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NECESSARY AND SUFFICIENT CONDITIONS FOR 
THE DISCRETENESS OF THE SPECTRUM OF 

CERTAIN SINGULAR DIFFERENTIAL OPERATORS 

CALVIN D. AHLBRANDT, DON B. HINTON AND ROGER T. LEWIS 

1. Introduction. Let P(x) be an m X m matrix-valued function that 
is continuous, real, symmetric, and positive definite for all x in an interval 
/ , which will be further specified. Let w(x) be a positive and continuous 
weight function and define the formally self adjoint operator / by 

l(y) = (-l)nw{x)-l{P(x)y^{x)Yn) 

where y(x) is assumed to be an ra-dimensional vector-valued function. 
The operator / generates a minimal closed symmetric operator L0 in the 
Hilbert space J£,m

2(J; w) of all complex, w-dimensional vector-valued 
functions y on J satisfying 

/ w(x)(y(x), y(x))dx < co 
J 

with inner product 

[y,z] = I w(x)(y(x), z(x))dx 
J J 

where (y, z) = ^?=i;yiZt for z(x) = (zt(x)) and y(x) = (yi(x)). All self-
adjoint extensions of L0 have the same essential spectrum ([5] or [19]). 
As a consequence, the discreteness of the spectrum S(L) of one self-
adjoint extension L will imply that the spectrum of every selfadjoint 
extension is entirely discrete. 

We will say that / has property BD provided every selfadjoint extension 
of L0 has a spectrum which is discrete and bounded below. 

In this paper we are primarily concerned with requirements for P(x) 
and w(x) which will be necessary and sufficient in order that / have 
property BD. When the singularity is infinite we let / = [1, oo ), and if 
the singularity is finite, in which case we may assume that it is at zero, 
we let J = (0, 1]. 

V. A. Tkachenko [6] showed that when the singularity is at oo , m = 1, 
and w(x) = 1 in order for / to have property BD it is sufficient that 

\imx2n-1\œ P{s)~lds = 0. 
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G. A. Kalyabin [10] and R. T. Lewis [13] showed independently that 
this condition is necessary. Kalyabin's result also applied in the vector-
matrix case. 

It is interesting to compare these results with a result for the "polar" 
equation. M. Sh. Birman ([4] or [6, p. 93]) showed that the "polar" 
equation 

(- l )V 2 w>(x) = XP(x)~13'(x) (m = 1) 

has property BD if and only if 

limx2"-1) ^ PisT'ds = 0. 

V. V. Martynov [16] extended this result to the more general vector-
matrix operator. We show in this paper that the "polar" operator has 
property BD if, and only if, / has property BD (w(x) = 1). Hence, the 
two results above are equivalent. 

In the case of a finite singularity at 0, m = 1, and w(x) = 1, D. B. 
Hinton and R. T. Lewis [9] showed that / has property BD if and only if 

lim x1-2" f%4n-2P(s)-1<fc = 0. 
x^0+ J 0 

Using some of the well-known methods of oscillation theory, we extend 
the above criteria to include weights other than w(x) = 1 and the more 
general vector-matrix differential operators. In addition, we show that, 
for some weight functions, / may have property BD even when the 
integral 

v I Pisy'ds 
J J 

does not exist, where vA will denote the maximum eigenvalue of a 
matrix A. 

2. Oscillation theory and discreteness of the spectrum. In this 
section we outline some of the basic ideas of oscillation theory and its 
connection with spectral theory. Let Q(x) denote a continuous, m X m, 
symmetric matrix on J. 

Distinct points c and d of (a, b), — oo ^ a < b ^ oo , are said to be 
conjugate with regard to the equation l(y) = Qy if there exists a non-
trivial solution y such that 

(2.1) yv-»(c) = 0 = y(i-1}(d), i=l,2,...,n. 

In this case, the equation l(y) = Qy is said to be oscillatory on (a, b). 
Otherwise, the equation is said to be disconjugate or nonosdilatory on 
(af b). If the numbers a and b are real, the above definitions hold when 

https://doi.org/10.4153/CJM-1981-019-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1981-019-1


SINGULAR DIFFERENTIAL OPERATORS 231 

(a, b) is replaced by [a, b], (There are other definitions of disconjugacy in 
the literature which are not equivalent to the one contained herein.) If 
the equation l(y) = Qy is oscillatory in every neighborhood (N, oo) of 
infinity then the equation is said to be oscillatory at oo. Otherwise, the 
equation is nono sdilatory (or dis conjugate) at oo . Similarly, in the case of 
a finite singularity which we may assume to be at zero, the equation 
Ky) = Qy ls s a id to be oscillatory at 0 if it is oscillatory in every interval 
of the form (0, 8). Otherwise, the equation is nonoscillatory at 0. 

Let J?/m
n(a, b) denote the set of all complex, m-dimensional vector-

valued functions y(x) that have compact support interior to (a, b) with 
the first n — 1 derivatives absolutely continuous, and y{n) 6 J^m

2((a, b); 
w). When the numbers a and b are real, then we define J^/m

n[a, b] as above 
with (a,b) replaced by [a,b]. 

For y Ç sém
n(a, b), define 

$(y) = I * (P(x)y{n)(x),y{n)(x))dx. 
J a 

If y £ JX?m
n(a, b) is also in the domain of the minimal closed symmetric 

operator L0 generated by /, then an w-fold integration by parts shows that 

[Lo(y),y] = [l(y),y] = Hy). 

The following results are fundamental to our study. 

THEOREM 2.1. The equation l(y) = Qy is nonoscillatory on the interval 
[c} d] if and only if $(y) — [Qy, y] > 0 for all y £ s^m

n[c, d], y ^ 0. 

THEOREM 2.2. In order that ( — oo, X) Pi 5(L), the part of the spectrum 
of a self adjoint extension L of L0 lying to the left of a given point X, be finite 
it is necessary and sufficient that there exists a number N such that 
$(y) - \\y, y] è 0 for all y G ^fm

n(Ny oo). 

If the singularity is at 0, / = (0,1], then the analogous result to 
Theorem 2.2 holds. 

THEOREM 2.3. In order that ( — oo, X) H S(L) be finite it is necessary 
and sufficient that there exists a number 8 > 0 such that $(y) — \[yyy] è 0 
for ally £s/m

n(0,8). 

For the proofs of these theorems and associated discussions the reader 
is referred to [6, 5, 20,18]. The connection between oscillation theory and 
the discreteness of the spectrum of selfadjoint extensions of L0 is given 
by the next corollary whose proof follows immediately from the above 
theorems. 

COROLLARY 2.1. When the singularity is at oo (at 0), a necessary and 
sufficient condition that I have property BD is that l(y) = \y be non­
oscillatory at oo (at 0) for all X. 
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Our next objective is to generalize to the vector-matrix case a theorem 
of Ahlbrandt [1, Theorem 3.1] which was a critical step in the proof of 
Theorem 1 of Lewis [13, Theorem 3] cited above. We first outline some 
of the well-known facts needed for this proof. For the remainder of this 
section we assume that Q is positive definite on J. 

Associated with the equation 

(2.2) (-iy(PyWyn) = Qy 

is the reciprocal equation 

(2.3) (-l)n((>-yw>)(»> = P~ly. 

We wish to show that the nonoscillation at oo or 0 of one of the equations 
is equivalent to the nonoscillation of the other equation. When 
n = m = 1, a substitution of z = Py' will yield the result easily. Other­
wise, this substitution does not work. 

Boundary problems of the form (2.2)-(2.1) are equivalent to boundary 
value problems of the form 

u' = Au + Bv 
( ' ' } v' = Cu - A*v 

(2.5) u(c) = 0 = u{d) 

where B and C are Hermitian with B and — C positive semidefinite on 
(a, b). We let A* denote the conjugate transpose of A. In case n = 1, A 
is the m X m zero matrix, B = P~l, and C = — Q. If n > 1, regard 
A, B, and C as matrices with elements consisting of m X m matrix-
valued functions with Aiti+i = Im, Bnn = P~l, Cu = — Q, and all other 
entries being the m X m zero matrix where Im denotes the m X m 
identity matrix. For basic disconjugacy results concerning (2.4) the 
reader should consult [20, pp. 337, 338]. 

If y is an m-vector function for which the derivatives indicated in (2.2) 
exist and if u and v are n-vectors whose entries are m-vector-valued 
functions U\, . . . , un and Vi, . . . , vn such that 

(2 6) Mk = y(k~1)y k = 1,.. . ,n 
' vn„k = (-l)*(P;y(n>)<*>, k = 0, . . . , n - 1 

then y is a solution of (2.2) if and only if v\ = —Qu\ if and only if (u ; v) 
is a solution of (2.4). In addition, for solutions (2.2) and (2.4) so related 
the boundary conditions (2.1) are equivalent to the boundary conditions 
(2.5) and equation (2.2) is disconjugate on an interval if and only if (2.4) 
is disconjugate on that interval [1]. 

The system corresponding to (2.3) is 

(2 7) " ' = - A * u + ( - C > 
v' = -Bu + Av 
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where Af B, and C have the above definitions. System (2.7) is called the 
reciprocal system to system (2.4). For more details, the reader should 
consult [1]. 

THEOREM 2.4. Equation (2.2) is nonoscillatory at co {at 0) if and only 
if equation (2.3) is nonoscillatory at co (at 0). 

Proof. As in the proof of Theorem 3.1 of Ahlbrandt [1] the assumption 
that equation (2.2) is nonoscillatory in a neighborhood of oo (of 0) 
produces a Hermitian solution W of the matrix Riccati equation. 

(2.8) W = F + WGW 

in that same neighborhood, where F = —D*CD, G = D~lBD*~l and D 
is a fundamental solution of D' = AD. The crucial step of that proof is 
establishing that W is nonsingular in some neighborhood of oo (of 0). 
From the assumption that P and Q are positive definite, it follows that 
F and G are positive semidefinite and the eigenvalues of W are non-
decreasing. In the present setting the eigenvalues of W are increasing 
since xi < x2 implies that fl* F(t)dt is positive definite by Lemma 2.1 
of [2] as a consequence of the ''identical normality" of system (2.4) ; i.e., 
if u is zero throughout any nondegenerate interval, then v is also zero on 
that interval. (The condition of identical normality is not required for 
these results. This hypothesis has been removed in the recent Ph.D. 
Dissertation of Carl H. Rasmussen who was a student at the University 
of Connecticut.) Thus, there exists a neighborhood of co (of 0) on which 
W is a solution of (2.8) with all mn eigenvalues of W nonzero; hence W 
is nonsingular there. Thus W\ = W~l is a solution of the Riccati equation 
W = — G — WFW in that neighborhood of oo (of 0) and the reciprocal 
system (2.7) is nonoscillatory. The converse argument is analogous. 

Define l(y) by 

l(y) = ( -1 )»P ( w r y »>)<»>. 

The operator / generates a minimal closed symmetric operator L0 in the 
Hilbert space J^m

2(J; P~l) of all complex, w-dimensional vector-valued 
functions y on the interval / satisfying 

I (P(x)-1y(x)ty(x))dx < oo 

with inner product [y, z] = jj {P~ly, z)dx. As for /, we will consider 
conditions which imply that / has property BD. As a consequence of 
Corollary 2.1 and Theorem 2.4, the next result can be established easily 
when the singularity is at oo with / = [1, co ) or at 0 with / = (0, 1]. 

THEOREM 2.5. Property BD holds for I on J£m
2(J\ w) if and only if it 

holds for Ion ^m
2 (J; P-1). 
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This theorem shows that the "polar operator" /, [6, 16], has property 
BD if and only if the one-term operator / has property BD. 

Finally, we establish a needed lemma. 

LEMMA 2.1. Let P(x) be a continuously differentiable, symmetric matrix 
function on [a, b]. Let y be an absolutely continuous m-vector on [a, b] with 
y (a) = 0 = y(b) and y' £ J^m

2([a, b]; 1). / / P' is positive definite on 
[a, 6], then for y ^ 0 

/ . 

b 

(Pf (x)y (x),y (x) )dx 

< 4 
J (P(x)(P,(x)ylP(x) y'(x),y'(x))dx. 

Proof. Let (P')1 / 2 denote the unique positive definite square root of P'. 
We shall denote the inverse of (P')1 / 2 by (P ' ) _ 1 / 2 . By integrating by parts 
and using the Cauchy-Schwarz inequality we obtain the following series 
of inequalities: 

I (P'y,y)dx ^ 2 I \(Py,y')\dx 
J a J a 

\((P')1/2y, (P')~lf2Py')\dx 

^ 2I J (P'y,y)dx\ [J KPiPT^y.ylldx 

» / : 
1/2 

The inequalities above can now be obtained by squaring both sides and 
dividing. 

By Theorem 2.1, we see that Lemma 2.1 actually shows that the 
equation 

( P ( P ' ) - i p y ) ' + \P'y = 0 

is nonoscillatory on [a, b] provided P is nonsingular. 
We consider a method to transform the singularity at 0 to one at 

infinity. In 

(2.9) l(y) = (-lYwixy^P^y^)^, 0 < x S 1, 

we make the substitution t = 1/x, y(x) = xn~lz{t). Then in [3], it is 
proved that l(y) = \y if and only if 

{-l)n{P{t)z^Yn) = \w(t)z, l g / < o o , 

where P(t) = t2nP(l/t) and w{t) = t~2nw(l/t). Since this transformation 
preserves the order of zeros, we see that l(y) — Xy is oscillatory at 0 if 
and only if l(z) — Xs is oscillatory at infinity where 

l{z) = {-i)nw{t)-i(P(t)z^yn\ 
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Hence by Corollary 2.1 and the above remarks, to study property BD 
for (2.9), it is sufficient to consider only equations with a singularity at 
infinity. Thus we consider hereafter only the case J = [1, oo ) ; the results 
obtained have as immediate corollaries results for / = (0, 1] although 
we will not formally state such theorems. 

3. Oscillation and nonoscillation criteria. Corollary 2.1 and the 
accompanying theorems delineate the connection between the oscillation 
theory of differential equations and the spectral theory of the associated 
differential operators. To obtain sufficient conditions for property BD, 
nonoscillation criteria are needed, and to obtain necessary conditions for 
property BD, oscillation criteria are needed. We develop in this section 
some new results in oscillation theory which will be applied in Section 4. 

Let p (x) be a positive continuous (scalar) function on J. For / = [1, oo ) 
define r0(x) = p{x)~l and 

/

OO j CO 

rk-i(t)dt when I rk-i(t)dt < oo 
, x J 1 

/
x rœ 

rk-i{t)dt when I rk-X(t)dt = oo 
for k = 1,2, . 

We wish to consider the vector-matrix equation 
(3.1) (-l)n(p(x)ImyW)w = Q(x)y 
on J where pipe) > 0 and Q(x) is positive semidefinite (Q(x) ^ 0) on J. 

THEOREM 3.1. When n > 1, assume that for some positive constant bk the 
scalar equation 

(3.2) (rky')' + bkrk_2y = 0 

is nonoscillatory at oo for each k 6 {2, 4, . . . , 2(n — 1)}. Let bQ = 1 and 

rk(x) = 

c-(rk)/4-
Equation (3.1) is nonoscillatory at co provided one of the following two 
conditions is satisfied: 

(1) The integral }TQ(t)dt exists and for all x in some neighborhood of oo 

r2n-i(x) v I Q(t)dt ^ C». 
J X 

(2) For all x in some neighborhood of oo 

r2n-i(x) vj Q(t)dt ^ Cn. 

Proof. In either case (1) or (2) assume that the condition holds for all 
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x £ (N,GO). For N < b < co and each y G s/m
n(a, b) we have that 

J * (Qy, y)dx = 2 J * ( J °° <2<%, /)<** 

in case (1) and 

J (Qy,y)dx = -2 J (J Qdty,y'dx\ 

in case (2). In either case we can conclude that 

J* (Oy.oOd* g 2C„ ) nU\\y\\ ll/IM* 
*J a U n 

by the Cauchy-Schwarz inequality. (Note that vA = \\A\\, the operator 
norm, when A is positive definite.) Applying the Cauchy-Schwarz 
inequality in Jzfm

2([a, b}\ 1) we obtain the inequality 

1 1/2 

( r£ -2 / , / ) J (ey,y)^^2C„[J fa^r^tf, ?)<**] [J /~~1 "' 

^ a 

by an application of Lemma 2.1 with P(x) = ± r^-ilm where the sign 
is chosen in order that P' > 0. Note that for n = 1 the proof is complete 
by Theorem 2.1. If n > 1 then the vector-matrix equation 

(rkImy'y + bkrk-.2Imy = 0 

is nonoscillatory at co for k Ç {2, 4, . . . , 2{n — 1)} and hence, 

(3.3) ( r ^ / ^ ' ) ' + V * " 1 ^ = 0 

is nonoscillatory at oo for k £ {2, 4, . . . , 2(n — 1)} by Theorem 2.4. 
Therefore, for N sufficiently large Theorem 2.1 applied to (3.3) implies 
that 

I (Qy,y)dx g 4C^_2 I ( r ^ V , / ' ) ^ 

«J. & ( r 0 "y n ) ,y ( n ) )^ 

Consequently, by Theorem 2.1 equation (3.1) is nonoscillatory on every 
subinterval [a, b] of (TV, oo ) and it is therefore nonoscillatory at oo. The 
proof is complete. 
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For m = n = 1 Theorem 3.1 is the well-known theorem of Hille [7], 
with p(x) = 1, and Moore [17], for general p(x). 

LEMMA 3.1. Let F(x) be a continuously differentiable, m X m, positive 
definite, symmetric matrix on [a,b]. If Ff(x) is nonsingular, F"(x) is 
positive definite, and F(x) — 4:cF/(x)(F/f(x))~1F/(x) is positive semi-
definite on [a, b] for some positive constant c, then 

(3.4) (Fy'Y + cF"y = 0 

is nonosdilatory on [a, b]. 

Proof. The proof follows immediately from Lemma 2.1 and Theorem 
2.1. 

For m = 1, a > 0, and F(x) = xa, a (? [0,1], the hypothesis of 
Lemma 3.1 holds for c ^ (a — l) /4a. Since (3.4) reduces to an Euler 
equation in this case, it is clear that the bound on c is sharp. 

COROLLARY 3.1. / / p'{x) ^ 0 for all x in some neighborhood of GO and 
JTQ(t)dt exists, then 

r2n-i(x) v) Q(t)dtè ( 4 - 8 T 1 

J x 

is sufficient for the nono s dilation of (3.1) at GO . 

Proof. By Lemma 3.1 with m = 1, c = 1/8 and Theorem 3.1 it will 
suffice to show that for k Ç {2, 4, . . . , 2(n — 1)} 

rk{x) - *>_!(*)72r*_2(s) è 0 

for all x sufficiently large. Since p'(x) ^ 0, then rt(x) is increasing, for 
i = 0, 1, 2, . . . , and 

2rk-.2(x)rk(x)/rk-i(x)2 ^ 2 J ^_2(0 

X J rk-2(s)dsdt/ y J rk.2(t)dtj = 1 

which completes the proof. 

COROLLARY 3.2. / / ^'(x) ^ 0 for all x in some neighborhood of oo and 
j?rk(t)dt < oo for k = 0, 1, . . . , 2n - 3, 

r2n~i(x) vJQ(t)dtû ( 4 - 8 T 1 

is sufficient for the nono s dilation of (3.1) at co . 

Proof. Proceeding as in the proof of Corollary 3.1 we have that rt(x) is 
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decreasing for i = 0, 1, 2, . . . , 2{n - 1), and 

2rk-2(x)rk(x)/rk-1(x)2 ^ 2 J rk-2(t) 
J X 

X J rk-2(s)dsdt/ ( J rk-2(s)ds) = 1 

which completes the proof. 

For £(x) = xa, Corollaries 3.1 and 3.2 apply when either a ^ 0 or 
a > 2n — 3, respectively. In fact, when rk(x) and rk_2(x) are powers of x, 
equation (3.2) reduces to an Euler equation for which the test for the 
constant bk is well-known. However, when p(x) = xa with a = 2i — 1 
i = 1, 2, . . . , n — 1, then rÂ:_2(x) = x_1 and 

ffc(#) = I Intdt for & = 2i. 

Since 

J rfc(oc) *dx = J rk-2(x)dx = GO, 

then, by the Leighton-Wintner Theorem [11, 21], equation (3.2) is 
oscillatory at oo for all positive constants bk and, consequently, the 
theorem does not apply. The theorem does apply, however, for any 
a $ { 1 , 3 , 5, . . . , 2w — 3}. A portion of the next theorem is proved in 
[9, Theorem 2.2] for m = 1 (the proof is analogous for general m) and it 
does apply when p(x) = xa and a £ {1, 3, 5, . . . , 2n — 3}. Otherwise, it 
follows as a corollary of Theorem 3.1. 

THEOREM 3.2. Suppose that p(x) = xa for some constant a. There is a 
positive constant k(a, n) such that equation (3.1) is nonoscillatory at GO 
provided one of the following conditions is satisfied: 

(1) The integral JfQ(t)dt exists, ad {1, 3, . . . , 2n — 1), and as x —» oo 

x2n-!-a v \ œ Q{t)dt £k(a,n). 
J x 

(2) The integral JTQi^dt exists, a £ {1, 3, . . . , 2n — 1}, and as x —> oo 

x ^ ^ l l n *P v J °° Q(t)dt S Hot, n) 

where 77 = 1 for a = 2n — 1 and rj = 2 for a £ {1, 3, . . . , 2n — 3}. 
(3) As x —> 00 , vflQ(t)dt —» 00 and 

x2,-i-« v y Q^dt ^ k^n)m 

Proof. The proof of parts (1) and (2) is essentially contained in 

https://doi.org/10.4153/CJM-1981-019-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1981-019-1


SINGULAR DIFFERENTIAL OPERATORS 239 

[9, Theorem 2.2] and hence, we do not repeat it here. Part (1) also 
follows as a corollary of Theorem 3.1. 

If the inequality of part (3) holds then a > 2n — 1. Equation (3.2) 
reduces to an Euler equation and the proof follows easily as a corollary 
of Theorem 3.1. 

Our need of Theorem 3.2 does not require knowledge of the value of 
the constant k(a, n). For discussions in this regard, we refer the reader 
to [6, 8]. We do note that the constants can be shown to be sharp in 
most cases. 

When m = 1 and a = 0, condition (1) of Theorem 3.2 is the Hille-
Glazman criterion [6] which was cited for general m by Martynov [16] 
and for general a by Lewis and Wright [15]. 

We now consider oscillation criteria at oo for equation (3.1). 

LEMMA 3.2. Suppose p in (3.1) is continuously differ entiable and for some 
constants M > 0 and /x ^ 0 satisfies \p'(x)\ ^ Mp(x)fi on [1, oo ). Then if 
K = [2M(3/2)»]-\ we have for all t, s è 1 satisfying \t - s\ ^ Kp(s)l~» 
that 1/2 < p(t)/p(s) < 3/2. 

Proof. For a fixed s let g{t) = p(t)/p(s). If \g(t) - 1| è 1/2 for some 
t such that \t — s\ ^ Kp(s)l~^, then g{s) = 1 implies that there is a /*, 
|** - s\ ^ Kp(s)1-^ such that \g(t*) - 1| = 1/2 and \g(t) - 1| < 1/2 
for all t between s and t*. Hence by the Mean-value Theorem there is a to 
between 5 and t* such that 

i = If('*) - i| = k'itoW - s\ 

p(s) lt Sl = p(s) Kp{S> 

= MKg{toY < MK (3/2)" = 1/2. 

This contradiction establishes the lemma. 

Note that with the above conditions on p, for n ^ 1, 

M*)1-; - pari N Mix _ 1} 
1 - M I 

and hence 

Kpix)1-» - x S [KM\l - M I - l]x + K{p(l)1-» ~ M\l - n\]. 

It is an easy exercise to show KM\1 — n\ < 1 for /x ^ 0; hence we 
have 

(3.5) lim^Kpix)1-» - x = - o o . 

The limit (3.5) is obvious for JU, = 1. 
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THEOREM 3.3. Let p in (3.1) be as in Lemma 3.2. Then there is a positive 
constant c(p) such that (3.1) is oscillatory at infinity if either of the following 
hold (A = 1 - (1 - M)(2W - 1)): 

(1) The integral JfQ(t)dt exists and 

lim sup p(x)-A v I Q(t)dt > C(p). 
X^œ ** X 

(2) As x —> ce , vjlQ(t)dt -» oo and 

limsup£(x)~A v \ Q(t)dt > C(p). 

Moreover, for p(x) = 1, the same result holds if we replace p(x)~A in (1) 
and (2) by x2n~\ 

Proof. By Theorem 2.1, it is sufficient to prove that for each TV there 
is a member y £ Am

n(Ny oo ) such that 

/

CO j OO 

p(s)(yin)(s),y(n)(s))ds - I (Q(s)y(s),:y(s))ds < 0. 
N J i V 

Le t /be a C°°( —oo , oo ) function such that / (x) = Oforx fg Oand/(x) = 1 
for x ^ 1. For positive numbers ri and i?i, N < rx < i?x to be deter­
mined, define (with K and /x as in Lemma 3.2), 

jte) 
\ 1 , n ^ x . 

(te)> *** 

r ^ x ^ r i , r = ri — Kp(ri) M, 

Kx) = \ 1 » r i = x = - ^ I » 

g £, R = Rx+KpiR^1-

Let £ be a constant, unit ra-vector to be further specified and define 
y(x) = g(x)£;thusy £ Am

n(N, oo). 
By the above definitions and Lemma 3.2, 

/ ' P(x) (y(n)(s), y(n)(s))ds = f1 p{s)fn) ( ^ ) ' 
ds 

(ri - r) 

6^ s — r 
oP(s)Jn(u) -J^ZTrf^, « ~ r i _ r -

T ^ ^ ï f1/6 , )(«) ïd« = ^ 0 - ) A , Ci = (3/2)^-2" V fn\ufdu. \ri r; t/ o ^ o 

In a similar manner we have that 

fBp(s)(y(n\s),yM(s))ds^c1p(R1f 
J Ri 
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Using these bounds in (3.6) and the fact Q(x) =Ï 0 yields that 

(3.7) I(y) Û cyp{rf + €&(&)* - J (Q(s)t, t)ds. 

We now show that we may take c{p) = 2|A|Ci. 
In case (1) we write (3.7) as 

Iiy) ^ p{rxf *^£& + * * £ £ -Pin)-* J"1 (Q(s)ï, Z)ds 
PinY ' 'Pin) 

From 1/2 ^ p{r)/p{ri) ^ 3/2, we have p(rY/p{r{)A g 2 | A ' ; hence 

(3.8) I(y) ^ p{nf c(fi) + * ^ r £ - P(rifA / * ' (Q(*)É, Ods Pin) 
By (1) we have a number x > N so that 

'J. P(x) v I Q(s)ds > c(p) + e 
J x 

for some e > 0. By (3.5) it is sufficient also with rx — x to assume 
r > N. Let £ be such that 

Vj" Q(s)ds=J~ (Q(s)l;,l;)ds-, 

hence we can choose Ri > f\ — x so that 

£(*)"* (Q(s)Z,it)ds>c(j>)+e/2 

and Cip{RiY/p(riY < e/2 (note that (1) implies that p(x)~A~^co as 
x —» oo ). Thus the right-hand side of (3.8) is negative and the proof is 
complete. 

In case (2) we write (3.7) as (using c\ ^ c(p)) 

(3.9) I{y) ^ ( / J ' (Q(s)ï, è)ds) [ciP(r)A(j^ (0(*)É, S)ds) * 

+ c(p)p(R1)
A(j*1 (Q(s)^Ods) l - l j . 

Let ri now be such that r > N. If p(x)~A —> 0 as x —> oo , then 

lim sup/?(x)~~A J> I Q(s)ds = lim sup £(x)~A v I Q(s)ds > c(p) 
Z~>co *^ r i Z-^co *^ 1 

while if p(x)~A does not converge to zero, then 

(x) A *>J imsup£(x) v I Q(s)ds = co. 
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In either case we can choose Ri > r\ so that 

c(p)p(R1)
A[vJ^Q(s)dsf * < 1 - e 

for some e > 0 and also so that 

cMr)à(yj\(s)ds) l <e/2. 

Choosing £ so that 

/

'Ri f*Ri 

Q(s)ds= I (Q(s)Z, lt)ds 
ensures that the right-hand side of (3.9) is negative; the proof for (2) is 
now complete. 

Incase£(x) = 1, we taker = f i /2andi^ = 22?i, and repeat the above 
two arguments for choosing ru Ru and £. 

For pix) = xa, a ?^ 0, we choose M = 1 — or1 and then 

p(x)'A = x2n~l-«. 

With pipe) = eaX, we take /x = 1 ; hence p(x)~~A = e~aX. The restrictions 
on p imposed by Lemma 3.2 are only that it grow sufficiently regular. 

When^(x) = xa, a > 2n — l ,and JTQ(l)dt exists, we have established 
in Theorem 3.2 the fact that (3.1) is nonoscillatory. When a — 2n — 1 
and )*\Q(ï)dt exists, it appears to be an open question for n > 1 as to 
whether there is a constant C such that 

' In x v I lim sup In x v I Q(t)dt > C 

implies the oscillation of (3.1) at oo . Theorem 3.2 provides the associated 
nonoscillation criteria. When n = 1, the next theorem, a Hille-type 
oscillation theorem, answers the above question. For m — 1, the theorem 
was proved by Moore [17] and for general w, part (1) of the theorem is 
similar to a result of Ahlbrandt [2, Theorem 4.1]. However, the proofs 
are different. We let \xA denote the minimum eigenvalue of A. 

THEOREM 3.4. If n = 1, Q(x) ^ 0 for x £ [1, oo ) and either 

/

'oo Çx f*œ 

Q(t)dt exists and lim sup /JL I P( / ) - 1 ^ v I Q{t)dt > 1 
1 a:->co •* 1 J x 

or 

I Pit) 1dt exists and lim sup M I P(t) ldt v\ Q(t)dt 
J 1 Z->oo J X J 1 

(2) I P(t) ldt exists and lim sup M J Pip) dt v ) Q(t)dt > 1 

then equation (2.2) is oscillatory at oo. 
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Proof. For £ a constant unit m-vector and constants 0<a<b<c<d, 
we define 

J ' p i O J P{tyldt 

y(x) = <£ 

Since 

then 

(3.4) 

J P(0-1^| J *P(tyldt 

a H r r » 
{Py',y')dx û\\\ \ Pit)~ldt 

£ for x G [a, 6] 

for x G (6, c] 
i 

£ for x G (c, d]. 

+ u: Pity'dt 

{(Py',y')- (Qy,y)¥x 

u: p- i + 

or 

(3.5) 

i[/>Hii[/>r 
-It/.'HTV.'̂ *) 

/ [ ( i y , y ) - (Qy, ?)]<** 

ilr fd i-iriir r * i- i nr ca i-i-1 

^ J H J H Jp_1 +1 
II L«^ c J II LII L •/ « J II II L t / c J II 

-|[/'HT(/.'^€). 
In case (1), we can proceed as in the proof of Theorem 3.3 with inequality 
(3.4) using the fact that l]^. - 1!! - 1 = ^xA for a positive definite matrix A. 
In case (2), if we proceed with inequality (3.5), then the proof will 
follow. 

4. Discreteness of the spectrum. Our attention can now be given 
to the primary purpose of this paper and that is to establish requirements 
for P{x) and w(x) which are sufficient and in some cases necessary in 
order that / have property BD. All of our results in this section will be 
applications of the oscillation and nonoscillation criteria in Section 3. 

According to Corollary 2.1 and Theorem 2.4, in order for / to have 
property BD it is necessary and sufficient that the equation 
(4.1) (-l)n(w(x)-Yn))(n) = XP(x)-1^ 

be nonosci lia tory at co for all X when the singularity is at co . 
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As in Section 3, we let Wo = w(x) and define 

\ I Wk-i(t)dt when I Wk-i(t)dt < oo 

( J W^_i(/)o7 when J WV-iWd/ = °° 

for k a positive integer. 

THEOREM 4.1. (i) Whenn > 1, assume that for k G {2, 4 , . . . , 2(n — 1)} 
£fce scalar equation 

(4.2) (W^')' + 6^_23> = 0 
is nono s dilatory at oo /or some constant bk. If either 

(4.3) lim WV-i(x) i j °°PitT'dt = 0 
£->co 

or 

/ ; (4.4) lim WV-i(*0 ^ I P(t)~ dt = 0 
Z->oo ^ 1 

/feew / has property BD. 
(ii) When n = 1 and J f P{t)~ldt exists, £ftew (4.3) is a/so a necessary 

condition for propertyBD. Whenn = 1 awi ^ ( J ïP (0 _ 1 ^0 —» °o asx—>oo, 
/Ae» (4.4) is a/so a necessary condition for property BD. 

(iii) If p — w~l satisfies the hypothesis of Lemma 3.2, /&ew (A = 1 — 
(1 - M ) ( 2 w - 1 ) ) 

(4.5) limw(x)A " I °° P ( 0 _ 1 * = 0 

is a necessary condition for property BD provided jfP(t)~ldt exists, and 

(4.6) limw(x)A ? I P(/)_1<ft = 0 
.T-^OO ^ 1 

is a necessary condition for property BD if v\\P\t)~ldt —> oo as x —» oo . 

Proof. By Theorem 3.1, equation (4.1) is nonoscillatory at oo for all X 
when either of the conditions (4.3) and (4.4) are satisfied. Hence, I has 
property BD by Corollary 2.1 and Theorem 2.4. 

If n = 1 and / has property BD, then equation (4.1) is nonoscillatory 
at oo for all X. By Theorem 3.4, 

lim sup I w(t)dt v I P{t)~xdt ^ X-1 

Z-^oo ^ 1 J X 

for all X > 0 if jfPity'dt exists and 

/

Çx 
w(t)dt v I PipY^t g X-1 

* ^ C J U a; ^ 1 
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for all X > 0 when _jfw(t)dt exists. Consequently, either 

lim I w(t)dt v I P(t)~ldt = 0 

or 

w(t)dt v I P{t)~xdt = 0, 
*^« » ^ i 

which completes the proof of (ii). 
Similarly, we may argue that Theorem 3.3 yields the necessary con­

ditions stated in (iii). 

For a certain class of weights w, (4.3) and (4.5) are equivalent, and 
(4.4) and (4.6) are equivalent. Two such functions are w(x) = xy, 
y d { — 1, — 3, . . . , 1 — 2n}, and w(x) = eaX, a ^ 0, in which case 
w(x)A = x2n~1+y and w(x)A = eaX, respectively. 

Similarly, the corollaries of Theorem 3.1 produce corollaries of Theorem 
4.1. 

COROLLARY 4.1. Property BD holds for I if one of the following conditions 
are satisfied: 

(1) The integral §fP(t)~ldt exists, w'(x) ^ 0, and (4.3) is valid. 
(2) The integrals jfWk(t)dt exist for k = 0, 1, . . . , 2n - 3, w'(x) ^ 0, 

and (4.4) is valid. 

To consider the case w(x) = xy, y £ { — 1, —3, . . . , 1 — 2n], we state 
the following theorem which follows as a direct application of Theorems 
3.2 and 3.4. 

THEOREM 4.2. If w(x) = xy, 7 G {—1, —3, . . . , 1 — 2n}, and 

§fP(t)~ldt exists, then 

(4.7) lim x2w-1+7|ln x\v v I " P{t)~ldt = 0 

implies that I has property BD, where 7 = 1 for rj = 1 — 2n and rj = 2 
for ye { -1 , - 3 , . . . , 3 - 2n). When n = 1 and 7 = - 1 , (4.7) is 
necessary for property BD. 

Note that if w(x) = xy and v$xP(t)~ldt —> co as x —> 00 then the 
necessary condition (4.6) is 

lim.r2tt-1+7 vf*P(t)-1dt = Q 

which implies 7 < 1 — 2n. 
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