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A NEW METHOD IN ARITHMETICAL 
FUNCTIONS AND CONTOUR INTEGRATION 

BY 

BRUCE C. BERNDT 

1. Introduction. I f / i s a suitable meromorphic function, then by a classical 
technique in the calculus of residues, one can evaluate in closed form series of the 
form, 

Ï /(») or f (-l)"/(n). 
n——oo n=— oo 

Suppose that a(ri) is an arithmetical function. It is natural to ask whether or not 
one can evaluate by contour integration 

(1.1) 2 «(»)/(") or f (-l)na(n)f(n)9 
n=—ao n=—ao 

where/belongs to a suitable class of meromorphic functions. We shall give here 
only a partial answer for a very limited class of arithmetical functions. 

Our techniques are applicable to arithmetical functions which have the repre
sentation, 

a0) = 2 g(d)Hd> n)> 
d\n 

where g and h are arithmetical functions such that for each fixed d, h(d, z) is a poly
nomial in z. In fact, more generally, instead of summing over all divisors of n, 
we may sum instead over any subset of the divisors of n, in particular, the divisors 
in an arithmetic progression^^, a)={rnq+a:q>\, a>0, (q, a)=l , m>Ointegral}. 
Thus, our methods are applicable to the arithmetical functions, 

a(n, q9a) = 2 g(d)Kd> n)-
d | n 

deA(Q.a) 

Note that a(n, 1, Q)=a(ri). In the proofs of our results, we shall need the supple
mentary arithmetical functions, 

m 

a{mXn,q,à)= 2 g(d)h(d,n). 
d=l 

d\ n 
deA(q.a) 

Plainly, 
lim a(m)(n, q, a) = a(n, q, a). 

m-*oo 
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Clearly, we also need a growth condition on a(ri). Suppose that a(ri)=Q(nh) as n 
tends to oo, where b is some fixed real number. 

In general, we are not able to sum 

(1.2) I a(n,q,a)f(n) or 2 (-l)na(n, q, a)f(n) 
n=— oo n=—oo 

in closed form. Instead, our results transform the series of (1.2) into series generally 
involving an arithmetical function different from a(n, q, a). In another paper [1] 
we have shown how to evaluate in closed form by the calculus of residues series of 
the form (1.1) when a{n) is a primitive character. 

In the sequel, we make the following assumptions on/ . Le t /be meromorphic in 
the extended complex plane. Suppose that \f(z)\ <A \z\"c for some positive numbers 
A and c, uniformly as \z\ tends to oo. (In the theorems below, more restrictive 
lower bounds on c will be required.) Let { z l 5 . . . , zz} be the complete set of poles 
of/, and put S={zl9... , zt} U {z0}, where z0=0. The residue of a meromorphic 
function g at the pole z' will be denoted by jR{g, z'}. 

We shall illustrate our method with four different arithmetical functions, or 
classes of arithmetical functions. We shall conclude the paper with several examples. 

2. Main results. For complex z, let 

d-l [cZ/2] 

S(d, z) = % e2*izj/d and T(d, z) = 2 <?™i,d-
3=0 J = - [ ( d - D / 2 ] 

THEOREM 1. Let 

and 

A[m)(z,q,a)= 2 d^S(d,z) 

deA(q.a) 

BiM,(z, q, a) = 2 0>-xT{d,z). 
£ i - l 

deAia.a) 

Then j jc>sup{l , v+l}, 

(2.1) 2 crv(n, q, a)f(n) - - h m £ J? ! , \ , z,\ 
n=-oo m-+ao z.eS I S i n ( 7 T Z ) / 

and 

m-+oo z.eS \ s i n ( 7 T Z ) 

2 ( - 1 ) crv(n, q, a)f(n) = - h m 2 R{ \ , / , *, • 
= - o o w-+oo ZjeS { S i n ( 7 T Z ) / n=— oo 

Note that 

ov(n, 1,0) = o*v(n) = 2 ^v-
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Proof. If N is a positive integer, let CN denote the square whose sides of length 
2N+1 are parallel to the coordinate axes and whose center is the origin. Assume 
that N is chosen large enough so that S is contained on the interior of CN. The 
residue of Tre'^A^iz, q, a)f(z)lsin(7rz) at the integer n^ Sis 

A{
v
m)(n9q,a)f(n) = a[m\n9q9a)f(n)9 

where we have used the elementary fact that 

^ ' n ) = (o, if d\n. 

Hence, by the residue theorem, 

Tre-"zA[m)(z, q, q)/(z) 

2TTÎ JCi 
dz 

}CN sin(7rz) 

( 2 ' 2 ) V „<«*V„ n n\t(*\ 4- V J^^A^jz, q9 d)f{z) A 

= 2 Gv (n, q, a)f(n) + 2< R\ ——: > z 4 -
n=-N z4eS I Sin(7TZ) J 

ns 3 

Now, there exists a constant M=M(m, v), independent of AT, such that for all z on 

' e-^A[m)(z, q,a)\ M 

sin(77z) I ~~ 
Thus, 

a)f{z)dz\ <
4(2N+1>>MA 

JCN sin(7rz) 

which tends to 0 as A7" tends to oo since c> 1. Thus, upon letting N tend to oo, we 
find that from (2.2), 

L 

(2.3) 2 °v 0 , 1> a)f(n) = - 2 ^ ~ — : , z ; 
w=-oo z es \ sm(7rz) 

We now take the limit of both sides of (2.3) as m tends to oo. We have [2, p. 260] 

a{
v
m\n9 q, a) < d(n)nv = 0(nv+£) 

for every £>0, where d(n) = a0(n). Hence, since c>v+l, by the dominated con
vergence theorem we may take the limit on m inside the summation sign on the left 
side of (2.3). This concludes the proof of (2.1). The proof of the second part of 
Theorem 1 follows along the same lines. 

Let r, s and t be positive integers with s<2. Let fir(
n) denote Klee's generalization 

[3] of the Môbius function, i.e., if n=Y\k
i^1p

a
i
i is the canonical factorization of « 

into primes/?;, l<i<k, then 

(1, n = 1, 
Air(n)= (-1)*, a, = r, l<i<k 

10, otherwise. 
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The next theorem concerns the wide class of arithmetical functions, 

d | n 

Several well known arithmetical functions are special cases of the above. Thus, 
<Pi,iti(n) = <p(ri), Euler's « -̂function, and (plt2,i(n)=tp(n), Dedekind's ^-function. 
For arbitrary t, <Pi,i,t{n)=Jt(ri), Jordan's totient function, and (pi^.M—wM)^ 
an extension of ip{ri) by Suryanarayana [4]. For arbitrary r, (pr,i,i(ri)=Q)r(ri), 
Klee's totient function [3], and çv^.ifa^^rfa)» another extension of ip(n) by 
Suryanarayana [4]. 

THEOREM 2. Define 

C (m) / \ 

and 

Thenifc>t+l, 
00 

(2.4) ^ <Pr.s,t(n> <1> a)f(n) = 
7i=— 00 

and 
oo 

2 (-l)n<Prts.t(n><l>a)f(n)z 

n——<x> 

Proof. Proceed exactly as in the proof of Theorem 1 with A{
0
m)(z,q, a) and 

B(
0
m)(z, q9 a) replaced by C{

r^t(z, q, a) and D{
r
m

s]t(z, q, a), respectively. Observe that 

iW;>?^«)i<^y = 0(O, 
for every e>0. Thus, since c> t+1, we may again apply the dominated convergence 
theorem to obtain 

00 00 

l™ 2 <PÏ$!t(n> 4>à)f(n)= 2 <Pr.,.t(n> 4> <*)f(n). 
m-+oo n=— oo w=—oo 

We shall state our last two theorems for only the case q=l, a=0. 
Let r(n) denote the number of representations of n as the sum of two squares. 

Then [2, p. 242], 

d | n 

deA(q.a) 

j " /4(d) 

deA(Q.a) 

- h m 2, R\ » zi( 
m-+<x>ZjeS * Sin(7TZ) ) 

_lim z «["«a--. «•«)«.)_ i 
m^oo zseS I Sm(7TZ) J 
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where 
( 0, if/i = 0 (mod 2), 

%{n) = I 1, if n = 1 (mod 4), 
I — 1 , if « = 3 (mod 4). 

Define r(—ri)=r(ri) if n is a positive integer. 

THEOREM 3. Let 

E{m)(z) = 4 2 — S(d,z) 
d=i d 

and 

Thenifc>\, 

F{m)(z) = 4 2—T(d,z). 
d=i d 

and 

Z , , , , x r ^ jTre-«iz&m\z)f(z) \ 

w=— oo m-^oo ZteS I Sin(7TZ) / 

(2.5) I (-1) V(n)/(n) = -lim £ j J ^ ^ M û i ) , z\ 
n——ao W-+00 2 . e# I Sin(7TZ) / 

Proof Proceed as in Theorem 1. Observe that 

\r{m\n)\ < 4d(n) = 0(ne) 

for every e>0. Thus, since c > l , we may again apply the dominated convergence 
theorem. 

Recall the definition of A(n) : 

A W - ( 0 , if n*p\ 

where p is an arbitrary prime and k is a positive integer. Clearly, 

2A(d ) = logn. 
d | n 

THEOREM 4. Let 

G « ( z ) = 2^s(d;2) 
d=i a 

and 

H(m\z) = Z^T(d,z). 
*=i a 

Thenifc>\, 

-*"r-{m\z)f(z) oo (7re~7rizG^mHz 
2 log|«|/(n)=-lim £ * —-*-

n=—oo m-*oo z_.eS I sin(7TZ 
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and 

I (-1)" log |„|/(„) = -lim J R J ^ ^ , z i 
n=-oo w-»oo z.e& l Sin(7TZ) / 

3. Examples. For brevity, we confine our attention to the case gr=l, a=0. 
Let f(z) — l/(z2+a2'), a^ni, where n is an arbitrary integer. Apply (2.1). The 

residues at 0 and ±ai, are respectively, 

and 
_ m d—1 

- — - — 2 d^1!* 
2a sinh(7rfl) a=i i=o 

A straightforward calculation yields 

(3.1) 2(e**-z*at/d + e-™+2*aiid^ = 2 sinj1(7Ta)coth(77a/^). 

Hence, by (2.1) if v<l, 

2 T T 2
 = 7"2 2 ^ — coth(7ia/d)-l . 

By calculations similar to the above and each using (3.1), we have 

n=i n +a a a=i { a ) 
and 

(3.2) I - 7 ^ , = , - 2 f A ( r f ) ( f co th0 r«A0- l i 
«=i n +a 2a d=i I a i 

If /(z)=z- ' (z2+«2)-2 , (2.4) gives 

(w> î ftf2^ - A ^f-lf »«<«»-'}• 
n = i n ( n + f l ) 2a d=i a I a / 

In particular, since 2*U f*(d)ld=Q, 

. „ ^ 2 , 2, = — 2 " 3 T coth(7ra/^). 
ff(fl) 77_ ^fl(d) 

r^in(n2+a2) 2ad=id' 

On the other hand, (2.5) yields 

g ( - D M * ) 2 " /TTfl 1 

Identities similar to the previous identity hold for the other arithmetical functions 
studied here. 
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We give a few additional miscellaneous examples for our theorems. 
if/(*)=i/**, 

Ç l o g n _ 7T2ÇA(rf) 
n=l ft 6^=1 a 

which is well known [2, p. 253] and can also be obtained from (3.2) by letting a 
tend to 0. Similarly, if 

L(s,x)=Ix(n)n~\ Re s > 0, 

we have 

V K » ) 27T2 

w=i n 3 

which is again known [2, p. 256], and 

2 ^ ^ = ^ ( 2 , * ) . , ( - i )M")_-^2 

n=l ft 3 
I f / (z)=l /*«, 

which is well known if r=s=t=l [2, p. 250]. This can also be obtained from (3.3) 
by letting a tend to 0. 

Let/(f)=l/(£4+tf4), z^p±1n, where />=exp(7r//4) and n is an arbitrary integer. 
Then if r<3 , 

The author is very grateful to D. Suryanarayana for suggesting the use of 
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