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DUALITY FOR A
NON-DIFFERENTIABLE PROGRAMMING PROBLEM

J. ZHANG AND B. MOND

A generalised dual to a non-differentiable programming problem is given and du-
ality established under general convexity and invexity conditions. A second order
dual is also given and duality theorems proved under generalised second order
invexity conditions.

1. INTRODUCTION

In {11}, Mond considered the class of non-differentiable mathematical programming

problems
(P) Minimise f(z) + (z7 Bz)'/”
(1) subject to g(z) > 0

where f and g are twice differentiable functions from R™ to R and R™ respectively,
and B is an n X n positive semi-definite (symmetric) matrix. Let zo satisfy (1); Mond
[11] defined the set
Zy = {z | zTVg,-(a:o) 20 (Vie @), and
2TV f(z0) + zTB'.r:O/(:z;oTB:z:o)ll2 <0, if 27 Bzy > 0;

2TV f(zo) + (2T Bz 172 <0, if eTBze =0
0

where Qo = {i | gi(zo) = 0}, and established the following necessary conditions for zg
to be an optimal solution to (P).

PROPOSITION 1. If zo is an optimal solution of (P) and the corresponding set
Z, is empty, then there exist y € R™,y > 0, and w € R™ such that

yTg(z0) =0, VyTg(zo) = Vf(zo) + Bw, wTBw1, (z{Bzo)l/z =zT Bw.

(Mond and Schechter [12] gave a constraint qualification which assures that Z; is
empty. Additional constraint qualifications were given by Wolkowitz [18].)
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30 J. Zhang and B. Mond (2]

Using these necessary conditions, a Wolfe type dual problem [17] was formulated

in [11}:
(WD) Maximise f(u)—y”g(u) +u7[VyTg(u) - Vf(u)]
subject to Vf(u) + Bw = VyTg(u)
wlBw <1
y20.

(WD) is a dual to (P) assuming that f is convex and g is concave.
Chandra, Craven and Mond [4] weakened the convexity requirements for duality
by giving a Mond-Weir type dual [14]

(M-WD) Maximise f(u) +u[VyTg(u) - V()
subject to Vf(u) — VyTg(u) + Bw =0
yTg(x) <O
wTBw <1
y20

and established duality theorems assuming that f(.) + (.)7 Bw is pseudo-convex for all
w € R™ and that yTg is quasi-concave.

Mond and Smart [13] later generalised the results obtained by Mond [11] and
Chandra, Craven and Mond [4] to invexity conditions ([3, 5, 7]). Bector and Chandra
[2] recently presented two different second order duals to (P), which extended the results
obtained by .Mangasa,rian [8], Mond [10] and Mond and Weir [15] for second order
duality and the results obtained by Mond [11], Mond and Weir {14] and Chandra,
Craven and Mond [4] for first order duality.

In this paper, we propose a general Mond-Weir type dual [14] to (P) and establish
the duality theorems under both convexity and invexity conditions. A general second
order Mond-Weir dual [15] to (P) will also be proposed and duality results established
under generalised second order invexity conditions [1].

We shall make use of the generalised Schwarz inequality ([6] and [16])

(2) (=T Bw) < (z7Bz)"* (wTBw)'"’.

Note that equality holds if, for A > 0, Bz = ABw.
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2. DuALITY

We propose the following general dual (GD) to (P).

(GD) Maximise f(u)— Z vigi(u) + uT Bw
i€ly
(3) subject to V f(u) — VyTg(u) + Bw =0
(4) Y %ig(w) <0, a=1,2,...,r
i€ly
(5) wTBw <1
y20

where I, C M = {1,2,...,m}, a=0,1,2,...,r with

UZ=M and I.0Ig=¢ if a#8.

a=0

THEOREM 1. (Weak Duality) Let z be feasible for (P) and (u,y,w) feasible

for (GD). If, for all feasible (z,u,y,w), f(.)— 3 vigi(.) +(.) Bw is pseudo-invex and
iclp

3> vigi(.), @ =1,2,...,r is quasi-incave with respect to the same 7, then

i€y

infimum (P) > supremum (GD).
PROOF: Since z is feasible for (P) and (u,y,w) is feasible for (GD), we have

Z vigi(z) — Z vigi(u) =20, a=12,...,r

1€ 1, i€l

By the quasi-incavity of Y v:ig;, a=1,2,...,7, it follows that
i€l

7(z,u)TV Z ¥igi(u) 20, a=1,2,...,nr
i€la

Hence

n(e,0)"0( Y wsiw) >0,

iEM\Ip
then from (3), it follows that
n(z,u)” [Vf(u) -V Z yigi(u) + Bw} 2 0.

i€lp
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The pseudo-invexity of f(.)— Y yigi(.) + (.)TBw then yields
i€lp

f(=)~ Y wigi(z) +2TBw > f(u) - Y yigi(u) +u” Bw.

i€ly i€ly
Thus

f(2) +2TBw > f(u) - Z yigi(v) + uTBw, from y >0 and g(z) > 0.
i€ly

Since wT Bw < 1, by the generalised Schwarz inequality (2), it follows that

f(=) + ("”TB-"’)I/Z > f(u) - Z vigi(u) +uT Bw.
i€lp 0

THEOREM 2. (Strong Duality) If zy is an optimal solution of (P) and the cor-
responding set Z, is empty, then there exist y € R™ and w € R™ such that (zo,y,w)
is feasible for (GD) and the corresponding values of (P) and (GD) are equal. If, also,
I OEDY y,-gi(.)—f-(.)TBw is pseudo-invexfor all w € R™ and Y wigi(.), a =1,2,...,7

i€lp i€la
is quasi-incave with respect to the same 1, then (zg,y,w) Is optimal for (GD).

PROOF: Since zy is an optimal solution to (P) and the corresponding set Zg is

empty, then from Proposition 1, there exist y € R™ and w € R™ such that

17z _ ngw, y20.

yTg(z0) = 0, VyTg(z0) = Vf(zo) + Bw, wTBw < 1, (2] Bzo)
So, (zo,y,w) is feasible for (GD) and the corresponding values of (P) and (GD) are

equal. If f(.)— 3 wigi(.) + (.)TB‘w is pseudo-invex for all w € R™ and Y wigi(.),
i€y i€l

a = 1,2,...,r, is quasi-incave with respect to the same 7, then from Theorem 1,

(z0,y,w) must be an optimal solution for (GD). 1

We now consider some special cases of the dual (GD) and Theorems 1 and 2.

If Iy = M, then (GD) becomes (WD) and from Theorems 1 and 2, (WD) is a dual
to (P)if f(.) —yTg(.)+ (.)TBw is pseudo-invex with respect to 7.

In the case Iy = ¢ and I, = M (for some a € {1,2,...,7}) then (GD) becomes
(M-WD) and from Theorems 1 and 2, (M-WD) is a dual to (P) if f(.)+ (.)"Buw is
pseudo-invex and yTg is quasi-incave with respect to the same 7. This extends the
results obtained in [4] because pseudo-convex and quasi-concave functions are pseudo-

invex and quasi-incave functions respectively.
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If Iy =¢,1; = {1},...,Im = {m} (r = m), then (GD) becomes

(M-WD1) Maximise f(u)+ u7 Bw
subject to V f(u) — VyTg(u) +Bw=20
¥igi(v) €0, i=1,2,...,m
wTBw < 1

y=>0

and (M-WD1) is a dual to (P) if f(.)+ (.)TB'w is pseudo-invex and each yig;, i =
1,2,...,m is quasi-incave with respect to the same . Note that if g; is quasi-incave
with respect to 7, y; 2 0, then y;g; is quasi-incave with respect to the same 7; thus
(M-WD1) is a dual to (P) if f(.)+(.)TBw is pseudo-invex and each g;, i = 1,2,...,m
is quasi-incave with respect to the same 7.

The following corollaries obviously hold because pseudo-convex and quasi-concave

functions are, respectively, pseudo-invex and quasi-incave functions.

CoROLLARY 1. (Weak Duality) Let z be feasible for (P) and (u,y,w) feasible

for (GD). If, for all feasible (z,u,y,w), f(.)— Y wigi(.) + ()T Bw is pseudo-convex
i€lp
and Y yigi(.), a=1,2,...,r is quasi-concave, then
i€l

infimum (P) > supremum (GD).

COROLLARY 2. (Strong Duality) If ¢o is an optimal solution to (P) and the
corresponding set Zy is empty, then there exist y € R™ and w € R™ such that
(zo,y,w) is feasible for (GD) and the corresponding values of (P) and (GD) are equal.
H, also, f(.)— Y yig;(.)+(.)TBw is pseudo-convex for all w € R™ and 3 y;9:(.), a =

icl i€la
1,2,...,r is quasi-concave, then (zo,y,w) is an optimal for (GD).

THEOREM 3. (Converse Duality) Let (z*,y*,w*) be optimal to (GD) at which

the matrix
sz(z*) _ sz*Tg(:B*)

is positive or negative definite and the vectors

{Z Vyigi(z?), a= 1,2,...,?}

i€l

are linearly independent. If, for all feasible (z,v,y,w), f(.) - E vigi() + (.)TBw is

i€lp

pseudo-convex and Y, vigi(.), @ =1,2,...,r is quasi-concave, or f(.)— Y vigi(.) +
i€ly i€ly
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(.)TBw is pseudo-invex and Y, yigi(.), @ =1,2,...,r is quasi-incave with respect to
icl,
the same 7, then z* is an optimal to (P).
PROOF: Since (z*,y*,w*) is an optimal solution to (GD), by the generalised Fritz-
John theorem [9], there exist 7o € R, v € R*, 7, € R, a=1,2,...,7, B € R and
4 € R™ such that

o (=VH=") + Y Viigi(a®) - Bu®) + T (Vf(z") - Y2y Tg(z"))
i€lp

©) + 3T Vainte) =0

a=1 i€l

(7) Togi(2*) —vTVgi(z") ~ 71 =0, i€l
(8) vIVgi(2*) — Tagi(z*) +7: =0, 1€ Ils, a=1,2,...,7,
(9) 7 (Bz*) — vTB - 28(Bw*) =0
(10) .r‘,(z y,"g,-(z*)) =0, a=12,...,r
i€l
(11) B(wTBw* —1) =0
(12) 7'y =0
(13) (70, T15- 3T, B,7) 2 0
(14) (10,715 --3Tas 8,7, v) # 0.

Multiplying (8) by y; 20, i € Ia, a=1,2,...,r and using (12) yields
vIVylgi(z*) — Tayl9i(z*) =0, i€l,, a=12,...,m
Hence

VI Vyieiz) = Ta ) 3igi(2*) =0, a=1,2,...,m
i€l 1€l

From (10), it follows that

(15) e E Vyigi(z*) =0, a=1,2,...,n
i€ly

Using the equation constraint (3), (6) becomes

(16) i (Te — 70)(2 Vyfg;(z*)) +T (sz(::*) _ sz*Tg(z")) —o0.

a=1 i€l
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Multiplying (16) by » and using (15) gives
lIT (VZf(z*) _ sz*Tg(:l:*))V = 0.

By assuming that V2f — V2yTg is positive or negative definite at (z*,y*,w*) it follows
that

an v=0.
Then (16) gives
(18) > (ra = )Y Vaiai(=") =0.
a=1 1€
Since the vectors { Y Vyigi(z*), o = 1,2,. ..,r} are linearly independent, (18)
i€ly
then yields
(19) Ta—T0o=0, a=12,...,n

If 7o =0,then 7, =0, a=1,2,...,r from (19), v =0 from (7) and (8), and 8 =0
from (9) and (11), but (70, 71,72,...,7r,#,7,8) = 0 contradicts (14). So 7o > 0. This
gives 7o > 0, a = 1,2,...,7. Then (7), (8), (13) and 7o > 0, @ = 0,1,2,...,7 yield
g(z*) 2 0. Therefore, z* is feasible for (P).

Multiplying (7) by v}, ¢ € Iy and using (12) gives

Toy; g:i(z*) =0, i € I,.
Then from 7y > 0, it follows that
(20) ¥igi(2*) =0, 1€ Lp.

Also, v =0, 170 > 0 and (9) give

(21) Bz* = (2f/m0) Bw*.
Hence
(22) (=" Buw*) = (' Be")"/* (w " Bw*)'”.

i B > 0, then (11) gives w*T Bw* =1 and so (22) yields

(z’TBw*) = (z"TB:c")ll2 .
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If 5 =0 then (21) gives Bz* = 0. So we still get
(z*TBw*) _ (z"TBz*)l/Z.
Thus in either case, we obtain
(23) (z*TBw*) = (=*TBz*)'/".
Therefore from (20) and (23), we have
f(2)+ (@ TB2") " = f(z*) - 3" vigi(=") +=°T Bu.
i€lo

If, for all feasible (z,u,y,w), f(.)— Y, y,-g,-(.)+(.)TBw is pseudo-convexand Y. y;gi(.),
i€lp i€la

a = 1,2,...,r is quasi-concave, or f(.) — ¥ yigi(.) + (.)TBw is pseudo-invex and
i€l

> wigi(.), @ =1,2,...,r is quasi-incave with respect to the same 7, then fromTheo-

i€la

rem 1 or Corollary 1, z* is an optimal solution to (P). a
3. SECOND ORDER DUALITY

In this section, we present a general non-differentiable second order Mond-Weir
dual [15] to (P). We shall make use of the following definitions.

DEFINITION 1: [1] f is second order pseudo-invex if for all p € R™, there exists
an 7n(z,u) such that

n(z, )7 [VI() + V5] 20 = f(2) > f(u) - 557V (u)p.

DEFINITION 2: [1] f is second order quasi-invex if for all p € R™, there exists an
n(z,u) such that

£(2) < £(w) ~ 557V 5()p = n(z,u)7 [Vi(u) + VP 5(u)p] <O0.

A function g is said to be second order pseudo-incave or second order quasi-incave
if —g is second order pseudo-invex and second order qausi-invex respectively.

The second order Mangasarian type [8] and Mond-Weir type [15] duals to (P) were
regarded in [2] as the following problems:

(2MD)
Maximise f(u) ~37g(u) +u7Buw ~ 257V [1(u) - s7g()]p
subject to Vf(u) — VyTg(u) + Bw + V2 f(u)p — ViyTg(u)p = 0
wTBw <1

y=0
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where u,w,p,€ R™ and y € R™.
(2M-WD)
Maximise f(u)+ u? Bw — %pTVZ f(u)p
subject to Vf(u) — VyTg(u) + Bw + V*f(u)p — V3yTg(u)p =0
1
y7g(u) — 5P V¥ g(u)p <O
wIiBw <1
y2=0.

Using the second order convexity conditions (called bonvexity in [2]), Bector and
Chandra established duality theorems between (P) and (2MD) and (2M-WD), respec-

tively.
Following Mond-Weir [15] we now propose a general second order dual (2GD) to
(P)
(2GD)
1
- . Tp,, 1 T[g2 o2 .
Maximise f(u)— Zy,g,(u)+u Bw 2P [V fw)—-V Zy,g,(u)]p
i€ly i€ly

(24)

subject to Vf(u) — yTg(x) + Bw + V2 f(u)p — VyTg(u)p = 0

1 T 72
(25) > wigi(w) - 5"V Y wig(up <0, a=1,2,...,m,
icly icly

(26) wTBw < 1
(27) y20

where I, C M = {1,2,...,m}, a=10,1,2,...,7 with

UZL=M and LNl =¢ if a#3.

a=0

THEOREM 4. (Weak Duality) Let z be feasible for (P) and (u,y,w,p) feasible

for (2GD). H, for all feasible (z,u,y,w,p), f(.)— X vigi(.) + (.)TBw is second order
icly

pseudo-invex, and Y, vigi(.), @« = 1,2,...,r is second order quasi-incave with respect

i€ly
to the same 7, then

infimum (P) > supremum (2GD).
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PROOF: Since z is feasible for (P) and (u,y,w,p) is feasible for (2GD), we have
1
Y vigi(z) = ) vigi(u) — §PTV2 Y wigi(u)p =0, a=1,2,...,r
i€ly i€lx i€la

By the second order quasi-incavity of Y vig;, @« =1,2,...,7, it follows that
icl,

220" (V X woin) + V' ¥ wiawp) 20, a=12,.00m

i€la i€la

Hence

(28) 1w (Y Y wa+ v Y watwr) >0

ieM\Io iEM\Io
Then from (24), (28) yields
(z,u)’ (Vf(u) + V2 f(u)p— Y vigi(n) - V2 Y wigi(u)p + Bw) 2 0.
i€ly i€lp
Since f(.)— Y igi(.) + (.)T Bw is second order pseudo-invex, it follows that
i€lp

f(z) =) vigi(z) + 27 Bw

i€y

> f(w) ~ Y vigi(w) + w7 B — 2p7V?[1(w) = ¥ wigi(u) + w7 Bulp.
icly i€lp

Thus, from y > 0, g(z) > 0, we have

1
(29) f(2)+2"Bw > f(u) — Y yigi(u) +uTBw — 2p7 [V2f(u) = V2 3 yigi(u)|p.
i€l i€lp
Since wTBw < 1, by the generalised Schwarz inequality (2), (29) gives that
1
f(z)+ (zTB:z:)l/z = f(u) - Z vigi(u) + uTBw — EpT [sz(u) S v Z y;g;(u)]p.
1€l i€ly

THEOREM 5. (Strong Duality) If zo is an optimal solution to (P) and the
corresponding set Zy is empty, then there exist y € R™ and w € R™ such that
(2o0,y,w,p = 0) is feasible for (2GD), and the corresponding values of (P) and (2GD) are
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equal. If, for all feasible (z,u,y,p,w), f(.)~ z; y,-g,-(.)+(.)TBw is second order pseudo-
invex, and Z vigi(.), @ =1,2,...,7is secofdoorder quasi-incave, then (z¢,y,w,p = 0)
is an optin;eezllasolution for (2GD).

PROOF: Since zy is an optimal solution to (P) and the corresponding set Zg is
empty, then from Proposition 1, there exist y € R™ and w € R™ such that

yTg(zO) =0, VyTy(zo) = Vf(to) + Bw, wTBw <1,

(ngzo)l/z =zl Bw, y>0.

So, (zo,y,w,p = 0) is feasible for (2GD) and the corresponding values of (P) and (2GD)
are equal. If f(.) — 3 wigi(.) + (.)TBw is second order pseudo-invex for all w € R*
i€l
and ZI: yigi(.), a = 1,o 2,...,r, is second order quasi-incave with respect to the same
i€la
7, then from Theorem 4, (zo,y,w,p = 0) must be an optimal solution for (2GD). 0

We now consider some special cases of (2GD) and Theorems 4 and 5.

If Iy = M, then (2GD) becomes (2MD), and from Theorems 4 and 5, (2MD) is a
second order dual to (P) if f(.) —yTg(.)+ (.)T Bw is second order pseudo-invex, which
extends the results obtained in [2] because second order pseudo-convex and second order
quasi-concave are second order pseudo-invex and second order quasi-incave respectively
[1]-

If Iy = ¢ and I, = M (for some « € {1,2,...,7}), then (2GD) becomes (2M-
WD), and from Theorems 4 and 5, (2M-WD) is a second order dual to (P) if
)+ (.)TBw is second order pseudo-invex and y7 g is second order quasi-incave, which
extends the results obtained in [2].

We now assume that f and g are three times differentiable.

THEOREM 6. (Converse Duality) Let (z*,y*,w*,p*) be an optimal solution to
(2GD) at which the matrix

v [v?f(zt) _ VZytTg(z*)]p*
is positive or negative definite and the vectors

{[sz(z*)—vz Z ‘y?gi(z')]j, [Vz E y}‘g;(z’)]j, a=12,...,r, j=1,2,... ,n}

icly icly

are linearly independent, where [V’f -y y,-g,'}. is the j-th row of V*f —
i€ly J

V2% Y yigi and [V2 3 y.-g;]. is the j-th row of V2 Y (y;g:). If, for all feasible
i€lp i€l J i€ly
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(z,u,y,w,p), f(.)— 3 wigi(.) + ()T Bw is second order pseudo-invex and > vigi(L),

i€lp i€ln
a =1,2,...,r is second order quasi-incave with respect to the same 7, then z*

optimal solution to (P).

PROOF: Since (z*,y*,w*,p*) is an optimal solution to (2GD), by the generalised
Fritz-John theorem [9], there exist 0 € R, v€ B*, 1, € R, a = 1,2,...,7, B E R

and v € R™ such that
n{-Vf(=*)+ D Vyigi(a") - Bu' + P*TV[VZJ‘ ~ V2 wie(=" " ]}
i€lg i€lp
+ VT{sz(z*) _ sz*Tg(z*) 4+ V[sz(:z:*)p* _ sz*Tg(:c*)p*] }
(30)

+ZTQ{VZy,yz(1' )—3 *TV[Vz > viai(=")p' ]} 0
il i€la

(31)
1 *\_* * *), * .
'ro{gi(:c*) — —p*Tvzg,-(:l: Jp } - UT{Vg(:c )+ V3g(z*)p } —v =0, i€l

- VT{Vg + Vig(z*)p* } + Ta{g.-(z'*) - %p*TVZgi(z*)p*} ~7: =0,

(32) iel,, a=1,2,...r

(33) ToBz* — vTB - 28(Bw*) =0

(34)

(rop™ + ) {V2f(z") = V2 Y wigi(=")} - D+ (V" 3 ¥i9i(=")}

iclp = i€l

(35) fa{ Y vigil=") 2p*TV’ > vie(=")p’ } =0, a=1,2,.

i€la icla

(36) B(w*TBw* ~1) =0

(37) ¥Ty* =0

(38) (705715 0T B,7) 2 0

(39) (T0yT15+--s7rsBy7,v) # 0.

Since

{[V’f(u) vy y.g.(u)] [V’ > y.g,(u)] a=1,2,...,r, j= 1,2,...,n}

i€l i€l
are linearly independent at (z*,y*,w*,p*), (34) then gives

(40) Tap' +v =0, a=0,1,2,...,7
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Multiplying (32) by y?, ¢ € Ia, « =1,2,...,7 and using (37) yields

VT{VyE‘gi(Z*) + V2y;gi(z*)p* } - Ta{y gi(z*) - —P “TV2ytgi(z* )p*} =0
iel,, a=12,.

thus
"T{ > Vyigi=") + ) szfgi(z*)p*}
i€ly icly
_Ta{zy:gt )—'p TVZZylg,(:c )p} a=1,2,...,n
i€la i€ly

From (35), it follows that

(41) VT{ Z Vyigi(z*) + Z szfg.'(:c*)p*} =0, a=12,...,n

1€l i€l

Using (24), (30) gives

(7" + )T { V2 f(z") - V2 Y wiailz") + V[VE(=") = V2 Y wiai(e")] "}

i€ly i€lp
- Z (Tap™ +v) {Vz[z vigi(z” ] + V[V2 > y?gs(z*)]p*}
i€l i€ly

- To{V Y sz + VY y;yi(z*)p*}

iEM\I iEM\Ip
- %Top*T{V[sz(w*) -y yfyi(z*)]p*}

iely
+ Z 'ra{V Y vig=") + VY [Z ¥ 9i(=") ] }
i€l i€ls
+ Z ETaP*T{V[Vz > y.’gi(z*)]P‘} = 0.
a=1 i€la

From (40), 1t follows that

Z (Ta — To){V Y wielz) + V2 Y yiai=")pt }

i€la i€l,

+ %u { [sz(z*)—V’Zyi!h(z")]lff‘—V[V2 > yzg‘(”*)]p‘} =0

i€l iEM\I,
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That 1s

(42) Y (ra-m){VY yigil=)+ V2 Y viad=")p"}

a=1 i€la i€la
1 * * % *
+ §VT{V[V2f(= )= V4 Tg(z )]p } =0.
Multiplying (42) by v and using (41) yields
uT{V [sz(z‘) - sz*Tg(z')]p"}u =0.

By assuming that V[V2f(z*)—V?y*Tg(z*)]p* is positive or negative definite, it follows
that

(43) v=0,

so (40) becomes
Tep*=—-v=0, a=0,1,2,...,n.

f71,=0 aa=01,2,...,7, we get v =0 from (31) and (32), and B = 0 from (33) and
(36); but (70,71,...,7r,B3,7,7) = 0 contradicts (39). Thus 7o >0, a =0,1,2,...,r;
this gives p* = 0. Hence from (31) and (32), it follows that

(44) Tog,'(:!:*) e 0, 1€l
(45) Tagi(z®) =7 =0, i€ls, a=1,2,...,r

Therefore g(z*) > 0 since ¥ > 0 and 7, >0, «=0,1,2,...,r. Thus z* is feasible for

(P).
Multiplying (44) by i, 7 € Ip and using (37) gives

Toylgi(z*) =0, i€l
By 70 > 0, it follows that
(46) yigi(z*) =0, iel,.

Also, v =0, 79 > 0 and (33) give

(47) Bz* = (28/7) Bw™.
Hence
(48) (szwa) — (thBzx)l/z(thBw*)l/z'
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If B> 0, then (36) gives w*T Bw* = 1, and so (48) yields
(z*TBw*) = (z"TBz‘)’/Z.

If =0, then (47) gives Bz* = 0. So we still get
(Z*TBw:) _ (z‘TBz*)I/Z_

Thus, in either case, we have

(49) (z*TBw*) = (z"TB=")"/".

Therefore from (46), (49) and p* = 0, we have

f(z*)_*_ (z*TBz*)l/z — f(z*)_ Z y:gi(z:&)_l_z*TBw*_ _;_p::rvz [f(m*)_y*Tg(z*)]pt.
iclp

If, for all feasible (z,u,y,w,p), f(.)— 3 wigi(.) +(.)TBw is second order pseudo-invex

i€ly
and Y wigi(.), @ =1,2,...,r is second order quasi-incave with respect to the same
i€lq
7, then from Theorem 4, z* is an optimal solution to (P). 1

Note that if p = 0, then (2GD) becomes (GD), (2MD) becomes (MD) and (2M-
WD) becomes (M-WD). This means that second order duality implies first order duality,
and so Theorems 4, 5 and 6 imply Theorems 1, 2 and 3 respectively.
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