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Abstract This paper contains a study of attractors in cellular automata, particularly
the minimal attractors as defined by J Milnor Milnor's definition of attractor uses
a measure on the state space, the measures that we consider are Bernoulli product
measures Given a Bernoulli measure it is shown that a cellular automaton has at
most one minimal attractor, when there is one, it is the omega-hmit set of almost
all points Examples are given to show that the minimal attractor can change as the
Bernoulli measure is varied Other examples illustrate the difference between this
result and the corresponding result that is obtained by replacing Milnor's definition
of attractor by the purely topological definition used by C Conley The examples
also show that certain invariant sets of cellular automata are less well-behaved than
one might hope for instance the periodic points are not necessarily dense in the
nonwandenng set

Over the last few years there has been a great deal of interest among applied
scientists concerning cellular automata One of the reasons for their interest is that
numerical studies give evidence that many cellular automata exhibit 'self-organizing
behavior' The meaning of this is that for certain automata, a sequence of iterates
often appears to have a limiting state that is independent of the choice of initial
condition [11] This is the second in a series of papers that are aimed at describing
this self-organization In the first paper [8] the ergodicity of the underlying Bernoulli
shift is exploited to partially explain the phenomenon of self-organization The
explanation in [8] is given in the terminology of topological dynamics, using C
Conley's concepts of chain recurrence and attractor We may loosely describe one
of the results as follows, precise statements and definitions are given below

THEOREM A ([8]) Suppose that ^ is a Bernoulli probability measure A cellular
automaton has at most one minimal topologically attracting set with respect to /x, if
there is such a set then it contains the omega limit set of x for /x-almost all x

The motivation for the current paper is to make better use of the measure theoretic
properties of the shift in order to refine Theorem A In particular we replace Conley's
topological notion of an attracting set with a measure theoretic formulation due to
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672 Mike Hurley

J Milnor [10] By combining ideas of Milnor with the approach of [8] we obtain
an analogous result

THEOREM B Suppose f is a finite dimensional cellular automaton and that the
probability measure fi is a Bernoulli product measure Then f has at most one minimal
fi-attractor If there is a minimal attractor A^, then A^ is equal to the omega-limit set
of x for fi.-almost all x

The only real difference between the two theorems is in the definition of attractor
The proofs are much the same, and are not particularly hard The bulk of the paper
is devoted to an attempt to understand two things the relationship between the two
definitions of attractor, and the dependence of the results on the particular choice
of the measure fj. Among the results are the following

(0 1) If there is a fi such tha t / has a minimal ^-attractor A^ then it has a unique
minimal topological attracting set A, and A^ c A

The attractors A and AM of (0 1) need not be the same, and the converse of (0 1)
is not true

(0 2) There is a cellular automaton / with both a minimal topological attractor and
a minimal /i-attractor (which is the same for every Bernoulli measure /A), but the
two attractors are distinct sets

(0 3) There is a cellular automaton / with a minimal topological attractor but with
no minimal /i-attractor for any Bernoulli product measure fi

The minimal ft- attractors can vary with /A

(0 4) There is a cellular automaton/ with different minimal /n-attractors for different
Bernoulli measures p.

All minimal /x-attractors for a given/ are contained in a single orbit closure

(0 5) Let B{f) be the union of the minimal /A-attractors of / as fi varies over the
set of Bernoulli measures There is a residual subset X or £ such that the omega
limit set of x contains B(f) for every x e X

The first section of this paper describes cellular automata and Milnor's definition
of ^-attractor, Theorem B is proved in § 2, § 3 gives background on chain recurrence
and on Conley's topological definition of attraction, § 4 contains the examples
establishing (0 2)-(0 4), (0 5) is established in § 5, and § 6 contains further results
on the first of these examples, showing that it fails to have several useful dynamical
properties—for example, its periodic points are not dense in its nonwandenng set

1 Definitions and background
For m > 1, let Zm denote the integer latice in Um For a finite set S, let 2(m, S) be
the set of maps from Zm to S,

2(m, S) = {x Z m ^ 5 }

Where we can do so without causing confusion we will abbreviate S(m, S) to S
A metric is defined on 2 by d(x,y) = 2', where

i=inf{|f|
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here |(| = |(f,, t2, , tm)\ = max \tk\ 2 is compact in the topology induced by d, in
fact 2 is homeomorphic to a Cantor set

A cellular automaton is a continuous map / 2 -» 2 that commutes with all shifts
of the lattice (The shift a, for teZm is the map cr, 2-» 2 given by (o-,x)(s) = x(t + s)
for all xe2 and all s in Zm, so / ° cr, = tr, ° / for all telm)

Remark There is another definition of cellular automaton / 2 -* 2 is a cellular
automaton if there is a finite set B<=Zm with the property that for all teZm the
value of (fx)(t) is determined by the ordered set {x(t + b) \ b e B} The equivalence
of the two definitions is the Curtis-Hedlund-Lyndon theorem [5]

Given a cellular automaton / and a point x in 2, we are interested in the limiting
behavior of the sequence of iterates x, f(x), f2(x) =/(/(*)), Define the omega
limit set of x, (o(x), to be the smallest closed subset Y of 2 satisfying dist (/" (x), Y) -*
0 as n -> oo Equivalently,

w(x) = {y € 2 |/"'(x) -> y for some sequence of integers «, with n, -» oo}

Definition ([10]) For a closed subset X of 2 let p(X) denote the set of points
whose omega limit sets are contained in X p(X) is called the realm of X

We are interested in sets A for which p(A) is 'large' To formalize this we will use
a measure on 2, the measures that we will use are the Bernoulli product measures
These measures are defined as follows if the symbol set S = {s,, s2, , sk}, suppose
that P = {pt,p2, , Pk} is a set of strictly positive numbers whose sum is one Let
fiP be the measure on S defined by pLP{s])=p] Since 2 can be though of as HZS,
jlp induces a product measure p,P on 2, see [3] for more details We will refer to
fiP as the product measure with weights {p}} on 2 In particular, for any neZ,
fiP{x£i\x(n) = Sj} = pj fiP has the following properties [3]
(11) ftp is a Borel probability measure on 2, if l/<=2 is open and nonempty then

(1 2) ftp is cr,-invanant for all teZm

(13) ftp IS ergodic for any shift a, with t # (0, , 0) if p.P( Y) > 0 and cr,( Y) = Y,
then np( Y) = 1

(14) ftp has the following mixing property if t ̂  (0, , 0) and X, Y are sets of
strictly positive /np-measure, then there is an integer N with ixP(o-"(X) n Y)>
0 for all n > N

From now on the only measures we will consider are these Bernoulli product
measures, unless we need to explicitly refer to the weights P = {/>,} we will simply
abbreviate /JLP to /x
Definition (Milnor) A closed set A in 2 is a fi-attractor for / if both
(a) fi(p(A))>0 (p(A) is the realm of A defined above), and
(b) if B is a proper closed subset of A then p.(p{B)) < fi(p(A)) A /x-attractor A
is minimal if n(p(B)) = 0 for all proper closed subsets of A

The following basic results are taken from [10]
(15) For each p. there is a maximal /tt-attractor MM which is the unique attractor

for/ whose realm has full measure (AfM is called the likely limit set in [10])
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(1 6) If A,, A2 are p,-attractors with fi(p(At n A2))>0 then there is a p-attractor
contained in the intersection of A, and A2, in particular, if A, and A2 are
distinct minimal /i-attractors, then p,(p(A,n A2)) = 0

(1 7) If A is a minimal attractor, then ca(x) = A for /x-almost all x in p(A)
A simple consequence of the fact that a cellular automaton commutes with the shifts
is

(1 8) Suppose teZm, A is a (minimal) p,-attractor for / if and only if a,(A) is
Moreover, p(o-,(A)) = cr,(p(A)) so that fi(p{a,A)) = p,(p(A))

2 Proof of Theorem B
LEMMA A cellular automaton f has at most one minimal /x-attractor, if there is a
minimal fi-attractor then its realm has ̂ .-measure 1

Proof Suppose that A is a minimal p.- attractor and let I be a nonzero element of
Zm By the mixing property 1 4 we see that

holds for all sufficiently large n It is easy to check that o-"(p(A)) = p(cr"(A)), so
(*), 1 8 and 1 6 imply o-"{A) = A = <r"+1(A) for all large n Since a, is a homeomorph-
lsm, we conclude that cr,(A) = A Thus p(A) is a cr,-invanant set with positive
/i-measure and by ergodicity p,(p(A)) = l The fact that A is the only minimal
/A-attractor now follows directly from 16 D

The first assertion of Theorem B is an immediate consequence of this lemma, and
the second follows from (1 7)

Remark 2 1 If a cellular automaton / has a minimal p.- attractor AM then AM is the
only p,-attractor for/, in particular A^ coincides with the maximal p-attractor MM

described in (1 5)

Proof MM is by its definition the unique p- attractor whose realm has full
measure, so AM = MM The maximal p,-attractor contains every p.-attractor, and
the minimal p,-attractor is contained in every p-attractor, so A^ must be the only
p.-attractor •

3 Chain recurrence
The proof of Theorem B relies on the ergodic properties of the shift (Other results
about cellular automata that are based on the ergodicity of the shift can be found
in [4,9] ) Very similar arguments prove Theorem A, see [8] This section contains
a brief description of C Conley's work connecting a topological concept of 'attractor'
with the notion of 'chain recurrence'

For e > 0, define an e-chain for/to mean a sequence (finite, infinite, orbi-infinite)
{Xj} satisfying d(f(Xj), *,+,)< e for all 7 A point x e S i s chain recurrent for/if for
each e > 0 there is a periodic e-chain containing x Let CR(f) denote the set of all
chain recurrent points of/ Define an equivalence relation on CR(f) by x~~y if
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for each e > 0 there is a periodic e-chain containing both x and y (or, what is the
same thing, x ~y if there are e-chains from x to y and from y to x) Let <€ denote
the set of equivalence classes, we will refer to these equivalence classes as chain
components of/ For C e <£ let p(C) denote the realm of C, as denned earlier It is
not hard to verify that the collection {p(C) \ C e <<?} forms a partition of X, and that
every shift defines a permutation of *£ We can now give a precise statement of part
of Theorem A The proof of this proposition is much like the argument establishing
Theorem B, details can be found in [8]

PROPOSITION 3 1 For any cellular automaton and any Bernoulli measure p,, there is
at most one chaw component C with n{p(C))>0, i/p,(p(C))>0 then p,(p(C)) = 1

In fact, more can be said If /A and v are Bernoulli measures and there are chain
components C^ and Cv with /t(p(C^)) = v(p{Cv)) = 1, then it must be the case that
Cn = Cv An outline of the proof of this statement is given below The basic result
underlying the proof is the connection between chain recurrence and topologically-
defined attractors, this connection was first pointed out by C Conley [2]

Definition A compact nonempty subset A of 2 is a topological attractor for/ if there
is a closed neighbourhood U of A such that / maps U into its intenor, and the
intersection of all the forward images of U is equal to A

Note that if A is a topological attractor, then p(A) is equal to the union of all the
inverse images of int (U), so p(A) is open, in this situation p(A) has usually been
referred to as the basin of A

PROPOSITION 3 2 (Conley) If C is a chain component and A is a topological attractor
with p(C)np(A)*0 then C^A

See [2 or 8] for a proof It follows from Proposition 3 2 and (11) that if CM is a
chain component with p.(p(CM)) = 1 then CM must he in the intersection of all of
the topological attractors of / In fact, another result of Conley shows in this case
that CM must equal the intersection of all of the topological attractors of / [see 8
or 2] Thus if v is another Bernoulli measure and v(p(Cv)) = \ for some chain
component Cv, then Cv = C^

The next definition gives precise meaning to the statement of Theorem A given
in the introduction

Definition Given a cellular automaton / and a Bernoulli measure /A, we say that Q
is a minimal topologically attracting set with respect to p, if Q is equal to the intersection
of all of the topological attractors of /and fi(p(Q))>0

Note that a minimal topologically attracting set Q might actually be a topological
attractor, when this is the case we will refer to Q as a minimal topological attractor
There is an example in [8] where Q is not a topological attractor If Q is a minimal
topological attractor with respect to some Bernoulli measure, then it is a minimal
topological attractor for all Bernoulli measures However, it is conceivable that a
set Q might be a minimal topologically attracting set with respect to one Bernoulli
measure but not with respect to some other Bernoulli measure
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There is one immediate connection between Theorems A and B

PROPOSITION 3 3 Suppose that f is a cellular automaton and that /A is a Bernoulli
measure If there is a minimal fi-attractor A^, then there is a minimal topologically
attracting set Atop with AM <= Atop

Proof It follows easily from (17) and the definition of omega limit sets that if e > 0
then for any pair of points in A^ there is a periodic e-chain containing both points,
hence AM lies in a single chain component Atop Since p(A/1)cp(i4lop), the fact
that Atop is a minimal topologically attracting set follows from Proposition 3 1 and
the discussion following Proposition 3 2 •

Proposition 3 3 implies that all minimal ju,-attractors for a given/ are contained
in a single chain component, in fact, more is true In § 5 we will show that the set
of points x with the property that <o(x) contains all minimal /t-attractors of/ is
residual in 1

4 Examples
This section contains three examples The first two illustrate the relation between
the minimal topologically attracting sets of Theorem A and the minimal ju,-attractors
of Theorem B The third example shows that a given cellular automaton can have
different minimal /i-attractors for different Bernoulli measures (i The examples are
one-dimensional cellular automata, l e, 1 = {x Z -»S}, and in each case S will
consist of either two or three symbols We will think of an element x of 2 as a
horizontal list of symbols

,x(n-l),x(n),x{n + l),

In all of the examples we will be interested in the eventual image of / which is
defined to be

LEMMA 4 1 The chain recurrent set CR(f) is always contained in A(/)

Proof Note that A(/) is a topological attractor with p(A(/)) = S (use 2 as the
neighbourhood U in the definition of topological attractor) Hence by Proposition
3 2 A(/) contains every chain component, and thus contains CR{f) •

Example 4 A Here there are only two symbols, S = {0,1} The action of / on a list
of 0's and l's is to move a string of consecutive l's one unit to the left, and to
shorten the string by changing its rightmost 1 to a 0 The precise definition is that
(fx)(n) = 1 if x(« + l) = x(n+2) = l,and (fx)(n) = 0 otherwise (/is the composition
of the left shift with Wolfram's elementary rule number 136 [11]) It is easy to see
that A(/) consists of the constant map z given by z(n) = 0 for all n, together with
all elements of 1 that contain a single string of consecutive l's, this string can be
finite, bi-infinite, or bounded on one side but not the other We will use the following
notation to summarize this description

A(/) = {0*1*0*}
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The exponent * denotes the fact that the base symbol can be repeated any number
of times

LEMMA A 1 For fas above, A(/) is the minimal topological attractor

Proof We will show that A(/) is a chain component, since p(A(/)) = 2, this will
suffice By Lemma 4 1 we know that A(/) contains all chain components, so it is
enough to show that for any positive e there are e-chains connecting any two points
of A(/) In fact, if we let z e A(/) denote the constant map defined above (z(n) = 0
for all n), then all that we need to do is to produce for each e > 0 and each x € A(/)
a finite e-chain from x to z and a finite e-chain from z to x It is easy to see that
there is an e-chain from x to z fix a positive integer k and consider the point q in
1 that is obtained from the point /(x) by changing (fx)(n) to 0 for all n > k If k
is large enough the distance from/(x) to q is less than e, so that {x, q) is an e-chain
Since the forward orbit of q converges to z there is an e-chain from x to z of the
form {x, q,f(q), ,fJ(q), z}

Next consider the point p that is obtained from/(x) by replacing (fx)(n) with
1 for all nsik By using p in place of q in the above argument we see that for any
e > 0 there is an e-chain from x to b, where b is the constant map given by b(n) = 1
for all n In particular there are e- chains from z to b

To finish we need to see that there is an e-chain from z to x for each x in A(/)
There is nothing to prove if x = z, so assume that x e A' = A(/) - {z} Such an x has
a unique maximal string of consecutive l's Note that for such an x there is a unique
point x, € A' such that /(x,) = x, I e there is a map <p A'-» A' such that f° <p = id
The action of <p on a string of l's is to increase its length by 1 and to move the left
end of the string one unit to the nght From this description it becomes clear that
the sequence <p"(x) converges to either z or to ft In the first case there is an e- chain
from z to x of the form {z, <pJ(x), cpJ~l(x), , <p(x), x}, and in the second case
there is an e-chain of the same form but starting at b instead of at z Since we
already know that there is an e- chain from z to b, this finishes the proof D

Next we will show that the singleton {z} is the minimal /t-attractor for every
Bernoulli measure fi Suppose that fi is defined by the weights (p, q) (so p, q>0
and p + q = 1) For^eZ and fc>l consider the open set I(j,k) = {x\x(i) = l for
j < i <j + k} The following assertions are obvious
A2(a) k

A2(b)
For k, «> 1 define Y(k, n) = {x\fJ(x)e 1(0, k) for some./&n} Y(k, n) is open since
it is a union of inverse images of 1(0, k)

LEMMA A3 n(Y(k,n))<qk+n/(l-q)

Proof Using (A 2), Y(k, n) = U, a n /~ ' ( / (0 , fc)) = L U , Hj, k+j), so

I qk+J = qk+"/(l-q) D

LEMMA A4 ^{x|w(x)n 1(0,
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Proof Since 7(0, k) is open, if a>(x) meets 7(0, k) then the forward orbit of x must
enter 7(0, k) infinitely often But this means that {x\<o(x) n 7(0, k) T6 0} is contained
in Y(k, n) for all n >0, so that Lemma (A 4) follows from Lemma (A 3) •

LEMMA A 5 fi{x\a>(x) = z} = 1, l e , {z} is the minimal fx-attractor

Proof The complement of {x\a){x) = z} is equal to UJ(=z {x\<o(x)n I(j, 1)#0} By
Lemma (A 4) and the tr-invanance of fi, each of these countably many sets has
measure 0 •

Thus / has the same minimal /A-attractor for all Bernoulli measures ft, and / also
has a minimal topological attractor, but they are different sets Other interesting
properties of this automaton are described in § 6

Example 4 B We are going to describe a cellular automaton g that has a minimal
topological attractor but no minimal \x- attractor for any Bernoulli measure /x We
will continue to let / denote the map of the last example The cellular automaton
of this example is an extension g of f The domain of g is the shift space on the
symbols {0,1,2}, to avoid confusion we will denote this space by 23 and we will
denote the domain of/ by 12 Basically, g is denned by replacing the single symbol
0 in the definition of/ by either of the symbols 0 or 2 The precise definition is that
(gx)(n) = l if x(n + l) = x(n+2) = l, and otherwise (gx)(n) is the first of (x(n),
x(n + l), x{n + 2)) that is not equal to 1 A fact that will be useful below is that if
neither x(n) nor x(n + l) is 1, then (gx)(n) = x(n) We will show, as in the last
example, that the eventual image A(g) is a minimal topological attractor Before
doing this we make some preliminary observations

Remark B\ If h S3 -» £2 is the involution defined by interchanging the symbols 0
and 2 then h commutes with g

Suppose that v is the Bernoulli measure on 23 with weights (p, q, r), let fi be the
measure on 22 defined by the weights (p + r, q) Then the map TT (23, v)-* (13, (i)
defined by {irx)(n) = 0 if x(n) = 0 or 2 and (irx)(n) = 1 if x(n) = 1 is a measure-
preserving semiconjugacy, that is
B 2(a) v{ir~l V) = fi( V) for all Borel sets V in 22

B2(b) 7T°g=/°77-
Let X02c:23 be the 0-2 subshift X02 = {x\x(n) ^ 1 for all n) X02 is the inverse

image under TT of the minimal /i-attractor {z} of/ This observation combined with
(B 2) establishes the following lemma

LEMMA B 3 c{xe23|w(x)c X02}= 1

LEMMA B 4 Any element of the eventual image A(g) can be written as afiy where
a is an arbitrary string of 0's and 2's, fi is a constant string of Vs, and y is either a
constant string of 0's or a constant string of 2's As many as two of the strings a, /3,
y may be empty (Ie, A(g) = {a 1*0*}u{a 1*2*} where a can be any string of Q's
and 2's)

Proof Let L denote the set of points x e 2 that can be written as afiy where the
strings a, fi, y are of the form given in the statement of the lemma We can define
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a one-sided inverse of g | L (the restriction of g to L) in the following way Define
<p L^L by <p(a/3y) = a'fi'y where

a' = a followed by a 0 if a, /3 are both nonempty

a' = a otherwise

P' = fi followed by a 1 if /?, y are both nonempty

/3' = j8 otherwise

(To state this more exactly, <p is the identity on strings where /3 = 0 , if /3 # 0 and
the left end of ^ in x is at position n, then the left end of the /3' in <p(x) is at
position n +1 ) It is easy to verify that <p is a one-sided inverse to g on L g ° (p = id
This makes it clear that LcA(g)

Conversely, suppose that x e A(g) If x e Xo2 there is nothing to prove, so we
may assume that x contains a string of l's Since x is in A(g) there is a unique
maximal string of l's in x, that is, x has the form afir\ where a and /? are as above,
and 17 is a string of O's and 2's If 17 is empty we are done, otherwise we must show
that 77 is a constant string The argument is by induction, there is no real loss in
generality in assuming that 77 = x(l),x(2), Suppose that x = g(y), since x(0) = 1,
we must have y(l) = y(2) = 1 It then follows from the definition of g that x(l), x(2)
and x(3) are all equal to y(3), and that x(n) = y(n) for all n>4 By the same
argument, if p is a preimage of y then p(3) =p(4) = 1 and y(3), y(4), and y(5) are
all equal to p(5), so that x(n)=p(5) for l < n < 5 Proceeding inductively we see
that x(/i) = x(l) for all n > l , and the proof is complete •

LEMMA B 5 A(g) is f/ie minimal topological attractor

Proof Let b, t, z be the constant maps defined by b(n) = 1, t(n) = 2, z(«) = 0 for all
n By arguing as in the proof of Lemma A 1 it is easy to see that if e > 0 and x 6 2
then there are e-chains from x to b, to f, and from x to 2 By considering the special
cases x = b, t, z we see that b, t, z are contained in a single chain component C
We will show that C = A(g), since C contains z it will be enough to show that for
any x e A(g) and any e > 0 there is an e-chain from some known point of C to x
We begin by showing that XO2

C C, recall that g acts as the identity on Xo2

The construction of an e- chain from z to xeX0 2 will occur in several stages
Given a positive integer k we will define a finite sequence of points x_t, x_k+1, , xk

and show that if k is large enough then
(1) there is an e-chain from xk to x,

(II) there is an e-chain from xm to xm+1 for each m satisfying -fc< m < k,
(III) either there is an e-chain from z to x_k or else there is one from t to x_k

By concatenating the e-chains given by (i)-(ni) we obtain an e-chain from C to x
In each case we will find the e-chain from the first point to the second by showing
that the second point has inverse images within e of the first Choose k large enough
that if W(H) = D(M) for all n with -fe<n</c then d(u, v)<e For each m in the
range [-k, k] define xm by xm(n) = x(n) if n < m, and xm(n) = x(m) if n >m, that
is xm agrees with x up through position m, and xm is constant to the right of
position m

https://doi.org/10.1017/S0143385700005848 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700005848


680 Mike Hurley

Proof of (1) By the way that k was chosen it is clear that xk is within e of x, since
g fixes both of these points we see that {xk, x} is the desired e-chain

Proof of (11) For each m define a point qm by qm(n) = xm{n) for n<k, qm(n)-\
if k<n <2fc- m, and gm(n) = x(m + l) for n>2k-m Again it is clear that {xm, qm}
is an e-chain, and a simple computation verifies that gk~m(qm) = xm+u so (11) is
established

Proof of (in) Note that either x_k(n) = 0 for all n>-fc or else x_)[(n) = 2 for all
such n It follows that x_fc is within e of one of z or fc, so in either case there is an
e-chain from a known point of C to x^k

Now we can finish the proof of the lemma Suppose x€ A(g), we can write x as
afiy where the strings a, fl, y are as in the statement of Lemma B 4 If yS is empty
then x e Xo2 and we are done, so assume p^0 Consider the one-sided inverse <p
of g defined in the proof of Lemma B 4, remember that <p moves finite strings of
l's to the right If a ^ 0 it follows that <pJ(x) converges to some point of X02 (namely
the point made up of a followed by an infinite string of O's) On the other hand,
if a=0 then <pJ(x)-»b asj-><x> In either case we have produced a sequence of
inverse images of x that converges to a known point of C, so there is an e- chain
from C to x D

LEMMA B 6 g has no minimal v-attractor for any Bernoulli measure v

Proof The idea is to construct two sets of positive measure, U and V, such that
a)(u)nu>(v) = 0 whenever ueU and tie V In light of 1 7 this will establish the
lemma For n > 1 let

Bn = {xe13\(g
Jx){i)*\ for all; >« and 1=0,1}

Note that Bn c Bn+X for all n, and that if w(x)c X02 then x is in the union of the
Bn By Lemma B 3 the set of such x has full measure, so we can choose n with
v(Bn) > 0 Now pick an integer m > 1 large enough that if x(^) = y(j) for all \j\ < m,
then (g*Jc)(i) = (gky)(i) for all 0< fc< n and / = 0,1 Take r = 32m+1 and let T, , ,rr

be all of the words of length 2m +1 in the alphabet {0,1,2} For each T, define the
cylinder set C, as {xe£3|(x(-/n), ,x(m)) = r,} The union of the C, covers S3,
so we can find one of them, say Cb, with the property that v(CbnBn)>0 Let
U = Cbn Bn By the choice of m, for each k satisfying 0 < k < « there is a word 5k

of length two in {0,1,2} such that ((gkx)(0), (gkx)(l)) = Sk for all xe U Write Sn

as (5', 5"), by the definition of Bn neither 5' nor s" is 1 It follows from the definition
of g that if xe U then (g"+'x)(0) = (g"(x)(0) = s' Moreover, the definition of Bn

shows that (gn+1x)(l) # 1, so (gn+2x)(0) is also equal to s' By induction (g'x)(0) = s'
for all xe U and all / > n Thus we see that w(x) is contained in the cylinder
(y\y(0) = 5'} for each x in U

We will now produce a set V of positive measure such that if x e then w(x) is in
the disjoint cylinder {y\y(0) = 2-s'} If the measure v is defined by weights such
that the symbols 0 and 2 are weighted equally, then this is easy to do Let h be the
involution defined in Remark B 1, for such a v this map is measure preserving, and
so we can set V=h(U)
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For a general Bernoulli measure v the difficulty is that h(U) could have measure
0 To get around this problem we will modify the mapping h Let n be as above,
and define T 2, -*1 to be the map that interchanges O's and 2's in coordinates [0,2«]

(TX)(J) = X(J) otherwise

Define V=T( U), since v( U) > 0 and T affects only a finite number of coordinates,
v{ V) > 0 as well We claim that if v e V then (gJv)(0) = 2-s' for all j > n Note first
that if we write v= T(x) with xeU, then JC and t> have l's in exactly the same
positions, and so the same is true for gJ(x) and gJ(v) for eachy>0 It follows that
veBn For each j the symbol (gJv)(0) depends only on {v(0), v(l), , v(2j)}, so
for Osj s n we have

(gJv)(0) = (gJTx)(0) = (gJhx){0) = (hgJx)(0) = 2- {gJx)(0)

(the second equality holds because T(x) and h(x) agree in positions 0 through 2«,
and the third equality is a consequence of Remark B 1) In particular, (g"u)(0) =
2 — s' Since ve Bn we know that (gJv)(0) = (g"i>)(0) for all j > n, so c e V implies
that «(i>)c {y|>>(0) = 2 — 5'} In short, &>(u) and a>(v) are disjoint whenever ueU
and c6 V, and we are done •

Thus the existence of a minimal topological attractor does not imply the existence
of a minimal /x-attractor for any Bernoulli measure p.

Example 4 C In this example the minimal ^i-attractor of / varies with ft Here / is
defined on a 3-shift, think of one of the symbols, 0, as being a background state
against which the other two symbols move The other two symbols are labelled L
and R, f tries to move L's one unit to the left, and it tries to move /?'s one unit to
the right When an L and an R collide, they annihilate each other, leaving a 0
behind The precise definition of / is as follows

(fx)(n) = L if x(n +1) = L and neither x(n) nor x{n - 1 ) is R

(fx)(n) = R if x(n -1) = R and neither x(n) nor x(n + l) is L

(fx)(n) = 0 otherwise

A similar example can be found in [4]

LEMMA C 1 A( / ) 15 equal to the set of all strings of the form pk where p is an arbitrary
string of O's and R's, and A is any string of O's and L's (either one of the two strings
may be empty)

Proof From the definition of/ it is clear that/(x) cannot contain the strings 'L/?'
or 'LOR' for any x in 1 Similarly, it is clear that if/(x) contains no strings of the
form 'L/?' or 'LOR', then /2(x) contains no stnngs of the form 'LaR' where a is
any word of length at most 3 in the three symbols By induction, fk(x) contains no
stnngs of the form 'L)8/?' where j8 is any word of length at most 2k -1 If y e A(/)
then for each k there is an x with fk(x) = y, and so we see that any L's that appear
in y must he to the right of any R's Thus any point of A(g) is of the form pA,
conversely, if y is of the form p\ then y has an inverse image x of the same form
obtain x by inserting two O's between p and A •
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LEMMA C 2 A(/) is the minimal topological attractor for f

Proof As usual, let z denote the fixed point defined by z(n) = 0 for all n We begin
by constructing an e-chain from x to z, where x is any point of A(/) To do this,
take a positive integer k and obtain y from/(x) by changing (fx)(n) to 0 for all n
with \n\ > k. Note that (f2k+\y))(n) = 0 for all n with -k < n < k, so for large enough
/c the sequence {x, y,f(y), ,f2k(y), A will be an e-chain

To finish we will show that there is an e-chain from z back to x If x contains
no R's then the construction of such a chain is simple, since/ acts as the left shift
on the 0-L subspace Similarly if x contains no L's Thus we can assume that x = p\
with A beginning at position mofx( ie ,A=x(m) ,x(m + l), ) Given a positive
integer k let £ be the string of 2fc consecutive 0's Obtain a point yel from x by
moving p k units to the left, A k units to the right, and inserting £ between them
Note that fk{y) = x, and that y-*z as fc-»oo, so there is an e-chain of the form
{z,y,f(y), ,*} •

Let UP be the Bernoulli measure defined by the weights P = (po,Pr,Pi) for the
symbols (0, R, L) The next result shows that the minimal /Mp- attractor of/ varies
with P

PROPOSITION C3 If pr>pi then the minimal ftp-attractor of f is the 0-R subshift
XOR = {xe2 |x(n)# Lfor all n} Similarly, ifpr>Pi then the minimal fip-attractor of
fis the 0-L subshift X0L

Proof By symmetry it is enough to prove the first statement, so assume that pr > p,
We are going to exploit a connection between / and a one-dimensional random
walk The needed results about random walks can be found in [1,77-79 and 98-102],
a similar use of random walks is contained in [4] The idea is that if x has the
symbol R in position 0, then this R moves to the right until it collides with an L
If this R survives n iterations of/ then it lies in position n of/"(x) This survival
will happen as long as for each k = 1,2, , 2n the string {x(0), x(l),x(2), , x(k)}
contains more/?'s than L's The string {x(0),x(l), x(2), , X(2M)} describes 2n + l
steps in a particular random walk on the integers (at step j the walker stands still
if x(j) = 0, he moves left if x(j) = L, and he moves right if x(j) = R) The statement
that each of the substrings {x(0), , x(k)} of {x(0), , x(2«)} contains more R's
than L's means that if the walker starts at 0 then he moves initially to the right and
does not return to 0 anytime in his first 2n +1 steps As long as pr > pt the probability
that a random walker starting at 0 moves to the right and never returns to 0 is
l-(pi/Pr) [1] Thus, if we define a set

Y0 = {xel\(fx)(n) = R forall«>0},

then Yo also has measure 1 - (pi/pr) Clearly if x e Yo and y(n) = x(n) for all n > 0,
then y e Yo as well It follows that if we take a positive integer k and consider any
string a made up of k 0's and R's, then the set

Y0(a) = {xeY0\(x(-k), ,x(-l)) = a}

also has positive measure If xe Y0(a) then there is an R in position 0 of x, and
this R survives forever and moves to the right, so the same is true of the string a
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Let Y(a) = UJSO o-JY0(a), where CT IS the shift to the left Clearly Y(a) has positive
measure and is mapped into itself by cr It follows from the ergodicity of the shift
that fiP(Y(a)) = l

Now define Y to be the intersection of the sets Y(a) for all finite words a and
O's and i?'s There are only countably many such words, so IMP(Y) = 1 For xe Y
we see that for any a there is a negative integer k such that a appears in x with
its right end at position k, and this copy of a survives forever under the iteration
of x by / Since any finite stnng a occurs as the beginning of arbitrarily long stnngs
8, we see that for any x € Y an indefinitely surviving copy of a will occur infinitely
many times in the stnng { , x(-2), x( - l ) , x(0)} Eventually/ will move each of
these copies of a across the zero position From this it follows that if y is any point
of the 0-R subspace and U is any neighbourhood of y, then/" (x) e U for infinitely
many n>0, 1 e , w(x) = X0L for all xe Y •

5 All minimal /j,-attractors are contained in a single-orbit closure
In this section we will establish (0 5) there is a residual subset X of £ such that if
xe X and if /J, is any Bernoulli measure such that / has a minimal /t-attractor A^,
then (o(x) contains AM

Definition Let M(f) denote the set of Bernoulli measures fj. for which / has a
minimal /i-attractor If fieM(f), denote the minimal jii-attractor by AM

LEMMA 5 1 If/A e M(f) then there is a residual set X(/u,) in X such that AM c a>(x)
for every xeX(fi)

Proof Let Y be a countable, dense subset of A^ For each y in Y and m, n > l ,
the set U(y, n, m) defined by {JJsmf~J(B(y, 1/n)) is clearly open {B(y, \/n) denotes
the open (l/n)-ball centered at y), this set is also dense in £ because it contains
p(A^) which has full measure Define X(/A) to be the intersection of all the sets
U(y, n, m) for y e Y and n, m > 1, so X(fj.) is residual If x e X(fi) and y e Y, then
there is an arbitrarily high iterate of x that comes arbitranly close to y, so y e co(x)
It follows that io(x) contains Y, and since an omega limit set is closed, w(x) contains
clos (Y) = Ali •

COROLLARY ///A, , , /u.k is any finite subset ofM(f), then there is a residual subset
Xo of 2 such that U A , ls contained in (o(x) for every x in X

PROPOSITION 5 2 Let B(f) denotes the closure of the union of A^ for all p e Jl(f)
There is a residual subset X<= 2 such that B(f)c <u(x) for each xe X

Proof If M(f) is empty there is nothing to prove, so assume M(f) ^ 0 Since B{f)
is compact, for each n > 1 there is a finite set of measures fit, , Hk(n) m M(f)
such that U Alii is 1/n dense in B(f) By the corollary there is a residual set Xn

such that U A«, 1S contained in w(x) for each x e Xn Let X - (~) Xn Clearly w(x)
contains B(f) for each x e X •

6 Further properties of Example 4 A
Example 4 A is interesting in that is provides a counterexample to several possible
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conjectures concerning the dynamical structure of a minimal topological attractor
of a cellular automaton

For an automaton f, let il(f) denote the nonwandenng set of/ ft(/) = {x e 21 for
any neighbourhood U of x there is and n > 1 with f~"(U)n U^0} As before, let
CR(f) denote the set of chain recurrent points of/ Both of these sets are nonempty,
closed, and forward invariant under / and under all shifts It is always true that
il(f) c CR(f)aA(f), the first of these inclusions is an easy exercise, and the second
is Lemma 4 1

In Example 4 A all three of these sets are the same

LEMMA 6 1 For f of Example 4 A, O(/) = CR(f) = A(/)

PROOF It is enough to show that A( / )c £!(/) Suppose that x is a point of A(/),
we shall show that there is a sequence xk of preimages of x with xk converging to
x Define a one-sided inverse i// A(/) -» A(/) t o / in the obvious way each x e A(/)
contains at most one maximal string of consecutive l's, when this string is finite
the action of/ is to move the left end of such a string one unit to the left and then
to shorten the string by changing its rightmost 1 to a 0, so the action of i/f on x is
to move the right end of a string of l's one unit to the right and to lengthen the
string by adding an extra 1 to its right end The definition of i/*(x) when x contains
an unbounded string of l's is similar (actually, we will only use if/ on points where
the string of l's is bounded)

Now consider some xeA(f) that has only a finite number of l's, so there are
integers m, M such that x(n) = l if and only if m<n<M For each fc>l let
xk = ipk(x), so that xk has a single string of consecutive l's of length M -m + k and
whose left end is in position m + k. For k> M-m xk has 0's in position m,
m +1, , M - 1 , obtain a new point yk from xk by changing these 0's to l's This
new point yk has two distinct maximal strings of l's, one of length at least 2{M - m)
corresponding to the l's in xk, and the other of length M-m corresponding to the
l's in x Since k> M — m,fk will obliterate the shorter of these two strings, so that
fk(yk) =fk(xk) = x, additionally, yk(n) = x(n) for n < m + k so that yk -> x as n -* oo
Thus we see that x in A(/) is nonwandenng if it has a finite number of l's The
set of all such x is dense in A(/) and il(f) is closed, so A(/) =O(/) •

Remark 6 2 The set of periodic points of / consists of the two constant maps z
and b Thus the periodic points of/ are not dense in Cl(f), this answers a question
raised by L Hurd in [6] Another example of an automaton whose periodic points
are not dense in its nonwandenng set is constructed by Hurd in [7]

Remark 6 3 The example also shows that a minimal topological attractor is not
necessarily a nice subshift of 1 A(/) is not a subshift of finite type, the cr-penodic
points are not dense in A(/), and there is no point on A(/) whose cr-orbit is dense
in A(/) Also, no point of A(/) has a forward/-orbit dense in A(/), although the
set of eventual preimages of z is dense in A(/)

7 Concluding remarks
An important open problem is to find general methods for determining whether a
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specific example has a minimal attractor, and if so, for describing it Some conditions
for checking whether there is a minimal topological attractor are given in [8], but
they seem quite difficult to implement Additionally, Example 4 B shows that even
those conditions cannot determine the existence of a minimal ^-attractor

Theorems A and B show that there are fairly severe restrictions on the applicability
of cellular automata as models, for instance there is no cellular automaton with
two attracting fixed points On the other hand much of the modelling that has been
done has not involved cellular automata defined on the full shift 1 but rather the
restriction of automata to some smaller subspace The subspace is often taken to
be the set of xei such that x{n) = 0 for all but finitely many n Such a subspace
has measure 0 (in fact, it is countable), so it is not obvious what connection, if any,
there is between the results of this paper and the study of such models
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