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1. Introduction. An ancipital form is a form [a, b, c] in which b = 0 or b = a; these fall
into pairs of associates: [a, 0, c] and [c, 0, a] (type 1), and [a, a, c] and [4c—a,4c-a,c]
(type 2). The set of discriminantal divisors of discriminant d is formed by choosing, from
each pair of primitive associate ancipital forms of discriminant d, exactly one of the two
leading coefficients. In this article we study representations of discriminantal divisors of a
given discriminant by binary quadratic forms of that discriminant, previously studied by the
author and by G. Pall. We are concerned here with discriminants d = 4kpq, where k ^ 1,
p = 1, ? = 3 (mod 4) are primes, and d = Akp, where k ^ 1 and p is an odd prime. This
investigation arose in connection with the search for integral solutions of x2—Dy2 = — 1.

2. Preliminary results for the case d = 4pq. Suppose that p = \, q = 3 (mod4). Since
d = — 4 (mod 16), there are the generic characters (/1 p), (/1 q), and (-11 / ) ; hence there are
four genera and eight pairs of primitive associate ancipital forms. The eight discriminantal
divisors (DD's) associated with these forms turn out to be ±1, +2, ±q, and ±2q. Now a
necessary condition that/j = [1,0, — pq] represent A:, a given DD, is that/t be in the genus of
the ancipital form whose leading coefficient is k. If we construct a table of generic characters
for the eight appropriate ancipital forms, we may deduce the following theorem:

THEOREM 1. Suppose that fx = [1,0, —pq], where p = 1, q = 3 (mod 4) are primes.
(a) Suppose that (p\q)=-l. Then ft represents 2 if (2\p) = (2\q) = 1, - 2 if

(2\p) = -(2\q) = 1, 2q if-(2\p) = (2\q) = 1, and -2q if(2\p) = (2\q) = - 1 .
(b) Suppose that (p\q)=\. If(2\p)=-l, then/, represents -q; if (21p) = 1, then/,

represents { — q,2, —2q) or { — q, —2,2q], according as (2\q) = 1 or —1.
The undecided cases are (p \ q) = (2 \p) = 1; so we consider these now. In particular, we

take the case (2\g) = —1, and determine necessary conditions that/i represent —2, — q, or
2q. The case (21 q) = 1 will be studied later.

THEOREM 2. Let (p \ q) = 1, where p = \,q = l (mod8) are primes; we may then write
q = A2 + 2B2. Ify, = [1,0, -pq] represents —2, then there exist integers x^ odd, x2 even
such that p = xl + 2x\, and either

(a) (Ax2+BXl\q) = ( -1 \Axl+Bx1) = 1, or
(b)(Ax2-Bx1\q) = (-l\Ax2-Bx1)=l.

Proof. Suppose that there exist u,v(v> 0) such that u2 —pqv2 = — 2; then g = [pqv, 2M, V]
has determinant 2, and so g ~ [1, 0, 2]. Consider the following Cantor diagram (see [1]),
withdetT= 1:

[1, 0, 2] ̂  [pqv, 2u, »],

h = [a,2b,c-]Z[l,0, -pq].
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By Proposition 3.3 of [1], a+2c = 0; so there is a form h = [—2c, 2b, c] ~ / , ; comparing
determinants, we have pq = b2 + 2c2. Since (—21 /?) = ( - 21 q) = 1, and p, q are primes, there
exist xt odd, x2 even, A odd, B odd (unique up to choice of sign) such that p = x\+2x2 and
q = A2 + 2B2. Hence pq = (Axi±2Bx2)

2 + 2(Ax2+Bxi)2 = b2 + 2c2. Since A is in the genus
of/u (— 11 c) = (c 19) = 1 (c is odd, since A is primitive). From this the conclusion follows.

THEOREM 3. Let p = 1, q = 3 (mod 8) be primes. Suppose that the only classes of deter-
minant — 2q are represented by ± [1, 0, — 2q]. Iff represents 2q, then there exist x3, xA both
odd such that p = qxl~2x% and (x3 j q) - (-11 x3) = 1.

Proof. If there exist u, v such that u2 —pqv2 = 2q, then g = [pqv, 2M, V] has determinant
— 2q; by hypothesis, g ~ [1,0, — 2#] or g ~ [— 1,0, 2^]. In either case, we have the following
Cantor diagram (det r= 1):

[±1,0,

la,2b,x3-]V-[l,0,-pq].
By Proposition 3.3 of [1], a = 2qx3; so there is a form h = [2qx3, 2b, x3] ~ft; comparing

determinants, we have pq = b2 — 2qx\. Hence b = qxA, p = qx\—2x\; since h is primitive
and/79 is odd, ;c3 and x*. are both odd, and since h is in the genus of/j, (— 11 x3) — (x31 q) = 1.

REMARK. The hypothesis that there be only two classes of determinant —2q is not
strong; the smallest prime q = 3 (mod8) not having this property is 163.

As in the case/7 = q (mod4), the necessary conditions that/i represent —q depend upon
the class number h(q) of determinant q; if h{q) is large, these necessary conditions may be
complicated. However, we may prove the following general theorem.

THEOREM 4. Let p = 1, q = 3 (mod8) be primes, and suppose that u2—pqv2 = — q. Let
g = [pqv, 2«, v] and gv = [1,0, q]. If g ~ gu then there exist xs odd, x6 even such that
p = xj + qxl and (x5 \ q) = (-11 *5) = 1.

Proof. The result follows from the Cantor diagram (det T= 1):

[1,0» 9] ^ [ m 2«, »],

h = [a,2b,x5
w]Z-[l,0,-pq].

As in [1], we find it useful to study a system of diophantine equations in order to discern
any relationships among the forms discussed in Theorems 2, 3, and 4. We study the system

2 2 2 l l (1)
in the case xu x3, xA, x5 odd, x2, x6 even, p = 1 (mod 8) and q = 3 (mod 8) primes, and p
representable by x\+2x\ and x\+qx\.

First, we study the solutions of

= qx2-2x2
3 (2)

in the above case. We see that Q = xx it +x2 i2+x3 i3 is an element of norm qx\ in the ring
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of generalized quaternions with multiplication if = — 1, \\ = i\ — il i2i3 = — 2. The norm
form of this ring, x2+y2+2z2 + 2w2, is in a genus of one class (see [3]); as a consequence of
this and Theorem 3 of [3] we may write Q = axa, where N(x) = q, N(a) — xA, and a and x
are unique up to multiplication by unit factors (see [1] for elaboration). Since q is a prime = 3
(mod 8), there exist A, B, both odd, such that q = A2+2B2, where A and B are unique up to
choice of sign. It is not hard to show that, if T = ait +bi2 + ci3, then a = xu b = x2 and
c = x3 (mod 2); hence the only possibilities for x are ±(.<4/1 ±Bi3). If we use xi =
write a = so+Si ij + s2i2+s3 '3. and expand a x^ a, we obtain the following expressions:

xt = A(sl+sl-2sl-2s2
3)+4B(-sos2 + s1s3),

x2 = 2A(-sos3+sls2) +2B(s0 si+2s2s3),

x3 = 2A(sos2+s1s3)+B(sl+2sl-st-2sl),

x4 = SQ+SI+2S1+2S | (where s0 ̂  s1(mod2)).

It is straightforward to show that, if we replace xt by one of the other three eligible T'S,
we gain no new solutions; hence all parametric solutions of (2) are given by the expressions (3).

Consider the following expressions for x5 and x6, obtained by considering special cases:

x5 = A(sl+2s2
3-s

2-2sl)+4B(-sos2-Sls3),}
f (4)

x6 = 2(sos1-2s2s3). J
The expressions in (3) and (4), when substituted into the following equations, yield an

identity:

x2+2x2
2 = qx2-2x2 = x2

5+qxl (5)

Since the expressions in (3) yield all solutions of (2), and since the representations of a prime
by the forms xf+2x\ and x\ + qx\ (q a prime) are essentially unique, it follows that all solutions
of (1) in the stated case are given by the parametric expressions for xu ..., x6 in (3) and (4).
The key to the solution of this system is that the norm-form x2+y2+2z2+2w2 is in a genus
of one class; hence the factorization of Q as ara given above is essentially unique.

3. The main theorem, for q = 3. First, we prove

THEOREM 5. Suppose thatp = 1 (mod8), (p13) = 1, andfx = [1,0, -3/?]. Iffv represents
— 3, then (a) there exist x5 odd, x6 even such that p = x\ + "ix\. Furthermore, (b) JC5 = ±1
(mod 6) and x6 = 0 (mod 4).

Proof. Let u2-3pv2 = - 3 ; then g = [ipv, 2u, v] has determinant 3. If g ~ [1,0, 3],
then (a) is true by Theorem 4. If g ~ [2,2,2] (the only other possibility), we deduce that
there is a form h = [—b — c, 2b, c] ~ / 1 ( by examining the following Cantor diagram, in which
d e t r = 1:

[2,2,2]i[3jw,2ti,o],
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Hence 3p = b2+bc+c2; one of b, c is odd; so we suppose in view of the symmetry that
b is odd. We may assume that c is even, for if c is also odd, we can replace c by b+c and b
by — b. Writing c = 2x5, we obtain 3p = (b+x5)

2 + 3xj; writing b+xs = 3x6, we obtain
p = x\+3x\. By hypothesis, p = 1 (mod24), so we must have xs odd and *6 even. To prove
(b) in either case, we observe that (j>, 3) = 1 and so xs = +1 (mod 6); hence xf = 1 (mod 24)
and so x6 = 0 (mod 4).

Now we may prove

THEOREM 6. Let p = 1 (mod8), (p | 3) = 1, ft = [1,0, -3/>], a«rf /e/ xlt ..., x6 be as
in equation (1).

( a ) / / x s = ±5 (mod 12), thenft never represents —3; it represents 6 or —2, according as
±x3 = 1 or 5 (mod 12), or equivalently, according as +(xt +x2) = 5 or 1 (mod 12).

(b) If xs = ±1 (mod 12), thenft represents —3 if ±x3 = 5 (mod 12); otherwise, any of
—2, —3, or 6 may be represented.

The proof is based on the following lemma. Here, xu ..., x6, s0, ...,s3 are as in (3)
and (4).

LEMMA 6.1. (a) Ifx5 = ± 5 (mod 12), then x3 = ± 1 (mod 12) if and only ifxt +x2 = ±5
(mod 12).

(b)Ifx5 = ± 1 (mod 12), then ±x3 = xi+x2 (mod 12).

Proof. We shall prove (a) in the case s2 = s3 (mod 2). The proofs for the case s2 ^ s3

(mod 2) and for (b) are similar.
Assume that s2 = s3 (mod 2). We observe that x5 = (s0—2s2)

2—(s1+2s3)
2 (mod 12).

If xs = ±5 (mod 12), then either (i) so-2s2 = ±2, s1+2s3 s 3 (mod6), or (ii) so—2s2 = 3,
^ ^ 2 ^ = ±2 (mod 6). Similarly, we observe that, if x3== ±1 (mod 12), then either (i)
•?o + S2 = i 1 > sx~s3 = 0 (mod6), or (ii) ^0+^2 = 0, st—s3 = +1 (mod6). Then we observe
that ±(x1+x2)s((s0-2s2)+(si+2s3))

2 + 6(^53+^52) (modl2), so that ^ + ^ = ±5
(mod 12) implies that s0s3+s1s2 is odd and (so-2s2)+(s1+2s3) = ±1 (mod6). Finally, if
x5 = ±5 (mod 12), we observe that (i) so^su s2 = s3 = I (mod2), (ii) x3 = ± 1 (mod 12),
and (iii) xt +x2 = ±5 (mod 12) are equivalent statements. This proves (a) in the case s2 = 3̂
(mod 2).

Proof of the theorem, (a) If x5 = ±5 (mod 12), the necessary conditions of Theorem 5
for/j to represent —3 are violated; hence/1 does not represent —3. By the lemma, the
conditions of Theorem 2 for/j to represent —2 are violated if x3 = ±1 (mod 12), and those
of Theorem 3 for/! to represent 6 are violated if x3 = ±5 (mod 12). This proves (a).

(b) If JC5 = +1 (mod 12), and x3 = ±5 (mod 12), then, by the lemma and Theorems 2
and 3,/i represents neither - 2 nor 6; hence ft represents —3. If x3 = ±1 (mod 12), the
following are examples demonstrating the latter statement of (b): [1,0, —3p] represents
—2, - 3 , and 6, respectively, whenp = 937, 433, and 673, respectively.

4. The cases d = 4kpq and d = 4kp (k ̂  1).

THEOREM 7. Letp =\,q = 3 (mod8) be primes; letfk = [1,0, —4k~lpq] be the principal
form of discriminant 4kpq.
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(a) If ft represents any of 2, — 2, 2q, or —2q,orif{p\q)= — 1, then fk represents 4k~i,
where k^2.

(b) Let u2 —pqo2 be a primitive representation of — q, and write v = 2mv0, where v0 is odd.
Let k~§.2. Thenfk represents —4k~1q ifm = 0, 4 ifO < m < k-3, -4q ifm = k—2, and —q
ifmtk-\.

Proof. By examining tables of generic characters, we find that, for d= I6pq, the DD's
t h a t / 2 may represent are — q, 4, and — 4q, and for d=4kpq (k^3) those that fk may
represent are — q, 4, -4q,4k~1, and — 4k~1q.

Suppose that / 2 represents — q; for some u, v with (w, v) = 1, we have u2—4pqv2 = — q.
Hence u is odd, and u2—pq(2v)2 = — q is a primitive representation of — q by / i . Similarly,
if/2 represents —4q, then/i represents — q with u even. Hence, if/j represents any of ±2 ,
±2q (which happens if (p\q) = 1, by Theorem 1), then/ 2 represents neither — q nor — 4q,
and hence represents 4. If there exist u, v with (u, v) = 1, such that u2—4pqv2 = 4, then u is
even; so (2*"2«)2—4k~ipqv2 = 4k~1 is a primitive representation of 4*"1 by/fc (k ^ 3), which
proves (a).

Suppose that u2—pqv2= —q, with (u,v)= 1. Write v = 2mv0, where t>0 is odd. If
m ^ jfc-1, then u1-4k~1pq {2m~k+lvQ)2 = - ? , with (w, 2m~*+1i;0) = 1. If m = fc-2, then
u 2_4*-2pgy2 = — q,withwodd,and(M,I;0) = 1; so(2u)2—4k~1pqvl= —4q,with(2M,V0) = 1.
If m = 0, then (2k-1u)2-4k-1pqv2

0 = - 4 f c - ^ , with (2"-1M, I>0) = 1. Conversely, if/fc repre-
sents —q, —4q, or —4k~1q, then u2~pq(2mv0)

2 = —q, with ni7tk — l, m=k—2, or m = 0,
respectively. Hence 0 < m < k—3 implies thatfk represents 4, which proves (b).

Using the same techniques, we prove

THEOREM 8. Let p be an odd prime. Let gk = [1, 0, — 4k~1p], where k^.2. Then gk

represents — 4k~i or 4k~i, according asp= 1 or 3 (mod4). Also, [1,0, —p] represents —I if
p = 1 (mod 4), -2ifp = 3 (mod 8), and 2ifp = l (mod 8).

The proof is immediate if one realizes that the discriminant 4p has one or two primitive
genera, according as p = 1 or 3 (mod 4), and that, in any case, [1, 0, — 4p] must represent 4.
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