DISCRIMINANTAL DIVISORS AND BINARY QUADRATIC FORMS

by EZRA BROWN
(Received 20 April, 1970)

1. Introduction. An ancipital form is a form $[a, b, c]$ in which $b=0$ or $b=a$; these fall into pairs of associates: $[a, 0, c]$ and $[c, 0, a]$ (type 1), and $[a, a, c]$ and $[4 c-a, 4 c-a, c$] (type 2). The set of discriminantal divisors of discriminant d is formed by choosing, from each pair of primitive associate ancipital forms of discriminant d, exactly one of the two leading coefficients. In this article we study representations of discriminantal divisors of a given discriminant by binary quadratic forms of that discriminant, previously studied by the author and by G. Pall. We are concerned here with discriminants $d=4^{k} p q$, where $k \geqq 1$, $p \equiv 1, q \equiv 3(\bmod 4)$ are primes, and $d=4^{k} p$, where $k \geqq 1$ and p is an odd prime. This investigation arose in connection with the search for integral solutions of $x^{2}-D y^{2}=-1$.
2. Preliminary results for the case $d=4 p q$. Suppose that $p \equiv 1, q \equiv 3(\bmod 4)$. Since $d \equiv-4(\bmod 16)$, there are the generic characters $(f \mid p),(f \mid q)$, and $(-1 \mid f)$; hence there are four genera and eight pairs of primitive associate ancipital forms. The eight discriminantal divisors ($D D$'s) associated with these forms turn out to be $\pm 1, \pm 2, \pm q$, and $\pm 2 q$. Now a necessary condition that $f_{1}=[1,0,-p q]$ represent k, a given $D D$, is that f_{1} be in the genus of the ancipital form whose leading coefficient is k. If we construct a table of generic characters for the eight appropriate ancipital forms, we may deduce the following theorem:

Theorem 1. Suppose that $f_{1}=[1,0,-p q]$, where $p \equiv 1, q \equiv 3(\bmod 4)$ are primes.
(a) Suppose that $(p \mid q)=-1$. Then f_{1} represents 2 if $(2 \mid p)=(2 \mid q)=1,-2$ if $(2 \mid p)=-(2 \mid q)=1,2 q$ if $-(2 \mid p)=(2 \mid q)=1$, and $-2 q$ if $(2 \mid p)=(2 \mid q)=-1$.
(b) Suppose that $(p \mid q)=1$. If $(2 \mid p)=-1$, then f_{1} represents $-q$; if $(2 \mid p)=1$, then f_{1} represents $\{-q, 2,-2 q\}$ or $\{-q,-2,2 q\}$, according as $(2 \mid q)=1$ or -1 .

The undecided cases are $(p \mid q)=(2 \mid p)=1$; so we consider these now. In particular, we take the case $(2 \mid q)=-1$, and determine necessary conditions that f_{1} represent $-2,-q$, or $2 q$. The case $(2 \mid q)=1$ will be studied later.

Theorem 2. Let $(p \mid q)=1$, where $p \equiv 1, q \equiv 3(\bmod 8)$ are primes; we may then write $q=A^{2}+2 B^{2}$. If $f_{1}=[1,0,-p q]$ represents -2 , then there exist integers x_{1} odd, x_{2} even such that $p=x_{1}^{2}+2 x_{2}^{2}$, and either
(a) $\left(A x_{2}+B x_{1} \mid q\right)=\left(-1 \mid A x_{2}+B x_{1}\right)=1$, or
(b) $\left(A x_{2}-B x_{1} \mid q\right)=\left(-1 \mid A x_{2}-B x_{1}\right)=1$.

Proof. Suppose that there exist $u, v(v>0)$ such that $u^{2}-p q v^{2}=-2$; then $g=[p q v, 2 u, v]$ has determinant 2, and so $g \sim[1,0,2]$. Consider the following Cantor diagram (see [1]), with $\operatorname{det} T=1$:

$$
\begin{aligned}
{[1,0,2] } & \stackrel{T}{\rightarrow}[p q v, 2 u, v], \\
h=[a, 2 b, c] & \stackrel{T^{\prime}}{\leftarrow}[1,0,-p q] .
\end{aligned}
$$

By Proposition 3.3 of [1], $a+2 c=0$; so there is a form $h=[-2 c, 2 b, c] \sim f_{1}$; comparing determinants, we have $p q=b^{2}+2 c^{2}$. Since $(-2 \mid p)=(-2 \mid q)=1$, and p, q are primes, there exist x_{1} odd, x_{2} even, A odd, B odd (unique up to choice of sign) such that $p=x_{1}^{2}+2 x_{2}^{2}$ and $q=A^{2}+2 B^{2}$. Hence $p q=\left(A x_{1} \pm 2 B x_{2}\right)^{2}+2\left(A x_{2} \mp B x_{1}\right)^{2}=b^{2}+2 c^{2}$. Since h is in the genus of $f_{1},(-1 \mid c)=(c \mid q)=1$ (c is odd, since h is primitive). From this the conclusion follows.

Theorem 3. Let $p \equiv 1, q \equiv 3(\bmod 8)$ be primes. Suppose that the only classes of determinant $-2 q$ are represented by $\pm[1,0,-2 q]$. If f_{1} represents $2 q$, then there exist x_{3}, x_{4} both odd such that $p=q x_{4}^{2}-2 x_{3}^{2}$ and $\left(x_{3} \mid q\right)=\left(-1 \mid x_{3}\right)=1$.

Proof. If there exist u, v such that $u^{2}-p q v^{2}=2 q$, then $g=[p q v, 2 u, v]$ has determinant $-2 q$; by hypothesis, $g \sim[1,0,-2 q]$ or $g \sim[-1,0,2 q]$. In either case, we have the following Cantor diagram ($\operatorname{det} T=1$):

$$
\begin{aligned}
{[\pm 1,0, \mp 2 q] } & \stackrel{T}{\rightarrow}[p q v, 2 u, v] \\
{\left[a, 2 b, x_{3}\right] } & \stackrel{T^{\prime}}{\leftarrow}[1,0,-p q] .
\end{aligned}
$$

By Proposition 3.3 of $[1], a=2 q x_{3}$; so there is a form $h=\left[2 q x_{3}, 2 b, x_{3}\right] \sim f_{1}$; comparing determinants, we have $p q=b^{2}-2 q x_{3}^{2}$. Hence $b=q x_{4}, p=q x_{4}^{2}-2 x_{3}^{2}$; since h is primitive and $p q$ is odd, x_{3} and x_{4} are both odd, and since h is in the genus of $f_{1},\left(-1 \mid x_{3}\right)=\left(x_{3} \mid q\right)=1$.

Remark. The hypothesis that there be only two classes of determinant $-2 q$ is not strong; the smallest prime $q \equiv 3(\bmod 8)$ not having this property is 163 .

As in the case $p \equiv q(\bmod 4)$, the necessary conditions that f_{1} represent $-q$ depend upon the class number $h(q)$ of determinant q; if $h(q)$ is large, these necessary conditions may be complicated. However, we may prove the following general theorem.

Theorem 4. Let $p \equiv 1, q \equiv 3(\bmod 8)$ be primes, and suppose that $u^{2}-p q v^{2}=-q . \quad$ Let $g=[p q v, 2 u, v]$ and $g_{1}=[1,0, q]$. If $g \sim g_{1}$, then there exist x_{5} odd, x_{6} even such that $p=x_{5}^{2}+q x_{6}^{2}$, and $\left(x_{5} \mid q\right)=\left(-1 \mid x_{5}\right)=1$.

Proof. The result follows from the Cantor diagram ($\operatorname{det} T=1$):

$$
\begin{aligned}
{[1,0, q] } & \stackrel{T}{\rightarrow}[p q v, 2 u, v], \\
h=\left[a, 2 b, x_{5}\right] & \stackrel{T^{\prime}}{\leftarrow}[1,0,-p q] .
\end{aligned}
$$

As in [1], we find it useful to study a system of diophantine equations in order to discern any relationships among the forms discussed in Theorems 2, 3, and 4. We study the system

$$
\begin{equation*}
p=x_{1}^{2}+2 x_{2}^{2}=q x_{4}^{2}-2 x_{3}^{2}=x_{5}^{2}+q x_{6}^{2} \tag{1}
\end{equation*}
$$

in the case $x_{1}, x_{3}, x_{4}, x_{5}$ odd, x_{2}, x_{6} even, $p \equiv 1(\bmod 8)$ and $q \equiv 3(\bmod 8)$ primes, and p representable by $x_{1}^{2}+2 x_{2}^{2}$ and $x_{5}^{2}+q x_{6}^{2}$.

First, we study the solutions of

$$
\begin{equation*}
x_{1}^{2}+2 x_{2}^{2}=q x_{4}^{2}-2 x_{3}^{2} \tag{2}
\end{equation*}
$$

in the above case. We see that $Q=x_{1} i_{1}+x_{2} i_{2}+x_{3} i_{3}$ is an element of norm $q x_{4}^{2}$ in the ring
of generalized quaternions with multiplication $i_{1}^{2}=-1, i_{2}^{2}=i_{3}^{2}=i_{1} i_{2} i_{3}=-2$. The norm form of this ring, $x^{2}+y^{2}+2 z^{2}+2 w^{2}$, is in a genus of one class (see [3]); as a consequence of this and Theorem 3 of [3] we may write $Q=\bar{\sigma} \tau \sigma$, where $N(\tau)=q, N(\sigma)=x_{4}$, and σ and τ are unique up to multiplication by unit factors (see [1] for elaboration). Since q is a prime $\equiv 3$ $(\bmod 8)$, there exist A, B, both odd, such that $q=A^{2}+2 B^{2}$, where A and B are unique up to choice of sign. It is not hard to show that, if $\tau=a i_{1}+b i_{2}+c i_{3}$, then $a \equiv x_{1}, b \equiv x_{2}$ and $c \equiv x_{3}(\bmod 2)$; hence the only possibilities for τ are $\pm\left(A i_{1} \pm B i_{3}\right)$. If we use $\tau_{1}=A i_{1}+B i_{3}$, write $\sigma=s_{0}+s_{1} i_{1}+s_{2} i_{2}+s_{3} i_{3}$, and expand $\bar{\sigma} \tau_{1} \sigma$, we obtain the following expressions:

$$
\left.\begin{array}{l}
x_{1}=A\left(s_{0}^{2}+s_{1}^{2}-2 s_{2}^{2}-2 s_{3}^{2}\right)+4 B\left(-s_{0} s_{2}+s_{1} s_{3}\right), \tag{3}\\
x_{2}=2 A\left(-s_{0} s_{3}+s_{1} s_{2}\right)+2 B\left(s_{0} s_{1}+2 s_{2} s_{3}\right), \\
x_{3}=2 A\left(s_{0} s_{2}+s_{1} s_{3}\right)+B\left(s_{0}^{2}+2 s_{3}^{2}-s_{1}^{2}-2 s_{2}^{2}\right), \\
x_{4}=s_{0}^{2}+s_{1}^{2}+2 s_{2}^{2}+2 s_{3}^{2} \quad\left(\text { where } s_{0} \not \equiv s_{1}(\bmod 2)\right) .
\end{array}\right\}
$$

It is straightforward to show that, if we replace τ_{1} by one of the other three eligible τ 's, we gain no new solutions; hence all parametric solutions of (2) are given by the expressions (3).

Consider the following expressions for x_{5} and x_{6}, obtained by considering special cases:

$$
\left.\begin{array}{l}
x_{5}=A\left(s_{0}^{2}+2 s_{3}^{2}-s_{1}^{2}-2 s_{2}^{2}\right)+4 B\left(-s_{0} s_{2}-s_{1} s_{3}\right) \tag{4}\\
x_{6}=2\left(s_{0} s_{1}-2 s_{2} s_{3}\right)
\end{array}\right\}
$$

The expressions in (3) and (4), when substituted into the following equations, yield an identity:

$$
\begin{equation*}
x_{1}^{2}+2 x_{2}^{2}=q x_{4}^{2}-2 x_{3}^{2}=x_{5}^{2}+q x_{6}^{2} \tag{5}
\end{equation*}
$$

Since the expressions in (3) yield all solutions of (2), and since the representations of a prime by the forms $x_{1}^{2}+2 x_{2}^{2}$ and $x_{5}^{2}+q x_{6}^{2}$ (q a prime) are essentially unique, it follows that all solutions of (1) in the stated case are given by the parametric expressions for x_{1}, \ldots, x_{6} in (3) and (4). The key to the solution of this system is that the norm-form $x^{2}+y^{2}+2 z^{2}+2 w^{2}$ is in a genus of one class; hence the factorization of Q as $\bar{\sigma} \tau \sigma$ given above is essentially unique.

3. The main theorem, for $q=3$. First, we prove

Theorem 5. Suppose that $p \equiv 1(\bmod 8),(p \mid 3)=1$, and $f_{1}=[1,0,-3 p]$. If f_{1} represents -3 , then (a) there exist x_{5} odd, x_{6} even such that $p=x_{5}^{2}+3 x_{6}^{2}$. Furthermore, (b) $x_{5} \equiv \pm 1$ $(\bmod 6)$ and $x_{6} \equiv 0(\bmod 4)$.

Proof. Let $u^{2}-3 p v^{2}=-3$; then $g=[3 p v, 2 u, v]$ has determinant 3. If $g \sim[1,0,3]$, then (a) is true by Theorem 4. If $g \sim[2,2,2]$ (the only other possibility), we deduce that there is a form $h=[-b-c, 2 b, c] \sim f_{1}$, by examining the following Cantor diagram, in which $\operatorname{det} T=1$:

$$
\begin{aligned}
& {[2,2,2] \xrightarrow{T}[3 p v, 2 u, v],} \\
& h=[a, 2 b, c]^{T^{\prime}}[1,0,-3 p] .
\end{aligned}
$$

Hence $3 p=b^{2}+b c+c^{2}$; one of b, c is odd; so we suppose in view of the symmetry that b is odd. We may assume that c is even, for if c is also odd, we can replace c by $b+c$ and b by $-b$. Writing $c=2 x_{5}$, we obtain $3 p=\left(b+x_{5}\right)^{2}+3 x_{5}^{2}$; writing $b+x_{5}=3 x_{6}$, we obtain $p=x_{5}^{2}+3 x_{6}^{2}$. By hypothesis, $p \equiv 1(\bmod 24)$, so we must have x_{5} odd and x_{6} even. To prove (b) in either case, we observe that $(p, 3)=1$ and so $x_{5} \equiv \pm 1(\bmod 6)$; hence $x_{5}^{2} \equiv 1(\bmod 24)$ and so $x_{6} \equiv 0(\bmod 4)$.

Now we may prove
Theorem 6. Let $p \equiv 1(\bmod 8),(p \mid 3)=1, f_{1}=[1,0,-3 p]$, and let x_{1}, \ldots, x_{6} be as in equation (1).
(a) If $x_{5} \equiv \pm 5(\bmod 12)$, then f_{1} never represents -3 ; it represents 6 or -2 , according as $\pm x_{3} \equiv 1$ or $5(\bmod 12)$, or equivalently, according as $\pm\left(x_{1}+x_{2}\right) \equiv 5$ or $1(\bmod 12)$.
(b) If $x_{5} \equiv \pm 1(\bmod 12)$, then f_{1} represents -3 if $\pm x_{3} \equiv 5(\bmod 12)$; otherwise, any of $-2,-3$, or 6 may be represented.

The proof is based on the following lemma. Here, $x_{1}, \ldots, x_{6}, s_{0}, \ldots, s_{3}$ are as in (3) and (4).

Lemma 6.1. (a) If $x_{5} \equiv \pm 5(\bmod 12)$, then $x_{3} \equiv \pm 1(\bmod 12)$ if and only if $x_{1}+x_{2} \equiv \pm 5$ $(\bmod 12)$.
(b) If $x_{5} \equiv \pm 1(\bmod 12)$, then $\pm x_{3} \equiv x_{1}+x_{2}(\bmod 12)$.

Proof. We shall prove (a) in the case $s_{2} \equiv s_{3}(\bmod 2)$. The proofs for the case $s_{2} \neq s_{3}$ $(\bmod 2)$ and for (b) are similar.

Assume that $s_{2} \equiv s_{3}(\bmod 2) . \quad$ We observe that $x_{5} \equiv\left(s_{0}-2 s_{2}\right)^{2}-\left(s_{1}+2 s_{3}\right)^{2}(\bmod 12)$. If $x_{5} \equiv \pm 5(\bmod 12)$, then either (i) $s_{0}-2 s_{2} \equiv \pm 2, s_{1}+2 s_{3} \equiv 3(\bmod 6)$, or (ii) $s_{0}-2 s_{2} \equiv 3$, $s_{1}+2 s_{3} \equiv \pm 2(\bmod 6)$. Similarly, we observe that, if $x_{3} \equiv \pm 1(\bmod 12)$, then either (i) $s_{0}+s_{2} \equiv \pm 1, s_{1}-s_{3} \equiv 0(\bmod 6)$, or (ii) $s_{0}+s_{2} \equiv 0, s_{1}-s_{3} \equiv \pm 1(\bmod 6)$. Then we observe that $\pm\left(x_{1}+x_{2}\right) \equiv\left(\left(s_{0}-2 s_{2}\right)+\left(s_{1}+2 s_{3}\right)\right)^{2}+6\left(s_{0} s_{3}+s_{1} s_{2}\right)(\bmod 12)$, so that $x_{1}+x_{2} \equiv \pm 5$ (mod 12) implies that $s_{0} s_{3}+s_{1} s_{2}$ is odd and $\left(s_{0}-2 s_{2}\right)+\left(s_{1}+2 s_{3}\right) \equiv \pm 1(\bmod 6)$. Finally, if $x_{5} \equiv \pm 5(\bmod 12)$, we observe that (i) $s_{0} \not \equiv s_{1}, s_{2} \equiv s_{3} \equiv 1(\bmod 2)$, (ii) $x_{3} \equiv \pm 1(\bmod 12)$, and (iii) $x_{1}+x_{2} \equiv \pm 5(\bmod 12)$ are equivalent statements. This proves (a) in the case $s_{2} \equiv s_{3}$ $(\bmod 2)$.

Proof of the theorem. (a) If $x_{5} \equiv \pm 5(\bmod 12)$, the necessary conditions of Theorem 5 for f_{1} to represent -3 are violated; hence f_{1} does not represent -3 . By the lemma, the conditions of Theorem 2 for f_{1} to represent -2 are violated if $x_{3} \equiv \pm 1(\bmod 12)$, and those of Theorem 3 for f_{1} to represent 6 are violated if $x_{3} \equiv \pm 5(\bmod 12)$. This proves (a).
(b) If $x_{5} \equiv \pm 1(\bmod 12)$, and $x_{3} \equiv \pm 5(\bmod 12)$, then, by the lemma and Theorems 2 and $3, f_{1}$ represents neither -2 nor 6 ; hence f_{1} represents -3 . If $x_{3} \equiv \pm 1(\bmod 12)$, the following are examples demonstrating the latter statement of (b): [1, $0,-3 p]$ represents $-2,-3$, and 6 , respectively, when $p=937,433$, and 673 , respectively.
4. The cases $d=4^{k} p q$ and $d=4^{k} p(k \geqq 1)$.

Theorem 7. Let $p \equiv 1, q \equiv 3(\bmod 8)$ be primes; let $f_{k}=\left[1,0,-4^{k-1} p q\right]$ be the principal form of discriminant $4^{k} p q$.
(a) If f_{1} represents any of $2,-2,2 q$, or $-2 q$, or if $(p \mid q)=-1$, then f_{k} represents 4^{k-1}, where $k \geqq 2$.
(b) Let $u^{2}-p q v^{2}$ be a primitive representation of $-q$, and write $v=2^{m} v_{0}$, where v_{0} is odd. Let $k \geqq 2$. Then f_{k} represents $-4^{k-1} q$ if $m=0,4$ if $0<m<k-3,-4 q$ if $m=k-2$, and $-q$ if $m \geqq k-1$.

Proof. By examining tables of generic characters, we find that, for $d=16 p q$, the $D D$'s that f_{2} may represent are $-q, 4$, and $-4 q$, and for $d=4^{k} p q(k \geqq 3)$ those that f_{k} may represent are $-q, 4,-4 q, 4^{k-1}$, and $-4^{k-1} q$.

Suppose that f_{2} represents $-q$; for some u, v with $(u, v)=1$, we have $u^{2}-4 p q v^{2}=-q$. Hence u is odd, and $u^{2}-p q(2 v)^{2}=-q$ is a primitive representation of $-q$ by f_{1}. Similarly, if f_{2} represents $-4 q$, then f_{1} represents $-q$ with u even. Hence, if f_{1} represents any of ± 2, $\pm 2 q$ (which happens if ($p \mid q$) $=1$, by Theorem 1), then f_{2} represents neither $-q$ nor $-4 q$, and hence represents 4. If there exist u, v with $(u, v)=1$, such that $u^{2}-4 p q v^{2}=4$, then u is even; so $\left(2^{k-2} u\right)^{2}-4^{k-1} p q v^{2}=4^{k-1}$ is a primitive representation of 4^{k-1} by $f_{k}(k \geqq 3)$, which proves (a).

Suppose that $u^{2}-p q v^{2}=-q$, with $(u, v)=1$. Write $v=2^{m} v_{0}$, where v_{0} is odd. If $m \geqq k-1$, then $u^{2}-4^{k-1} p q\left(2^{m-k+1} v_{0}\right)^{2}=-q$, with $\left(u, 2^{m-k+1} v_{0}\right)=1$. If $m=k-2$, then $u^{2}-4^{k-2} p q v_{0}^{2}=-q$, with u odd, and $\left(u, v_{0}\right)=1$; so $(2 u)^{2}-4^{k-1} p q v_{0}^{2}=-4 q$, with $\left(2 u, v_{0}\right)=1$. If $m=0$, then $\left(2^{k-1} u\right)^{2}-4^{k-1} p q v_{0}^{2}=-4^{k-1} q$, with $\left(2^{k-1} u, v_{0}\right)=1$. Conversely, if f_{k} represents $-q$, $-4 q$, or $-4^{k-1} q$, then $u^{2}-p q\left(2^{m} v_{0}\right)^{2}=-q$, with $m \geqq k-1, m=k-2$, or $m=0$, respectively. Hence $0<m<k-3$ implies that f_{k} represents 4 , which proves (b).

Using the same techniques, we prove
Theorem 8. Let p be an odd prime. Let $g_{k}=\left[1,0,-4^{k-1} p\right]$, where $k \geqq 2$. Then g_{k} represents -4^{k-1} or 4^{k-1}, according as $p \equiv 1$ or $3(\bmod 4)$. Also, $[1,0,-p]$ represents -1 if $p \equiv 1(\bmod 4),-2$ if $p \equiv 3(\bmod 8)$, and 2 if $p \equiv 7(\bmod 8)$.

The proof is immediate if one realizes that the discriminant $4 p$ has one or two primitive genera, according as $p \equiv 1$ or $3(\bmod 4)$, and that, in any case, $[1,0,-4 p]$ must represent 4 .

REFERENCES

1. Ezra Brown, Representations of discriminantal divisors by binary quadratic forms, J. Number Theory 3 (1971), 213-225.
2. Gordon Pall, On generalized quaternions, Trans. Amer. Math. Soc. 59 (1946), 280-332.
3. Gordon Pall, Discriminantal divisors of binary quadratic forms, J. Number Theory 1 (1969), 525-532.

Virginia Polytechnic Institute and State University Blacksburg, Virginia 24061

