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Throughout we assume all rings are commutative with identity. We denote the lattice
of ideals of a ring R by L(R), and we denote by L(R)* the subposet L(R) - R.

A classical result of commutative ring theory is the characterization of a Dedekind
domain as an integral domain R in which every element of L(R)* is a product of prime
ideals (see Mori [5] for a history). This result has been generalized in a number of ways.
In particular, rings which are not necessarily domains but which otherwise satisfy the
hypotheses (i.e. general ZPI-rings) have been widely studied (see, for example, Gilmer
[3]), as have rings in which only the principal ideals are assumed to satisfy the hypothesis
(i.e. ^-rings).

General ZPI-rings and ^-rings can both be thought of as "almost Dedekind". In both
cases, one gets a representation as the finite direct product of integral domains of the
same type (Dedekind domains in the first case, ^-domains in the second case) and
quotients of discrete (rank one) valuation rings (i.e. special principal ideal rings—or
SPIRS as they have come to be called).

Note that ZPI-rings are rings in which every ideal in L(R)* satisfies the "product of
prime ideals" condition, whereas only the principal ideals of a ;r-ring are assumed to
satisfy this condition. This naturally raises consideration of rings in which every ideal of
L(R)* generated by n elements is a product of prime ideals. Any UFD is a Jr-ring; so a
jr-ring need not be a general ZPI-ring. In this regard, Levitz [4, 5] has obtained the very
interesting result that wrings are the single exception. If every doubly generated ideal in
L(R)* is the product of prime ideals, then every ideal in L(R)* is.

Butts and Gilmer [3] have characterized ZPI-rings in a somewhat different manner.
They have shown that ZPI-rings are characterized by the property that every ideal in
L(R)* is a finite intersection of powers of prime ideals.

In this paper, we obtain the analogue of Levitz's theorem for the Butts-Gilmer
characterization of general ZPI-rings. That is, we show that, once again, two elements
suffice: if R is a ring in which every double generated ideal in L(R)* is the intersection of
powers of prime ideals, then every ideal in L(R)* is.

For convenience, we will say that a ring R satisfies "Property D" if every doubly
generated ideal in L(R)* is the intersection of powers of prime ideals.

We begin with a simple but useful observation.

L E M M A 1. Let (R,M) be a quasi-local ring satisfying Property D. If x , yeM then
there are only a finite number of primes minimal over (x,y).

n

Proof (x,y) is the finite intersection of powers of prime ideals, say (x,y) = P) Pf.
Then any prime minimal over (x,y) is one of the primes Pt. ' = l

We also note the following.

LEMMA 2. If R satisfies Property D and if S is a multiplicatively closed subset of R,
then Rs satisfies Property D.

Proof. (a/sl,b/s)Rs = (a,b)Rs.
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The following appears in a different form in [1]. It reduces the problem for
quasi-local rings to two cases.

LEMMA 3. Let (R,M) be a quasi-local ring satisfying Property D. Then either M is
principal or M = M2.

Proof. Assume M =/= M2. Choose x e M — M2 and let y be any element of M. Then
.v

(x,y2) is the intersection of prime powers, say (x,y2) = (~) P''. As x $ A/2, it follows that

.V A"

(x,y2) = Pi p . But y2 e Pi implies y e P ; so also (x,y) = ("1 P,• = (x,y2). By Nakayama's
; = i /=i

lemma, it follows that y e (x). By the choice of y, it follows that M = (x).

The following addresses the quasi-local case with M principal.
LEMMA 4. Let (R, M) be a quasi-local ring satisfying Property D. If M is a principal

ideal of R, then every nonzero ideal of R is a power of M.

Proof. If M is a minimal prime of R, then M is the only prime ideal of R. It follows
that every nonzero principal ideal of R is a power of M, and hence that every nonzero
ideal of R is a power of M.

Hence, assume M = (x) is not a minimal prime ideal of R. If P is any prime ideal of

R, then P = P n(x) = (P:x)x = PM; so P c f) M". Set P0=r\Mn- Note that M" =
i=i i=i

M"+l would imply M" = 0 (by Nakayama's lemma), which would, in turn, contradict the
assumption that M is not minimal. Hence M" =£M"+I for all n. Then x e Mr - Mr+] and
yeMs- Ms+X imply (x) = Mr and (y) = Ms, whence (xy) = (x)(y) = Mr+S. It follows that
xy $ Mr+s+\ and hence that that Po is prime. Note that P,, contains all prime ideals of R
different from M.

If Po is a minimal prime ideal of R, then either Po = 0, in which case R has exactly two
prime ideals and both are principal, or else P() ¥= 0 but PJ! = 0 for some n > 2. In this case,
choose z e Po — P?). Then (z) is of the form P|>, so (z) = Po. Once again R has exactly two
prime ideals and both are principal.

Hence if P() is a minimal prime of R, then (R, M) is a local Noetherian domain with
M a principal ideal. If AeL(R)* with A^M" and A<£Mn+\ then A=ADM" =
(A:Mn)Mn with (A: M")<£M; so (/I :Mn) = R and ,4 = Af".

Now, assume P(l is not a minimal prime. By Lemma 1, the number of minimal primes
is finite. Choose z e Po outside of all minimal primes of R. Let Q be a prime minimal over
(z). Then zRQ is a power of QRQ and zRQ=tz2RQ, so QRQ^Q2RQ. Choose
yeQ-(Q2)Q. Then (z,_y) is the intersection of powers of distinct primes, say

(z,y) = C\ PI1, with (say) Q = P,. Then e, = 1 and (z,y)RQ = QRQ = {z\y)RQ. It follows
i=i

that QRQ=yRQ.
We now show that the powers of Q are primary. Hence, assume rs e Q" and s $ Q.

Then reQ and, as above, (r,_y") is an intersection of powers of distinct primes,

(r,yn) = r)Pf, with (say) Q = PV Then (r,y")RQ = Qe\ Since also (rs,y")RQ =
/i
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(r,y")RQ = Qe'RQ, it follows that e , = « , whence (r,yn) s Q" = Pf. Hence r e £>", and
(2" is 0-primary.

The ideal (_y) also is an intersection of powers of distinct primes, say (y) = (~) Qf.
1 = 1

Here, it can be assumed that Qt c P 0 , / = l , . . . , ( . For / = 1, . . . ,t, let £, be a prime ideal
which is both minimal over (y) and contained in Qh

By the above, the powers of £, are primary for £,. From 0 = (0: M)M c Ef and
M£E,, it follows that (0: M) c £f< for all i = \,. . . ,t. Then ( 0 : M ) c Q f , i = 1,. . . , t, as
well. From this and the assumption that M is principal, we have MQ' = Q', i = 1,. . . , t

and M(y) = Mr)Q^ = C)MQf=r\ Qf = (y). By Nakayama's lemma, y=0, which
/=i i = i /=i

contradicts the choice of y and completes the proof.

The following addresses the quasi-local case with M = A/2.

LEMMA 5. Let (R, M) be a quasi-local ring satisfying Property D in which M = M2.
Then every ideal of R is a power of M.

Proof. Assume M is not a minimal prime of R. Let £),, i = 1,. . . ,t, be the minimal

primes of R. Choose x e M - U Qi, and let P,, i = 1,. . . , r, be the primes minimal over
/=i

(x). If M e {Pi}, i = 1,. . . , t, then t = 1 and (x) is a power of M. It follows that (x) = M,
and hence that A/ = 0. Hence, M=£Ph i = 1,. . . ,r. Note that any rank one prime
containing x is minimal over (JC).

r
Choose y e M — U Pi, so (x,y) is not contained in any rank zero prime or any rank

; = i

one prime. Let Q be minimal over (x,y). By passing to RQ, we may assume that Q is
maximal and that (x,y) is a power of Q. Since (x,y) =£ (x,y)2, it follows that
QRQ^Q2RQ, and hence (by Lemma 3) that QRQ is principal in RQ. By the previous
lemma, Q has rank at most one, which contradicts the choice of Q.

Hence M is minimal over 0, and necessarily is the only prime ideal of R. It follows
that every principal ideal of R is a power of M, and hence that every ideal of ft is a
power of M.

We now globalize.

THEOREM 6. Let ft be a ring satisfying Property D. Then ft is the finite direct product
of special principal ideal rings, fields and (one-dimensional) Dedekind domains.

n

Proof. Let 0 = P) Pf be a representation of 0 as an intersection of powers of distinct
; = i

primes. In this case, it can be assumed that each prime P, is minimal over 0. By the
previous lemmas, each maximal ideal of ft contains exactly one minimal ideal of ft, so the
primes P, , . . . , Pn are comaximal. It follows that R = R{x • • • x Rn, where each ft, is
isomorphic to R/Pf. Note that each factor ft, inherits Property D from ft. By passage to one of
the factors, we can assume that ft has a unique minimal prime P.

If P is maximal, then ft is local, and ft is either a field or a special principal ideal
ring. Hence, assume P is not maximal. By the previous lemma, it follows for each
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maximal ideal M that M±M2 and that RM is a DVR. Hence R is an integral domain and
every nonzero prime ideal of R is maximal. It follows from Property D that every doubly
generated ideal of R is the product of prime ideals.

The result now follows from Levitz's theorem.

THEOREM 7. Let R be a ring. Then R is a general Z PI-ring if, and only if, every
doubly generated ideal in L(R)* is the finite intersection of prime powers.

Proof. This is immediate from Theorem 6.
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