertion is proved for a larger K’ then the assertion for the
original K' follows from it. Therefore we may assume that K' is algebraically
closed. Let K be the algebraic closure of K (in K') and set ¥V = V"N K. Then
a valuation ring of K dominates V if and only if it is a conjugate of V over
K. We take a valuation ring V" of K(x) which dominates V", then V' NK is
a valuation ring dominating V, whence there is an automorphism ¢ of K over
K such that (V"NK)’=V. We extend ¢ to an automorphism of K(x) over
K(x); denote the extension by the same ¢. Then V"° dominates V. Obviously,
V" dominates V". Therefore, we have only to prove the assertion under the
additional assumption that K = K. Since K(x) = K(x'), we may assume that
xe V". Then, considering ¥ —c¢ with ¢ € V if necessary, we may assume that
x is a unit in V”. We denote by v, »' and 2" valuations whose rings are V, V'
and V" respectively such that #' and v are extensions of ». (1) If there is
no element ¢ in V such that ¢"(x—¢)>0, then V"= V(x) and therefore it is
enough to take V* to be V'(x). (2) Assume that there is an element ¢ of V
such that »"(x —¢)>0 and such that a>v"(x —¢)> 8 (a, 8 € value group of v)
implies a > v"((x—¢)”)> B3 for every natural number %. Then for each poly-
nomial f(x) € K[x], v""(f(x)) is defined by the minimum of v(¢;) +i+v"(x—¢)
where f(x)=lcilx—c¢)' (c,€ K). Therefore we see easily the existence of a
valuation »* of K'(x) which is an extension of both ' and »". (3) Consider
the remaining case. Let M be the set of all pairs (¢, d) of elements of V such
that v(d®) > v"(x—c¢) =v(d)>0. Since the cases (1) and (2) are excluded and
since K is algebraically closed, the set M is not empty. Set D= N (,aexdV".
(3, i) Assume that there is an a< V' such that a—cedV' for all '(c, d) e M.
(8,1, 1) If, furthermore D is a non-zero principal ideal eV’, then we extend v’

to a valuation v* of K'(x) by v*(Xai(x—a)’) =min v/(a;) +i*v'(e), and this
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valuation is an extension of »", and therefore the valuation ring V* of »* is a
required ring in this case. (3,1, ») Assume that D is not a principal ideal.
Let G' be the value group of ». Introducing a new element J§, we construct
the direct sum G* of G and the free additive group generated by 8. A linear
order in G* is derived from the definition that a+ mé=>=g8+nd (a, BEG; m, n
non-negative integers) if and only if for every d such that (¢, d) € M, there is
a (c,d)e M such that a+m-v(d')=p+n-v(d). Then we extend 2/ to a
valuation »* of K'(%¥) by that »™( X ai(x—a)) = miny'(a;) +4+6. Then the
valuation ring V* of »* is the required ring in this case. (3, i, -~) Assume now
that D=0. Then we consider G* as above, but its linear order being defined
by that ¢ is larger than any element of G, and we have required ring similarly.
(31ii) We have now the case where there is no @ such that a—c< dV’ for all
(¢, d) € M. Then, for each a< K, there is a (¢. d) € M such that a—c& dV'.
Let us denote by M(a), the set of such (¢, d). When a polynomial f(x) € K'[%]
is given, we consider all zero-points ai, . . .. ar of f(x). For each a;i, we take
an element (ci, di) of M(a;) and let (¢, d) be an element of M such that de d;V
for every i. We define »™(f(x)) to be v'(f(c)). We shall prove now that this de-
finition is independent of the particular choice of (¢, d) € M. Indeed, assume that
(c*, d*) e M and that d*edV. f(x)=>bTI17-1(x — a), whence f(¢) =bIli(c — a),
f(e*)=bIli(c*—ai). Since x—cedV"” and x—c*€d*V"cdV", we see that
c—c*edV. Therefore f(¢c)— f(c*) €bd"V', Since (¢, d) € M(a;), we have
v'(c —a;) <v(d) and therefore we see that 2'(f(¢)) =v'( f(¢*)). From this, it
follows easily that »* defines a valuation of K'(x) which is an extension of
both ¢/ and »". Therefore the valuation ring V* of »* is the required ring in

this case. Thus the proof of Lemma 1 is completed.

Lemma 1.2, If a ring R is strongly submersive in a ring A, and if o is an
ideal of R, then R/a is strongly submersive in A/aA.

Proof. Let b be a prime ideal of height 0 in R/a and let ¢ be the natural
homomorphism from R into R/a. Let b be ¢ '(p) and let q be a prime ideal
of R of height 0 which is contained in p. Let K(p) and K(q) be the fields of
quotients of R/p= (R/a)/p and R/q respectively. Let V be a valuation ring of
K(p) which contains R/p. We take a valuation ring V; of K(q) which dominates
Ry/aR,. The residue class field K(V,) of V, contains K(p). Let V' be a

valuation ring of K(V}) such that it dominates V and we take the composite
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V of V, with V'. Then V is a valuation ring of K(q) which contains R/q. By
the condition that R is strongly submersive, the natural homomorphism ¢
from R into V can be extended to a homomorphism from A into a valuation
ring V* which dominates V. Taking the minimal prime divisor m of m,V*
(m, = the maximal ideal of V;), we see that V*/m is a valuation ring dominating
V. The natural homomorphism from A into V*/m induces a natural homomor-
phism from A/0oA into V*/m and the homomorphism is an extension of the
natural homomorphism from R/o into V. Thus the lemma is proved completely.

As a corollary to these two lemmas, we have

TueoreM 1. Let R be a ring and let A be arn R-algebra. If R is strongly
submersive in A, then jfor anm arbitrary R-algebra R', R' is strongly submersive
in AQrR'.

LemMA 1.3. Let K be a normal quasi-local ring with field of quotients K
and let L be an algebraic extension field of K. Let R* be the integral closure
of R in L and let m* be a maximal ideal of R*. Then R=R*m-NK.

Proof. We may assume that L is a normal extension of K. If V is a
valuation ring of K which dominates R, then there is a valuation ring V* of L such
that V¥*N K= V. V™ contains R* and the maximal ideal of V* lies over some
maximal ideal of R*. Therefore there is an automorphism ¢ of L over K such
that the maximal ideal of V*° lies over m*. Then V*° contains R*m-, whence
V=V*NK contains R*m. N K. Since the intersection of all such V is R. we
see that R contains R*m* N K, and we see the assertion.

Now we are to prove

THEOREM 2. Let B be a Noetherian tntegral domain. Assume that a valua-
tion ring V of a field K is the derived normal ring of a locality P over B.
"Then for an arbitrary subfield K' of K containing B, the valuation ring V' = VN K!

is the derived normal ring of a suitable locality over B.

Proof. We may assume that B is a local ring dominated by V and has K'
as its field of quotients. Let A be an affine ring over B such that P= Ay with
a prime ideal B of A and let @, ..., @» be a set of generators of A over B.
Let m and m’ be the maximal ideals of V' and V' respectively.

(1) When K is algebraic over K'. V is the ring of quotients of the integral

closure V* of V' in K with respect to m N V* Each a; is written in the form
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bi/c; with b;, ¢; in V' but ¢; not in mN V*.  Therefore, considering all of b;, ¢;
instead of the a;, we may assume that all the a; are integral over V'. Let fi(x)
be a monic polynomial over V' which has a; as a root for each i. Then, en-
larging B, we may assume that B contains all of the coefficients of these fi(x)
and that the derived normal ring B* of B is quasi-local. Since A is integral
over B* V is a ring of quotients of the integral closure B** of B* in K with
respect to m N B**. Therefore B* = V' by Lemma 1.3. Thus this case is settled.

(2) The proof of the other case will be done using induction on the trans-
cendence degree of K over K'. Let x be an element of V which is transcendental
over V. Then, by the induction assumption, VN K'(x) is the derived normal
ring of a locality over B. Therefore, we may assume that K = K'(x). Since V
is the derived normal ring of a locality over the Noetherian valuation ring V7,
the residue class field V/m is not algebraic over V'/w'. Hence, in choosing x
above, we may do so that x modulo m is transcendental over V'/m’. Then
(under this new K= K'(x)), we have V = V'(x). Therefore. as in the case (1)
above, we may assume that a@; are all polynomials in x with coeffieients in V'
and also that @, =x. Then, enlarging B, we may assume that B contains all
of the coefficients of the polynomials a; and also that the derived normal ring
B* of B is quasi-local. Then, since V is a ring of quotients of the derived
normal ring of the integral closure B*[x] of Blx] in K= K'(x), we see easily

that B* = V'. Thus the proof of our theorem is completed.

§ 2. An ideal-transform

We shall expose here some facts on an ideal-transform introduced in [3].

Let a be an ideal of a ring R and let @ be the total quotient ring of R. We

n —(m+n)
’

denote by a~" the set of elements b of @ such that b6a” € R. Since a "a”"cCua
the union S of all a™” (n=1,2,...) forms a subring of @ containing R. This
S is called the a-transform of R and is denoted by 7(a). This is the set of

elements z of @ such that za” € R for some n. Therefore we have

LemMA 2.1. Let a and b be ideals of a ring R. If a" Cb for some natural
number n, then T(b) is contained in T(a). Consequently, if a” b and V" Ca
for some natural numbers n and m, then T(a) = T(b). As a particular case, if
these ideals a and b have the same radical and if both a and b have finite basis,
then T(a) = T(b),
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LemMma 2.2. Let a be an ideal of a ring R. Assume that a contains a non-

zero-divisor a. Then o™ " is the set of b/a" with b= a’R: a".
Proof. bsa"R:a" if and only if ba” € @”R, and the assertion is easy.

LemMa 2.3. Let a and R be as Lemma 2.2 above. Let R be a ring such
that RS R'C Tia). Then there is a one to one correspondence between the set
of prime ideals p of R not containing a and the set of prime ideals ' of R' not
containing aR' in such a way that if p corresponds to ' then p=p' N R. In this
case, Ry= R'y.

Proof. Let p be a prime ideal of R which does not contain a. Then there
is non-zero-divisor @ in a which is not in p. Then R'C T(a) CR[a™"] and pR(a™"]
is prime, whence p'=pR[a"']JN R' is a prime ideal of R’ and p "R =pRa"'JNR
=p, Ry = R[a"l:lpkra—x] = Ryp. Conversely, if ' is a prime ideal of R’ which does
not contain aR’, then p=p'N R does not contain a and by the above observation,

we have R'y,=Rp. Thus the assertion is proved completely.

LemMma 2.4. Let a be mon-zero ideal of Krull ring R. Then T(a) is the
intersection of all Ry, letting p run through all prime ideals of height 1 which
do not contain a. Hence T(a) is again a Krull ring.

Proof. Tia) C Rp by Lemma 3, hence T(a) is contained in the intersection
D of all such Ry,. Leta;, ..., q be all of prime ideals of height 1 which
contain a. Let d be an element of D. Since Ry is a Noetherian valuation ring
for each 4, there is a natural number » such that da” C Ry, for each i. By the
finiteness of the number of g;, we can take z# to be common for all 7. Since
d< D, we have then da" C R, and we have d< T(a). Thus D= T(a).

ReEMARK. In the above situation, T(a) is determined by the set of prime
tdeals o1, . . ., Qs of height 1 which contain a.

From this remark, it follows immediately the following

COROLLARY. In the above situation, there are two elements ai, a: of a such
that T(a) = T(a:R+ a:R).

LemMmAa 2.5. Assume that an ideal a of a ring R has a finite basis. Then

for an arbitrary ring R' between R and T(a), we have T(a) = T(aR').

Proof. In general, since R< R, we have T(a) C T(aR'), even if a have no
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finite basis. Let & be an element of T(aR'). Then ba"R' < R for a natural
number n. Let ay, ..., @ be a basis for a". Then we have ba;= R'T(a).
Thefore there is a natural number = such that beq™ < R for all 7. Then we
have ba""” C R, and b< T(a). Thus T(a) = T(aR').

CoroLLARY. Let a be an ideal of a Krull ring R. Then aT(a) is not of
height 1.

LeEMMA 2.6. Let B be a ring and let a be an ideal of a B-algebra R. Assume
that a contains a non-zero-divisor a and let B* be another B-algebra such that
® sB* is exact (ie., B* is a ring which is a flat B-module). Then a " (R® sB*)
= (a(R® B*)) ™™ and therefore T(a(R® B*)) = T(a) ® B*. ’

Proof. Denoting by ¢ the natural homorphism from R into R® B*, we see
that (a(RQB*)) 7" ={b*/¢(a)"|b* € a”(RQ® B*) : ™ (RQ B*)} = {b*/¢(a)"|b*
(@"R:ad")®B*} =a"® B* Thus the assertion is proved.

Remark. Observe that Lemma 2.6 can be applied when B* is a ring of
quotients of a polynomial ring over B, hence in particular when B* is esther a

ring of quotients of B or B* = B(x) with a transcendental element x over B.

Let a be an ideal of a ring R. We say that the a-transform is finite if
there is a natural number # such that T(a) is generated by a™". When R is
Noetherian and a contains a non-zero-divisor, this condition is equivalent to

that T(a) is finitely generated over R.

LEMMA 2.7. Let a be an ideal of a pseudo-geometric normal ring B. Then
the following three conditions are equivalent to each other.

(1) The a-transform of B is finite.

(2) For every maximal ideal m of B, the aBw-transform of Bm is finite.

3 ‘For every prime ideal p of B, the aBy-transform of By is finite.

Proof. Lemma 2.6 shows that (1) implies (2) and that (2) implies (3).
Therefore we have only to show that (3) implies (1). Assume that (1) does
not hold. Starting with B = B,, we define a sequence of rings B, Bi, ... as
follows: When B; is defined, we define B;:+; to be the derived normal ring of
one B[a™"] which contains (aB;)™*. Then this sequence is well defined and
T(a) is the union of all the B;, because (i) T(a) is a Krull ring by Lemma 2.4,

hence is a normal ring, which implies that the derived normal ring of any
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Bl[a™™] is contained in T(a), (ii) since B is pseudo-geometric and since B[a™"]
is finitely generated over B, B[a™"] is also pseudo-geometric, hence the derived
normal ring of B{a™"] is finitely generated over B, (iii) therefore B;[(aB;)™]
is finitely generated over B and (iv) Lemma 2.5 shows that B;[(aB;)7'] is
contained in 7(a) hence the finite generation of it shows that there is one =
such that this ring is contained in B[a™"]. If there exists one ¢ such that aB;
is not of height 1, then 7'(a) = B; by Lemma 2.4. This is not the case. Let q;
be the intersection of prime divisors of height 1 of aB;. Then 0,Ca;C -

C0iCai+1 S - - - and the union a* of all the a; is an ideal of T'(a). a* does not
contain 1 because no o; contains 1. Let p* be a prime ideal of T(a) such that
p* contains o* and set p =p*N B. Then we see that the aBytransform of Bp

is not finite. Thus (3) implies (1), and the proof of Lemma 2.7 is completed.

LeEMMA 2.8. Let a be an ideal of an integral domain R. If b = R generates

a prime ideal in R and if a=2bR, then b generates a prime ideal in T(a).

Proof. Let @ be a non-zero element of a which is not in 8R. Then an
arbitrary element of T(a) is of the form ¢/a” with g€ a”R: o” by Lemma 2.2.
Assume that (g/a™)(q'/a™) €bT(a) (g€ a”R:d” g €a™R:a™). This shows
that gg'/a™* ™= bq"/a" with ¢" €a'R: a'. Then, replacing one of n, m, t by a
larger number if necessary, we may assume that {=xn+m. Then we have
qq' =bg". Since bR is a prime ideal, one of g, ¢, say ¢ is in bR, and g =q*b
with ¢* = R. Since (a"R:a”) : bR=a"R : ba" = (a"R : bR) : a" =a"R : a*, we see
that ¢*/a” € T(a), and we see that q/a” € bT(a). Thus b is a prime element in
T(a).

LemMa 2.9. Let q be a prime ideal of a ring R and let o be an ideal of R
which contains a non-zero-divisor and such that asEq. Let o/ be the prime ideal
of T(a) which lies over q and consider the derived normal rings R* and R'
of R/q and T(a)/q' respectively. If R* and R* are Krull rings and if height
aR™>2, then R'™ is the aR*-transform T(aR*) of the ring R*.

Proof. 1t is obvious by definition that T(aR*) contains 7(a)/¢’. Since
T(aR*) is a Krull ring hence is normal, we see that T(aR*) contains R"™.
Therefore we have, by the corollary to Lemma 2.4 and by Lemmd 2.5, that
T(aR*) = T(aR'™) = R*. Thus the lemma is proved.

REMARK. If we do not assume that R™ is ¢ Krull ring and height aR' =2,
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then we have that T(aR*) = T(aR™).

§ 3. Proof of the main theorem
We begin with a well known lemma:

LemMma 3.1. Let B be a Noetherian ring and let A be a B-algebra of finite
type. If A is integral over its B-subalgebra R, then R is also a B-algebra of
finite type.

Proof. We may assume that R contains B Let a@;, ..., a» be a set of
generators of A over B. For each ai, let fi{x) be a monic polynomial over R
which has a; as a root. Let R' be the subting of R generated by all the co-
efficients of fi(x), ..., fa{x) over B. Then R is a submodule of the finite K'-
module A, whence R is a finite R'-module, and R is finitely generated over B.

Now we are to prove our main theorem :

THEOREM 3. Let B be a pseudo-geometric ring and let A be a B-algebra of
finite type. Let R be B-subalgebra of A. If R is strongly submersive in A, then
R modulo its radical is a B-algebra of finite type.

The first step. We may assume that the radical of A is zero, because of
the assumption and the assertion. The condition of strong submersiveness is
maintained even if A is replaced by an A' which is a finite A-module and which
is a subring of the total quotient ring of A. Therefore, first, we may assume
that A is the direct sum of a finite number of integral domains 4; (s=1, ..., s)
which are B-algebras of finite type. Then, since A; are pseudo-geometric, we
may assume furthermore that each A; is a normal ring. Let a; be the kernel
of the natural homomorphism from R into A;. If height a,>0 for an «, then
the direct summand A, may be omitted because A. has no effect for the validity

of strong submersiveness.

The second step. Let @ be the total quotient ring of R. Then by the as-
sumption made above, @ is a subring of the total quotient ring of A. Hence
we can consider R' = AN Q. Then the strong submersiveness of R in A implies
that R is strongly submersive in R'. Since R’ is contained in @, we see that
R' is integral over R. Hence, by virtue of Lemma 3.1, it is enough to show
that R’ is a B-algebra of finite type. Since R' is strongly snbmersive in A, we
may assume that R=R'. Then R’ is the direct sum of a finite nymber of
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normal rings, say R, ..., R:. Let e be the identity of B;,. Then R; is strongly
submersive in Ae;. R is a B-algebra of finite type if and only if all the R; are
B-algebras of finite type. Therefore we may assume that R is a normal ring.
B may also be replaced by a B-algebra of finite type contained in R. Therefore
we may assume that B is a normal ring and that the field of quotients of B is
the field of quotients & of R. T hus we have assumed that:

(i) R is a normal ring with field of quotients @,

(ii) A is the direct sum of normal rings A;, ..., As; each A;is a B-algebra
of finite type, and, denoting by ¢ the identity of A; the ring Re is naturally
isomorphic to R.

(iii) R=ANQ,

(iv) B is a subring of R, the field of quotients of B is @ and B is a normal
ring. '

The third step. When S; is a subset of A;, we denote by 4(S;) the set of
elements @ of A such that @e; < S;. An ideal a of A is a prime ideal if and
only if there is a prime ideal p; of A; for a suitable ¢ such that a=4(p;). We

note also that with symbols as above, (RN a(S;))e; = Re; N S;.

Lemma 3.2. R is a Krull ring. For each prime ideal p of height 1 in R,
there is a prime ideal p; of height 1 in A; for a suitable i such that p=os(p;) N R.

Proof. Since R=@Q N A, we see that R is the intersection of Noetherian
valuation rings @ Na(V), where V runs through (A;)y, for all possible 7 and

prime ideals p; of height 1 in A;. Therefore we see the assertion easily.

LemMma 3.3. There is a normal affine ring B' over B such that (1) B' is a
subring of R and (2) for every prime ideal b of height 1 in R, p N B' is a prime
ideal of height 1 in B'.

Proof. For each affine ring B’ over B such that B'c R, let E(B') be the
set of prime ideals p of height 1 in R such that p N B’ is not of height 1. Note
that since B' and R have @ as common field of quotients, p N B’ is different
from 0. We see obviously that if B < B/, then E(B') < E(B"). Since A; is an

affine ring over Be;, there is a pair of a non-zero elemet b; of B and a trans-

cendence base zj, . . ., zitgy of A; over B; such that A;[b;'¢] is integral over
&BIb7Y, zi, . . ., zitiy]. Therefore, if a prime ideal p of height 1 in R does not
contain any of a;, . .., bs, then considering a prime ideal p; of A; such that
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p=olp) NR, we have that p; N Be; is of height 1 in Be;, whence pN B is of
height 1. This shows that E(B) is a finite set. Therefore, we have only to
show that"if pe E(B), then there is an affine ring B' over B such that B'< R
and such that p& E(B’). Theorem 2 shows that R, is a locality over B, whence
there is a finite number of elements ai, . . ., ar of R such that Ry is a ring of
quotients of Bla, ..., a-]. Then E(Blai, ..., ar]) does not contain p and
the proof of Lemma 3.3 is completed.

Now, by virtue of the above lemma and the proof, we may assume that for
every affine ring B’ over B such that B’ C R, it holds that E(B') is empty.

Lemma 3.4, Let F(B) be the set of prime ideals V' of height 1 in B such
that there is no prime ideal b of height 1 in R such that pNB=1yp'. Then F(B)

is a finite set.

Proof. 1If by, ..., bs are taken as in the proof of Lemma 3.3, then we see
that every member of F(B) contains some of b; as is seen quite easily. There-
fore the assertion is proved.

Now we have the following, by virtue of Lemma 2. 4.

LemMma 3.5. Let a be the intersection of the members of F\B). Then, under
the assuplion made just before Lemma 3.4, we see that R is the a-transform
T(a) of B.

The fourth step. We proceed with the proof of our main theorem by in-
duction on the altitude ( = Krull dimension) of B. Let x be a transcendental
element over B. Then for any prime ideal q of height at least 2, there is a
prime element » of B(x) such that p=qB(x). Lemma 2.6 shows that B may
be replaced by B(x). We want to show that R is Noetherian. Let q be an
arbitrary prime ideal of . We have only to show that q has a finite basis.

(1) When g contains a prime element p. R/pR is strongly submersive in
A/pA; these are B/(pRN B)-algebras. Therefore by our induction assumption,
R/pR is finitely generated over B/(pRN B). Therefore ¢/pR has a finite basis,
which shows that g has a finite basis.

(2) When height ¢>2. q¢B(x) contains a prime element p as remarked
above. If acpB(x), then R® B(x) contains ', which is not the case. There-
fore p remains to be prime in R® B(x) by Lemma 2.8 Therefore (1) above
shows that q(R® B(x)) has a finite basis. Therefore ¢ has a finite basis,
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(83) When height q=1. Set o/=BNq. Then By =Ry by Lemma 2.3. Set
q"=q¢'R:q. q" is not contained in any prime ideal of height 1. Therefore
height ¢”=2. As in (2) above, ¢"(R® B(x)) contains a prime element, and
therefore g’ has a finite basis. Then we see that ¢///qq” is a finite R/q-module.
Since R/q is Noetherian by (2) above, we see that (qNg")/qq” is a finite R/q-
module. Therefore qN g’ is generated by a finite number of elements by virtue
of the fact that ¢’ has a finite basis. On the other hand, since R/q and R/o"
are Noetherian, we see that R/(qNg") is Noetherian. This and that qNgq" has
a finite basis imply that q has a finite basis. Thus R is Noetherian.

The fifth step. Assume for a moment that R is not finitely generated over
B. Then we have a sequence of rings B = By, By, Ba, . . . with ideals ao, aj, az,

. respectively, as in the proof of Lemma 2.7. Let o* be the union of all a;
and let m* be a minimal prime divisor of o* (in R). We may assume that
B=Bn with m=m*NB. Let B* be the completion of B. Then R® B* is
strongly submersive in A® B*, RQ B*= T(aB*), and R® B* is not finitely
generated over B*. Therefore we may replace B with B*, dropping the condition
that B is a normal ring but assuming that the radical of B is zero. Then, re-
peating the steps as before, we may assume the conditions at the end of the
fourth step and also that B is of finitely generated type over a complete local
ring. This assumption enables us to use altitude formula. In particular, we
have that if we enlarge B so.that (i) m™*is generated by m and (ii) ®/m™* = B/m
(this is possible, because if p is a prime element of R contained in m® then
R/PR is finitely generated over B/(pRN B) by our induction assumption), then
we see that height m™* = height m. Now, we consider again the completion B*
of B. Let ¢* be an arbitrary prime ideal of height 0 in B*. Let ¢** be the
prime ideal of R® B* which lies over ¢*. Then R® B*/q** is strongly sub-
mersive in (A® B*)/q** (A ® B*). Therefore the derived normal ring R(q**)
of (R® B*)/q** is a Krull ring, and if p** is a prime ideal of height greater
than 1 in the ring, then p™ N (R® B*)/q™ is of height greater than 1 because
of the altitude formula. Therefore we see that aR(q™*) is of height greater
than 1. This shows by virtue of Lemma 2.9 that R(¢™*) = (T(qB(¢y*)), where
B(q*) is the derived normal ring of B/q*. If every R(q**) is finitely generated
over B/q* then, because of the fact that R® B* is a subring of the total
quotient ring of B*, we see that R must be finitely generated over B (see the
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second step). Thus we may assume that B is a complete local integral domain
with maximal ideal m and the R/mR is a finite B/m-module. Then we see that
Rm. = B by (37,4) in [7], this is a contradiction to our choice of m*. Thus R
must be finitely generated over B.
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