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DUALITY FOR A
NON-DIFFERENTIABLE PROGRAMMING PROBLEM

J. ZHANG AND B. MOND

A generalised dual to a non-difFerentiable programming problem is given and du-
ality established under general convexity and invexity conditions. A second order
dual is also given and duality theorems proved under generalised second order
invexity conditions.

1. INTRODUCTION

In [11], Mond considered the class of non-differentiable mathematical programming
problems

(P) Minimise f{x) + (xTBx)1/2

(I) subject to g(x) ^ 0

where / and g are twice differentiable functions from Rn to R and Rm respectively,
and B i s a n n x n positive semi-definite (symmetric) matrix. Let XQ satisfy (1); Mond
[II] defined the set

ZQ = {z | zTVgi(x0) > 0 (VieQo), and

2TV/(x0) + zTBx0/(xjBx0)
1/2 < 0, if x%Bx0 > 0;

zTV/(z0) + (zTBz)1/2 < 0, if xjBx0 = 0}

where Qo = {* | 0i(so) = 0}, and established the following necessary conditions for XQ
to be an optimal solution to (P).

PROPOSITION 1 . If x0 is an optimal solution of (P) and the corresponding set
ZQ is empty, then there exist y G Rm, y ^ 0, and w 6 Rn such that

yTg(x0) = 0, VyTg(x0) = V/(z0) + Bw, wTBw ^ 1, (x%Bxo)
1/2 = xjBw.

(Mond and Schechter [12] gave a constraint qualification which assures that Zg is
empty. Additional constraint qualifications were given by Wolkowitz [18].)
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30 J. Zhang and B. Mond [2]

Using these necessary conditions, a Wolfe type dual problem [17] was formulated
in [11]:

(WD) Maximise f(u) - yTg(u) + uT[VyTg{u) - V/(«)]

subject to V/(w) + Bw = VyTg{u)

wTBw ^ 1

(WD) is a dual to (P) assuming that / is convex and g is concave.

Chandra, Craven and Mond [4] weakened the convexity requirements for duality
by giving a Mond-Weir type dual [14]

(M-WD) Maximise f(u) + uT[VyTg(u) - V/(u)]

subject to V/(u) - VyTg(u) + Bw - 0

yTg(u) ^ 0

wTBw < 1

and estabhshed duality theorems assuming that /(.) + (.) Bw is pseudo-convex for all
w G Rn and that yTg is quasi-concave.

Mond and Smart [13] later generalised the results obtained by Mond [11] and
Chandra, Craven and Mond [4] to invexity conditions ([3, 5, 7]). Bector and Chandra
[2] recently presented two different second order duals to (P), which extended the results
obtained by Mangasarian [8], Mond [10] and Mond and Weir [15] for second order
duality and the results obtained by Mond [11], Mond and Weir [14] and Chandra,
Craven and Mond [4] for first order duality.

In this paper, we propose a general Mond-Weir type dual [14] to (P) and establish
the duality theorems under both convexity and invexity conditions. A general second
order Mond-Weir dual [15] to (P) will also be proposed and duality results estabhshed
under generalised second order invexity conditions [1].

We shall make use of the generalised Schwarz inequality ([6] and [16])

(2) (xTBw) ^ (xTBx)1/2 (wTBw)1/2.

Note that equality holds if, for A ̂  0, Bx = XBw.
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2. DUALITY

We propose the following general dual (GD) to (P).

(GD) Maximise f(u) — V^ Vi9i(u) + uTBw

(3) subject to V/(u) - VyTg{u) + Bvi ~ 0

(4) ] £ j /^ («) < 0, a = l ,2 , . . .
«6/a

(5) wTBw < 1

where Ia C M = {1,2,. . . , m } , a = 0,1,2,. . . , r with

r

{J /Q = M and Ianlp = <f> if a
a = 0

THEOREM 1 . (Weak Duality) Let x be feasible for (P) and (u, y, w) feasible

for (GD). If, for all feasible (x,u,y,w), / ( . ) — J^ Vi9i(-) + (•) Bw is pseudo-invex and
ieio

S Viffi(-)> a — l j 2 , . . . ,r is quasi-incave with respect to the same rj, then

infimum (P) Jj supiemum (GD).

PROOF: Since x is feasible for (P) and {u,y,w) is feasible for (GD), we have

i9i(u) ^ °> <* = 1,2,. . . , r.

By the quasi-incavity of £2 ViBii a = 1>2, • • - , ' " , it follows tha t

V{x,u)TV ^ yi9i(u) ^ 0, a = l , 2 , . . . , r .

Hence

i6M\/0

then from (3), it follows tha t

•q{x,u)T [v/(«) - V
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The pseudo-invexity of f(.) — X) Vi9i{-) + (-)TBw then yields

f(x) - ]T yigi(x) + xTBw > f(u) - J2 yigi{u) + uTBw.
»6/0

Thus

f(x) + xTBw ^ f(u) - ^2 Vigi(u) + uTBw, from y ^ 0 and g(x) ^ 0.

Since wTBw ^ 1, by the generalised Schwarz inequality (2), it follows that

f(x) + (xTBx)1/2 > f(u) - J2 yi9i{u)+uTBw.
ieio Q

THEOREM 2 . (Strong Duality) If Xo is an optimal solution of (P) and the cor-

responding set Zo is empty, then there exist y 6 Rm and w 6 Rn such that (xo,y,w)

is feasible for (GD) and the corresponding values of (P) and (GD) are equal. If, also,

/( .)— £) 2/i<7i(-)+(-) Bw is pseudo-invex for all w £ Rn and ^3 !/«5t(-)> a = i,2,...,r

is quasi-incave with respect to the same i], then (xo,y,w) is optimal for (GD).

PROOF: Since xo is an optimal solution to (P) and the corresponding set ZQ is
empty, then from Proposition 1, there exist y £ Rm and w € Rn such that

yTg(x0) = 0 , VyTg(x0) = Vf(x0) + Bw, wTBw < 1 , (xjBxo)
1/2 = xjBw, y^O.

So, (xo,y,w) is feasible for (GD) and the corresponding values of (P) and (GD) are
equal. If /(.) - £) Vi9i(-) + (•) Bw is pseudo-invex for all w 6 Rn and J2 2/iffi(-)i

a = 1,2,... ,T, is quasi-incave with respect to the same n, then from Theorem 1,
(xo,y,w) must be an optimal solution for (GD). U

We now consider some special cases of the dual (GD) and Theorems 1 and 2.
If To = M, then (GD) becomes (WD) and from Theorems 1 and 2, (WD) is a dual

to (P) if /(.) — yTg(-) + (•) Bw is pseudo-invex with respect to 77.
In the case IQ = <f> and Ia = M (for some a £ {1,2, . . . , r}) then (GD) becomes

(M-WD) and from Theorems 1 and 2, (M-WD) is a dual to (P) if /(.) + (.)TBw is
pseudo-invex and yTg is quasi-incave with respect to the same r\. This extends the
results obtained in [4] because pseudo-convex and quasi-concave functions are pseudo-
invex and quasi-incave functions respectively.
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If /o = 4>, Ii = { I} , • • • >Im — {"*} (f — m), then (GD) becomes

(M-WD1) Maximise f{u) + uTBw

subject to V/(w) - VyTg{u) + Bw = 0

Vi9i{u) < 0, i = l,2,...,m

wTBw ^ 1

and (M-WD1) is a dual to (P) if /(.) + (.) Bw is pseudo-invex and each yigi, i =

1,2,... ,TO is quasi-incave with respect to the same r\. Note that if gi is quasi-incave

with respect to 77, y; ^ 0, then y^gi is quasi-incave with respect to the same 77; thus

(M-WD1) is a dual to (P) if /(.) + (.)TBw is pseudo-invex and each gt, i = 1,2,... ,m

is quasi-incave with respect to the same 77.

The following corollaries obviously hold because pseudo-convex and quasi-concave

functions are, respectively, pseudo-invex and quasi-incave functions.

COROLLARY 1 . (Weak Duality) Let x be feasible for (P) and (u,y,w) feasible

for (GD). If, for all feasible (x,u,y,w), / ( . ) — ^Z 2/»ff«'(-) + (•) Bw *s pseudo-convex

and 52 2/i<7t(-)> a = 1,2, . . . , r is quasi-concave, then

infimum (P) ^ supremum (GD).

COROLLARY 2 . (Strong Duality) If xo is an optimal solution to (P) and the

corresponding set ZQ is empty, then there exist y £ Rm and w £ Rn such that

(xo,y,w) is feasible for (GD) and the corresponding values of (P) and (GD) are equal.

If, also, / ( . )— 53 2/«0«(-)~H-) Bw is pseudo-convex for all w 6 Rn and 52 2/i5i(-)i a =

*6/a
1,2,... ,r is quasi-concave, then (xo,y,w) is an optimal for (GD).

THEOREM 3 . (Converse Duality) Let (x*,y*,w*) be optimal to (GD) at which

the matrix

is positive or negative definite and the vectors

are Hnearly independent. If, for all feasible (x,u,y,w), /(.) - £) !/i<7i(-) + (•) Bw is
ieio

pseudo-convex and 52 2/ifli()> a = 1,2,... ,r is quasi-concave, or /(.) - 52 i/iffi(.) +
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(.) Bw is pseudo-invex and ^Z Vi9i{-)i ex = 1,2,. ..,r is quasi-incave with respect to

the same 77, then x* is an optimal to (P).

PROOF: Since (x*,y*,w*) is an optimal solution to (GD), by the generalised Fritz-
John theorem [9], there exist T0 e R, v e Rn, rQ € R, a = 1,2,... ,r, /3 6 R and
7 G Rm such that

TO (-V^**) + E Vy;9i(x*) - Bw*) + vT(v2f(x*) - V2y*Tg{x*))
i€i0

a=l ielc

(7) TOgi{x*)-u1S/gi{x*)-li = Q, i e I,0

(8) vTVft(as*)-Taflj(a!')+7,-= 0, i G J«, a = l,

(9) r0 (Bx*) - vTB - 20(Bw*) = 0

(10) T f l ( ^ ! / , W ) ) =0, a = 1,2,... ,7-,

(11) /?(VT£«;*-l) =0

(12) 7 V = 0

(13) (r0)r1,...,Ta,/3,7)^0

(14) {T0,r1,...,Ta,/3,1,u)^0.

Multiplying (8) by j/,* ^ 0 , i G / a , a = 1,2,... ,r and using (12) yields

vTVy*igi(x*) - Tay*igi(x*) = 0, i £ Ia, a = 1,2,... ,r.

Hence

From (10), it follows that

(15) vT E Vifo,-(**) = 0, a =

Using the equation constraint (3), (6) becomes

(16)
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Multiplying (16) by u and using (15) gives

By assuming that V 2 / —V2yT<7 is positive or negative definite at (x*,y* ,w*) it follows
that

(17) v = 0.

Then (16) gives

(18)

Since the vectors < 52 ^ViQii1*), a — 1,2, . . . , r > are linearly independent, (18)

then yields

(19) ra-r0=0, a = l,2,...,r.

If T0 = 0, then ra = 0, a = 1,2,... , r from (19), 7 = 0 from (7) and (8), and /3 = 0
from (9) and (11), but ( T O , T I , T 2 ) . . . ,Tr,i>,7,/3) = 0 contradicts (14). So T0 > 0. This
gives ra > 0, a = 1,2,. ..,r. Then (7), (8), (13) and ra > 0, a = 0,1,2, . . . ,?• yield
g(x*) > 0. Therefore, x* is feasible for (P).

Multiplying (7) by y,*, i £ 70 and using (12) gives

To!/,*3;(z*) = 0, i G Io-

Then from T0 > 0, it follows that

(20) yi9i{x*) = 0, t G Jo-

Also, 1/ = 0, T0 > 0 and (9) give

(21) Bx* = (20/TO)BW*.

Hence

(22) (x*TBw*) = (x*TBx*)X/2{w*TBw*)1/2.

If /3 > 0, then (11) gives w*TBw* = 1 and so (22) yields
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If B = 0 then (21) gives Bx* =0. So we still get

(x*TBw*) = (x*TBx*)1/2.

Thus in either case, we obtain

(23) (x*TBw*) = (x*TBx*)1/2.

Therefore from (20) and (23), we have

»'6/0

If, for all feasible (x,u,y,w), / ( . ) - XI yi9i{-)+{-)T Bw is pseudo-convex and £ 2/i5>(-)>

a = 1,2, . . . , r is quasi-concave, or /(.) — ^ Vigi(-) + (•) Bw is pseudo-invex and

X) Vi9i{-)> a = 1>2, • • • i*1 is quasi-incave with respect to the same 7/, then fromTheo-

rem 1 or Corollary 1, x* is an optimal solution to (P). D

3. SECOND ORDER DUALITY

In this section, we present a general non-differentiable second order Mond-Weir
dual [15] to (P). We shall make use of the following definitions.

DEFINITION 1: [1] / is second order pseudo-invex if for all p 6 Rn, there exists
an rj(x,u) such that

r,(x,uf[vf(u) + V2f(u)p] > 0 =» /(*) ^ /(«) - \P
TV2f(u)p.

DEFINITION 2: [1] / is second order quasi-invex if for all p £ Rn, there exists an
TJ(X,U) such that

f{x) ^ /(it) - \P
TV2f{u)p = • r,(x,u)T[vf(u) + V2f(u)p] ^ 0.

A function g is said to be second order pseudo-incave or second order quasi-incave

if — g is second order pseudo-invex and second order qausi-invex respectively.

The second order Mangasarian type [8] and Mond-Weir type [15] duals to (P) were

regarded in [2] as the following problems:

(2MD)

Maximise f(u) — y g(u) + u Bw p V2 \f(u) — y g(u) p

subject to V / ( u ) - VyTg(u) + Bw + V2 f(u)p - V2yTg(u)p = 0

wTBw ^ 1
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where u,w,p,e Rn and y E Rm.

(2M-WD)

Maximise f(u) + uTBw - -pTV2/(u)p

subject to V/(u) - VyTg(u) + Bw + V2f{u)p - V2yTg{u)p = 0

yT9(u)-\P
TV2yTg(u)P^0

wTBw ^ 1

Using the second order convexity conditions (called bonvexity in [2]), Bector and
Chandra established duality theorems between (P) and (2MD) and (2M-WD), respec-
tively.

Following Mond-Weir [15] we now propose a general second order dual (2GD) to

(P)

(2GD)

Maximise /(«) - ^ ffiffi(«) + uTBw - -pT [v2 / («) - V2 £ »#<
«€/0 >6/o

(24)
subject to V/(w) - yTg{u) + Bw + V2/(u)p - V2yTg{u)p - 0

(25) 5 Z ^ 5 i ( « ) - 2 p T V 2 5 D Vi5»(-")P < 0, 0 = 1 , 2 , . . . , ^

(26) w
TBw ^ 1

(27) y>0

where Ia C M = {1,2, . . . , m } , a = 0,1,2,.. . ,r with

r
\J Ia = M and Ianip = <j> if a / ^ .

a = 0

THEOREM 4 . (Weak Duality) Let x be feasible for (P) and (u,y,w,p) feasible

for (2GD). If, for all feasible (x,u,y,w,p), /(.) — £) 2/i5t(-) + {.)TBw is second order

pseudo-invex, and J^ !/»fft(-)> a = 1,2,... ,r is second order quasi-incave with respect

to t ie same 7/, tiien

infimum (P) ^ supremum (2GD).
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PROOF: Since x is feasible for (P) and (u,y,w,p) is feasible for (2GD), we have

T v 2 X () ^ °> a = 1,2,..., r.

By the second order quasi-incavity of £ 2/t<7i) <* = 1,2,... , r , it follows that
•6/a

( J ] #.•(«) + V2 X ¥*.-(«)p) ^ 0, a = 1,2,... ,r.

Hence

(28) ^ , « )

Then from (24), (28) yields

rj(x,uf fV/(«) + V2/(w)p - X « « ( « ) - V2 X3/<0i(«)p + Bw\ > 0.
^ i€/0 »€/o '

Since / ( . ) — ^ J/i5i(-) + (•) JBW is second order pseudo-invex, it follows that
»e/0

«G/0

> /(«) - X 2/'^(u)+wT5w - ^pT v 2 [/(«) -
»6/o «€/0

Thus, from j / ^ 0, ^(sc) ^ 0, we have

(29) /(*) + xTBw > /(«) - X !«*(«) + « T ^ - ^PT[v2/(«) - V2

Since wTBw ^ 1, by the generalised Schwarz inequality (2), (29) gives that

/(*) + (xTBx)1/2 > /(«) - E !««(«) + " T ^ - ^PT[VV(«) ~ V2

Q

THEOREM 5 . (Strong Duality) If Xo is an optimal solution to (P) and the

corresponding set ZQ is empty, then there exist y 6 Rm and w 6 Rn such that

(xo > 3/, w, p = 0) is feasible for (2GD), and the corresponding values of(P) and (2GD) are
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equal. It, for all feasible (x,u,y,p,w), /(.)— 53 2/i5i(-)~K-) B™ is second order pseudo-

invex, and 53 yigi(.), a = 1 ,2 , . . . ,r is second order qua.si-inca.ve, then (xo,y,w,p = 0)

is an optimal solution tor (2GD).

PROOF: Since so is a n optimal solution to (P) and the corresponding set ZQ is
empty, then from Proposition 1, there exist y £ Rm and w £ Rn such that

yT9(xo) = 0, VyTg{x0) = V / ( s 0 ) + Bw, wTBw <: 1,

(x%Bxo)
1/7 = x%Bw, i / > 0 .

So, (io,2/,uj,p = 0) is feasible for (2GD) and the corresponding values of (P) and (2GD)

are equal. If / ( . ) — 53 Vigi(-) + (•) Bw is second order pseudo-invex for all w G Rn

te/0

and 53 Vi9i{-)i a — 1)2,..-,T", is second order quasi-incave with respect to the same
te/a

•q, then from Theorem 4, (xo»!/)W,P = 0) must be an optimal solution for (2GD). U

We now consider some special cases of (2GD) and Theorems 4 and 5.

If Jo = M, then (2GD) becomes (2MD), and from Theorems 4 and 5, (2MD) is a

second order dual to (P) if / ( . ) — y </(.) + (•) Bw is second order pseudo-invex, which
extends the results obtained in [2] because second order pseudo-convex and second order
quasi-concave are second order pseudo-invex and second order quasi-incave respectively

[1]-
If Jo = <f> and /„ = M (for some a E {1 ,2 , . . . , r} ) , then (2GD) becomes (2M-

WD), and from Theorems 4 and 5, (2M-WD) is a second order dual to (P) if
/ ( . ) + (.) Bw is second order pseudo-invex and yTg is second order quasi-incave, which
extends the results obtained in [2].

We now assume that / and g are three times differentiable.

THEOREM 6 . ("Converse Duality) Let (x*,y*,w*,p*) be an optimal solution to

(2GD) at which the matrix

is positive or negative definite and the vectors

•€/0

are Hnearly independent, where V 2 / — V2 53 !/«Si ' s *^e J~*a row °f ^7f ~
1 t€/0

 J>

V2 53 ytgi and [ v 2 53 yigi] is the j-th row of V2 53 (yigi) . If, for all feasible
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(x,u,y,w,p), /(•)— 52 yi9i(-) + (-) Bw is second order pseudo-invex and ^Z 3/»5i(),

a — 1, 2 , . . . ,r is second order quasi-incave with respect to the same T), then x* is an
optimal solution to (P).

PROOF: Since (x*,y*,w*,p*) is an optimal solution to (2GD), by the generalised
Fritz-John theorem [9], there exist r0 G R, v 6 Rn, rQ £ R, a = 1,2,... ,r, /? € R
and 7 G iZm such that

{-V/(z*) + J ] Vyta(;O - Bw* + i/Tv[v2/(**) - Vr o { / ( )
•6/o

(30)

+ E r « { V E ^ ( x * ) - ^*TV[V2 ^ 2/;5i(x*)P*]} = 0
Q=l i&Ia i€la

(31)

{ i * T V 2
5 i ( z>*} - i/T{vfl(**) + V2g{x*)p*) - 7i = 0, i e Jo,

) + V2g(x*)p*} + ra{gi(x') - \p*TV2
9i(x*)jf} - 7i = 0,

(32) ! £ / „ , a = l,2,...,r-,

(33) T0BX* -vTB-2f3(Bw*) =0

(34)

T { 2 / ( z * ) - V2 X) y?*(*')} ~ E(raP* + « )̂T{V2 Y, Vi*(*')} = 0

(35) { ^

(36) /3(w*TBw* - 1) = 0

(37) 7'V = 0

(38) (ro,r1,...,rr,/3)7)^

(39)

Since

/ ( « ) - V 2 £ y,-*(ti)] ., [V2 J ] wft-(tt)] :> a = l , 2 , . . . , r , j = 1 ,2 , . . . , n

are linearly independent at (x*,y*,w*,p*), (34) then gives

(40) rap* + i / = 0, a = 0 , l ,2 , . . . , r .
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Multiplying (32) by y,*, i e Ia, a -1,2,... ,r and using (37) yields

fT{Vy,^(z*) + V2tf*(*>*} - Ta{y*9i(x*) - \V*TV2yUi{**)v*} = 0

i £ / « , a = l , 2 , . . . , r ,

thus

»6/a

From (35), it follows that

(41) ^
>€/a

Using (24), (30) gives

£ „?*(*•) + v [v2/(x*) - v2

»:«(*•)] + V[V2

a=l ig/a

i£M\I0 t€Af\/0

From (40), it follows that

a = l

- TO){

»e/0 i6M\/0
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That is

(42) j ^ (ra - TO){V £ ViSi(*') + V2

Multiplying (42) by v and using (41) yields

[vV(*') - VVT<7(**)]P*}" = o.

By assuming that V [V2/(z*) — V2y*Tg(x*)]p* is positive or negative definite, it follows

that

(43) v = 0,

so (40) becomes

T ap* = - l / = 0, a = 0 , l ,2 , . . . , r .

If T a = 0, a = 0,1,2, . . . ,r, we get 7 = 0 from (31) and (32), and /? = 0 from (33) and
(36); but (To,Ti,...,Tr,/?,7,i/) = 0 contradicts (39). Thus ra > 0, a = 0 ,1 ,2 , . . . , r ;
this gives p* = 0. Hence from (31) and (32), it follows that

(44) T0^(a;*)-7i = 0, i g l ,

(45) r Q f l l (x*) -7 i = 0, i € / « , o = l ,2 , . . . , r .

Therefore <7(a:*) ^ 0 since 7 ^ 0 and ra > 0, a = 0 ,1 ,2 , . . . , r. Thus x* is feasible for

(P)-

Multiplying (44) by y;, i € / 0 and using (37) gives

royi9i(x') =0 , i € /o.

By To > 0, it follows that

(46) »?*(**)= 0, »6/o .

Also, 1/ = 0, T0 > 0 and (33) give

(47) Bx* - (2/3/TO)BW*.

Hence

(48) (x*TBw*) = (x'TBx*)1/2(w*TBw*)1/2.
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If /3 > 0, then (36) gives w*TBw* = 1, and so (48) yields

{x*TBw*) = {x*TBx*)1/2.

If /3 - 0, then (47) gives J3x* = 0. So we still get

(x*TBw*) = (z*T5z*)1/2.

Thus, in either case, we have

(49) (x*TBw*) = {x*TBx*)1/3.

Therefore from (46), (49) and p* = 0, we have

t€/0

If, for all feasible (x,u,y,w,p), /(.)— X! l/>5>(-) + (-) •^t" is second order pseudo-invex
i6/o

and 52 2/»ff»(0> a = l>2, .-- ) '" is second order quasi-incave with respect to the same

•q, then from Theorem 4, x* is an optimal solution to (P). U

Note that if p = 0, then (2GD) becomes (GD), (2MD) becomes (MD) and (2M-
WD) becomes (M-WD). This means that second order duality implies first order duality,
and so Theorems 4, 5 and 6 imply Theorems 1, 2 and 3 respectively.
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