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Throughout we assume all rings are commutative with identity. We denote the lattice
of ideals of a ring R by L(R), and we denote by L(R)* the subposet L{(R) — R.

A classical result of commutative ring theory is the characterization of a Dedekind
domain as an integral domain R in which every element of L(R)* is a product of prime
ideals (see Mori [5] for a history). This result has been generalized in a number of ways.
In particular, rings which are not necessarily domains but which otherwise satisfy the
hypotheses (i.e. general ZPI-rings) have been widely studied (see, for example, Gilmer
[3]), as have rings in which only the principal ideals are assumed to satisfy the hypothesis
(i.e. m-rings).

General ZPI-rings and z-rings can both be thought of as “almost Dedekind”. In both
cases, one gets a representation as the finite direct product of integral domains of the
same type (Dedekind domains in the first case, w-domains in the second case) and
quotients of discrete (rank one) valuation rings (i.e. special principal ideal rings—or
SPIRS as they have come to be called).

Note that ZPI-rings are rings in which every ideal in L(R)* satisfies the “product of
prime ideals” condition, whereas only the principal ideals of a sx-ring are assumed to
satisfy this condition. This naturally raises consideration of rings in which every ideal of
L(R)* generated by n elements is a product of prime ideals. Any UFD is a z-ring; so a
n-ring need not be a general ZPI-ring. In this regard, Levitz [4, 5] has obtained the very
interesting result that x-rings are the single exception. If every doubly generated ideal in
L(R)* is the product of prime ideals, then every ideal in L(R)* is

Butts and Gilmer [3] have characterized ZPI-rings in a somewhat different manner.
They have shown that ZPI-rings are characterized by the property that every ideal in
L(R)* is a finite intersection of powers of prime ideals.

In this paper, we obtain the analogue of Levitz’s theorem for the Butts-Gilmer
characterization of general ZPI-rings. That is, we show that, once again, two elements
suffice: if R is a ring in which every double generated ideal in L(R)* is the intersection of
powers of prime ideals, then every ideal in L(R)* is

For convenience, we will say that a ring R satisfies “Property D” if every doubly
generated ideal in L(R)* is the intersection of powers of prime ideals.

We begin with a simple but useful observation.

LemMA 1. Let (R, M) be a quasi-local ring satisfying Property D. If x, y € M then
there are only a finite number of primes minimal over (x, y).

Proof. (x,y) is the finite intersection of powers of prime ideals, say (x,y)= ﬂ Pf,
Then any prime minimal over (x, y) is one of the primes P,.

We also note the following.

LemMa 2. If R satisfies Property D and if S is a multiplicatively closed subset of R,
then Ry satisfies Property D.

Proof. (a/s,, b/s)Rs = (a, b)R;.

Glasgow Math. J. 36 (1994) 131-134.

https://doi.org/10.1017/50017089500030640 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089500030640

132 E. W. JOHNSON

The following appears in a different form in [1]. It reduces the problem for
quasi-local rings to two cases.

Lemma 3. Let (R, M) be a quasi-local ring satisfying Property D. Then either M is
principal or M = M*.

Proof. Assume M # M?* Choose x € M — M? and let y be any element of M. Then

(x, y?) is the intersection of prime powers, say (x, y?) = () P{. As x ¢ M2, it follows that
i=1

(x,y) = h P. But y2€ P, implies y € P; so also (x,y)= () P, = (x, y?). By Nakayama’s
i=1 i=1
lemma, it follows that y € (x). By the choice of y, it follows that M = (x).
The following addresses the quasi-local case with M principal.

LemMA 4. Let (R, M) be a quasi-local ring satisfying Property D. If M is a principal
ideal of R, then every nonzero ideal of R is a power of M.

Proof. 1f M is a minimal prime of R, then M is the only prime ideal of R. It follows
that every nonzero principal ideal of R is a power of M, and hence that every nonzero
ideal of R is a power of M.

Hence, assume M = (x) is not a minimal prime ideal of R. If P is any prime ideal of

R, then P=PN(x)=(P:x)x=PM; so Pc () M". Set P,=(\M". Note that M" =
i=1 i=1

M"*" would imply M" =0 (by Nakayama’s lemma), which would, in turn, contradict the
assumption that M is not minimal. Hence M" # M"*' for all n. Then x e M" — M"*' and
y e M° — M**! imply (x) = M” and (y) = M*, whence (xy) = (x)(y) = M"**. It follows that
xy ¢ M"***!and hence that that P, is prime. Note that P, contains all prime ideals of R
different from M.

If P, is a minimal prime ideal of R, then either P, =0, in which case R has exactly two
prime ideals and both are principal, or else F,# 0 but Pj =0 for some n =2. In this case,
choose z € Py— P3. Then (z) is of the form P}, so (z) = P,. Once again R has exactly two
prime ideals and both are principal.

Hence if P, is a minimal prime of R, then (R, M) is a local Noetherian domain with
M a principal ideal. If A e L(R)* with AcM" and AEM"*', then A=ANM"=
(A:M™")M" with (A:M")¢M;s0 (A:M")=R and A =M".

Now, assume F, is not a minimal prime. By Lemma 1, the number of minimal primes
is finite. Choose z € F, outside of all minimal primes of R. Let O be a prime minimal over
(z). Then zR, is a power of QR, and zR,#z’Rp, so QR,# Q’R,. Choose
yeQ—(0%y. Then (z,y) is the intersection of powers of distinct primes, say

(z,y)= f'] P¢, with (say) Q = P,. Then e, =1 and (z, y)Rp = QRy = (2%, y)Ry. 1t follows
i=1

We now show that the powers of ( are primary. Hence, assume rs € Q" and s ¢ Q.
Then reQ and, as above, (r,y") is an intersection of powers of distinct primes,

(r,y")= h P{, with (say) Q=P,. Then (r,y")Ryo=Q°. Since also (rs,y")Rp=
i=1
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(r,y")Ro = Q°'Ry, it follows that e, =n, whence (r,y")c Q" = P{". Hence r e 0", and
Q" is Q-primary.

I
The ideal (y) also is an intersection of powers of distinct primes, say (y) ={") Q¢.

i=1
Here, it can be assumed that Q; c F,i=1,...,t Fori=1,...,¢, let E; be a prime ideal
which is both minimal over (y) and contained in Q,.
By the above, the powers of E; are primary for E;. From 0= (0:M)M c E{ and
MZE,, it follows that (0:M)c Ef forall i=1,...,t Then (0:M)c Qf,i=1,...,t, as
well. From this and the assumption that M is principal, we have MQ'=Q', i=1,...,t

and M(y)=MMN Qf'=MNMQf=() Qf=(y). By Nakayama’s lemma, y =0, which
i=1 i=1 i=1
contradicts the choice of y and completes the proof.
The following addresses the quasi-local case with M = M2,

LeEmMA 5. Let (R, M) be a quasi-local ring satisfying Property D in which M = M>.
Then every ideal of R is a power of M.

Proof. Assume M is not a minimal prime of R. Let Q;, i=1,... ¢, be the minimal
t

primes of R. Choose xe M —|J Q;, and let P,, i=1,...,r, be the primes minimal over
i=1

(x). fMe{P},i=1,...,t,thent=1 and (x) is a power of M. It follows that (x) =M,
and hence that M =0. Hence, M#PF,, i=1,...,r. Note that any rank one prime
containing x is minimal over (x).

Choose y e M — | _J P, so (x,y) is not contained in any rank zero prime or any rank
i=1

one prime. Let Q be minimal over (x,y). By passing to Ry, we may assume that Q is
maximal and that (x,y) is a power of Q. Since (x,y)+#(x,y)? it follows that
OQR, # Q°Ry, and hence (by Lemma 3) that QR,, is principal in Ry. By the previous
lemma, Q has rank at most one, which contradicts the choice of Q.

Hence M is minimal over 0, and necessarily is the only prime ideal of R. It follows
that every principal ideal of R is a power of M, and hence that every ideal of R is a
power of M.

We now globalize.

THEOREM 6. Let R be a ring satisfying Property D. Then R is the finite direct product
of special principal ideal rings, fields and (one-dimensional) Dedekind domains.

n
Proof. Let 0= (") P{ be a representation of 0 as an intersection of powers of distinct
i=1

primes. In this case, it can be assumed that each prime P, is minimal over 0. By the
previous lemmas, each maximal ideal of R contains exactly one minimal ideal of R, so the
primes P,,...,P, are comaximal. It follows that R=R, X ---XR,, where each R; is
isomorphicto R/ Py, Note that each factor R;inherits Property D from R. By passage to one of
the factors, we can assume that R has a unique minimal prime P.

If P is maximal, then R is local, and R is either a field or a special principal ideal
ring. Hence, assume P is not maximal. By the previous lemma, it follows for each
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maximal ideal M that M # M? and that R,, is a DVR. Hence R is an integral domain and
every nonzero prime ideal of R is maximal. It follows from Property D that every doubly
generated ideal of R is the product of prime ideals.

The result now follows from Levitz’s theorem.

THEOREM 7. Let R be a ring. Then R is a general ZPl-ring if, and only if, every
doubly generated ideal in L(R)* is the finite intersection of prime powers.

Proof. This is immediate from Theorem 6.
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