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ABSTRACT

Average absolute (instead of quadratic) deviation from median (instead of
expectation) is better suited to determine the safety loading for insurance
premiums than standard deviation: The corresponding premium functionals
behave additive under the practically relevant risk sharing schemes between
first insurer and reinsurer.

KEYWORDS

Premium principles; average absolute deviation; comonotonic additivity;
distorted probabilities.

0. INTRODUCTION

If one looks into the extensive literature on premium principles one gets the
impression that actuaries are more or less incontent with the premium
principles known till now. For example there was not known a nontrivial
functional on nonnegative random variables, in actuarial terms a premium
principle for insurance contracts, with the following elementary and plausible
requirements: PI. The safety loading (premium minus expected value) is
nonnegative, P2. no ripoff, i.e. the premium does not exceed the maximal
claim, P3. consistency, i.e. the safety loading does not change if claims are
augmented by a non-random constant and P4. proportionality, i.e. insuring a
certain percentage of total damage costs that percentage of full insurance. It
should be mentioned that the proportionality property P4 despite its practical
importance is not regarded desirable by all authors (e.g. GERBER). We shall
discuss that point at the end of section three.

The present article intends to make actuaries familiar with a broad class of
functionals with properties PI through P4. These functionals had been
developed (by SCHMEIDLER, YAARI and others) during the last decade in the
context of economic decision theory with the intention to overcome the

1 Lecture, given under the title " Quantilsabhangige Pramienprinzipien" at 21. Tagung der
ASTIN-Gruppe in der DGVM, October 13th, 1989, Stuttgart.
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controversely discussed shortcomings of expected utility theory. Expected
utility had been used, too, to construct premium functionals as the exponential
principle, favoured e.g. by GERBER.

To make things as easy and accessible as possible we confine ourselves to an
elementary one parameter class of premium functionals of the YAARI type
(DENNEBERG 1985, 1988a and b). This functional resembles the standard
deviation principle, where the safety loading is proportional to standard
deviation. But the volatility measure standard deviation is replaced by average
absolute deviation from the median and, surprisingly, all works.

In the first section we compile the properties of average absolute deviation
from median, a volatility measure which nowadays is nearly forgotten, whereas
in the first part of our century it enjoyed equal rights with standard deviation
(e.g. in CZUBER, cf. the discussion in DENNEBERG 1988b). The median being a
quantile, it is appropriate here and in the sequel to employ the quantile
function instead of its inverse function, the usual distribution function.

The premium functional with safety loading proportional to absolute
deviation is introduced in the second section and properties PI through P4 and
some others—here we stress only subadditivity—are verified.

In section three the basic issue of comonotonicity of several random
variables is introduced which, in some sense, is opposite to independence.
Comonotonicity means that the risks involved are not able to compensate each
other and this property implies additivity of our premiums. If risks are shared,
e.g. between first insurer and reinsurer, the partial risks are comonotonic for
most risk sharing schemes, among them all practically relevant ones. Hence our
premium functional is compatible with the pratice of reinsurance. We discuss
comonotonic additivity, a property not shared by the standard deviation
principle, versus independence additivity, a property shared by the variance
and exponential principles.

The final section gives an outlook on the more general class of premium
functionals mentioned above. There is a further well known volatility measure,
which, like absolute deviation, is associated to that class: the Gini coefficient.
It might be interesting for pricing reinsurance.

1. QUANTILE FUNCTION AND ABSOLUTE DEVIATION

Let X be a random variable to be interpreted as claims from an insurance
contract or from a portfolio of such claims. We assume the increasing
distribution function F = Fx of X to be known. F(x), x e IR, denotes the
probability of the event X < x. For our purposes the inverse function F of F is
better suited to represent the distribution of X than F. Since F, in general, is
not one to one (e.g. for discrete distributions), we have to be cautious in
defining F. First, for q in the unit interval [0, 1] we define the -̂quantile of X to
be the interval [ inf x, sup x]. The ^-quantile is the median of X. For

F(x) > q F(x) < q

all q e [0, 1] outside possibly a countable set the g-quantile of X reduces to a
single point. Now we define F{q) to be some fixed point of the <7-quantile of X.
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Then MX = F{%) is a median of X. There is possibly an arbitrariness in the
definition of F and MX but this does not affect the values of the subsequent
integrals. For short the function F will be called the quantile function of X.

The expectation of X is

EX = [ xdF{x) = I* F{q)dq

J -oo J o

and we will make use of the absolute and quadratic norms

\\X\\y= E\X\, \\X\\2--={E{X2)Y12.

The corresponding volatility parameters are average absolute deviation from
median x = x{X) and standard deviation a = a {X):

x--=\\X-MX\\y, a=\\X-EX\\i-

It is natural to take the real numbers MX and EX as points of reference in
defining the respective volatility parameter since these numbers minimise the
respective distance from X:

x = min HA'-all,, a = m i n \\X— a\\2.
a e P. « E R

If one looks for a parameter to indicate asymmetries of distributions one
encounters two main methods. Either one uses higher odd moments, e.g.
E{x3), or semivariances. The analogous to the latter in the case of absolute
deviation are

X ^ ' S/2
\F(q)-MX\dq, x + • = \F{q)-MX\ dq

Jo J 1/2

and one has

X = X + + T _

EX-MX = T + - T _ .

From these equations we derive, that the triple {MX, T_ , x+) of parameters
contains the same information about the distribution of X as the triple
{EX, MX, x).

Finally we prove subadditivity of x and a,

x{X+ Y) < x{X) + x{Y), a{X+ Y) < a{X) + a{Y).

For standard deviation this is simply the triangle inequality for the norm ||-||2.
In case of absolute deviation, apart from the triangle inequality for the norm
Hlli, one needs the above minimal property of the median to cope with the fact
that the median is not additive:
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T(X+Y) = | |Ar+y-M(A'+r) | j 1 = min\\X+Y-a\U <\\X+Y-(MX+MY)\\X

<||A'-MZ||, + | |y-A/yi|1 = x{X) + x(Y).

In section 3 there will be given a sufficient condition for additivity of x
analogous to additivity of variance o1 in case of independance.

2. THE ABSOLUTE DEVIATION PRINCIPLE AND
ELEMENTARY PROPERTIES

Let X be an appropriate set of random variables, e.g. the linear space L1 or L2

of random variables J o n a fixed probability space with finite norm HAH, and
||A1|2, respectively. In our context, a functional

H:X->R, IK//I

is called a premium functional or premium principle. The properties PI through
P4 from the introduction read in formal terms

PI. HX > EX

P2. HX < sup X

P3. H(X+ c) = HX+c, ceU

P 4 . H(cX) = cHX, c > 0.

Under the premium principles, studied in actuarial literature till now, only the
trivial functionals H = E (net premium principle) and H = sup (maximal loss
principle) have all four properties. The common standard deviation principle

HX = EX+ao(X), Xe L2, with parameter a > 0

for example, violates P2. Our new premium functional

HX = EX+px{X), XeL1, with parameter 0 < p < 1

is constructed in the same way and will be called absolute deviation principle.
It is worth mentioning that this functional coincides with the expected value

principle for special distributions: namely if MX = 0 and T_ (X) = 0, i.e.
X > 0 and the probability of no claim is > 1/2. Then HX = (1 +p)EX.

The absolute deviation principle can be expressed, too, by the three
parameters median MX, average negative and positive deviation x _ (X) and
x+ (X) from the median (see section 1):

HX = MX-{\-p)x-(X) + (\+p)T+(X).

In this form the functional can be made plausible, too. The median serves as a
reference point. Positive deviations, i.e. larger claims, are weighted more than
negative deviations, i.e. smaller claims, and total weight is one.

We get an integral representation for the absolute deviation principle if, in
the last formula, we replace x^ and x+ by their defining integrals:
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HX=MX-(l-p)[ {MX-Fx{q))dq + {\+p)[ (Fx(q)-MX)dq
Jo J 1/2

cI/2 . r' -
Fx(q)(\-p)dq+ Fx(q)(\+p)dq.

Jo J 1/2
Let y denote the distribution function on the unit interval with density 1 —p on
[0, l/2[ and 1 +p on [1/2, 1], then

Fx(q)dy(q).
'o

Now we can prove the
J:

Theorem. The absolute deviation principle has properties PI through P4 and

P5. Fx < FY implies HX < HY

P6. H(X+Y) < HX+HY

P7. H is (Lipschitz-) continuous on L1:

\HX-HY\ <{\+p) \\X-Y\U.

In P5 the condition Fx < FY (to be formally correct here, take e.g. right
continuous quantile functions) is equivalent to Fx > FY and this condition is
often called first order stochastic dominance of Y over X. Hence P5 states
compatibility of H with that stochastic order. P2 is the special case
Y = sup X.

Property P6 states subadditivity of the functional H. In the next section we
will give conditions under which additivity holds. In the general case a formula
for the deviation H(X+ Y) — (HX+HY) from additivity can be found in
DENNEBERG 1985.

Proof of the theorem.

PI is plain from the fact that / ) > 0 , t ( I ) > 0.
P2 is, as we noted already, a special case of P5.
P3. Px+c = Fx~^c a nd the assertion follows from the integral representation

of//.
P4. For c > 0 one has FcX = cFx (for negative c the right hand side would no

longer be an increasing function).
P5 is an immediate consequence of integral calculus.
P6 derives from additivity of expectation and subadditivity of T.

P7. \HX-HY\ = f (Fx(q)-FY(q))dy(q)
Jo

Fx(q)~FY(q)\ dy{q)

(.

J
\Fx(q)-FY{q)\dq<(\+p)\\X-Y\\x.

o
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The last inequality is stated and proved as a separate lemma.

Lemma. For X, YeL1 one has

<i i * -n i l ,
where, on the left hand side, the norm refers to Lebesque measure on [0, 1].

Proof. Denote by X v Y the maximum and by X A Y the minimum of the
random variables X, Y. The inequalities

X A Y < X, Y < X v Y

imply

Fx A Y ^ Fx, FY < Fx v Y,

\FX—FY\ < Fx v Y~FX A Y-

By integration we get

\\h~Fy\U < UfXvr(q)-h,r(q))dq = E(Xv Y-XA Y) = E\X~Y\ =\\X-nt.< U

3. COMONOTONICITY AND REINSURANCE

Here we tackle the question under what conditions on X and Y one has
equality in P6, i.e. additivity of H. The condition is that X, Y are comonotonic
random variables (a term introduced by SCHMEIDLER and YAARI), i.e. per
definitionem that one of the following equivalent conditions hold:

(i) (No risk compensation) For each co0 as point of reference the functions
/ : = X-X(co0) and g = Y— Y(a>0) don't have opposite signs, i.e.
l/+gl = I/I + ISI-

(ii) X = u(Z) and Y = v(Z) for some Z and (weakly) increasing functions u, v.
(hi) X = u(X+ Y) and Y = v(X+ Y) with continuous, increasing functions u, v

such that u(z) + v(z) = z, zeR.

These conditions and the proof of their equivalence (Satz 7 in DENNE-
BERG 1989) is valid for real functions X, Y, the distributions don't play any
role. But distributions are essential in the following theorem (Satz 1 in
DENNEBERG 1989):

Theorem. For comonotonic random variables X, Y the quantile functions
behave additive,

FX+Y ~ Fx+ FY.

Applied to the absolute deviation principle H we get

P8. H(X+ Y) = HX+HY for comonotonic X, Ye L1.

https://doi.org/10.2143/AST.20.2.2005441 Published online by Cambridge University Press

https://doi.org/10.2143/AST.20.2.2005441


WHY STANDARD DEVIATION SHOULD BE REPLACED 187

The proof of the theorem uses the fact that for increasing u one has
f~u(x) ~ u ° f'x- The proof is easy if all distribution functions and the functions
u, v in (iii) are one to one.

Returning for a moment to the first section we, too, have

T (X + Y) = T (X) + x (Y) for comonotonic X, Y e L'.

Hence comonotonicity plays the same role for average absolute deviation z as
independence plays for variance a2. But notice that independence and comon-
otonicity are opposite, mutual exclusive properties (except the case where X or
Y is constant).

We give typical examples for comonotonic random variables.

Example. u{x) = x+ •= max {0, x} and v(x) = — x , where x •= ( — x) +,
are continuous increasing functions and u(x) + v(x) = x. Hence, for a random
variable X, the random variables X+ = u (X) and — X~ = v (X) are comono-
tonic. If X has median MX = 0 (this can be achieved by a translation)
comonotonicity implies t(X) = T(X+) + X(X~). This equation is known from
Section 1 since T(X+) = T+ (X) and r(-X~) = z(X~) = T_ (X) in case
MX = 0.

Example (excess of loss or stop loss reinsurance). Let Z be total claims and a
the priority or stop loss point. Define v(z):= ( z -a ) + , u{z)-= z — v(z) and
X = u(Z), y:= v(Z). Then X is the part of total claims Z = X+ Y to be
covered by the primary insurer and Y the part to be covered by the reinsurer.
X, Y being comonotonic H is compatible with this type of reinsurance,
H[Z] = H[X] + H[Y].

We know already from P4 that H is compatible, too, with proportional
reinsurance. But we can state more. Condition (ii) or (iii) for comonotonicity in
connection with P8 says that H is compatible with very general risk sharing
schemes. One has only the restriction that both risk sharing partners have to
bear (weakly) more if total claims are higher. There are forms of reinsurance of
minor or lacking practical importance which injure this condition and which
are not compatible with H. An example is largest claims reinsurance.

The essential properties of our new premium functional have been derived
now, and before looking on possible generalisations, we will discuss the crucial
properties: proportionality P4, subadditivity P6 and comonotonic additivity
P8. First notice that P4 can be derived from P8 using P5 or norm continuity.
We will compare P6 and P8 with independence additivity. For the discussion it
is essential to specify the situation in which a premium functional is to be
applied. We distinguish two situations.

If the market for insurance is in equilibrium in the sense that it offers no
arbitrage opportunity, prices are additive at least for independent risks. Thus
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premium functionals which are additive on independent risks, e.g. the variance

principle EX+ao2(X) and the exponential principle - In EeaX, are candidates
a

for modeling market prices.
On the other hand, subadditive but not additive premium functionals as our

absolute deviation principle or the standard deviation principle are apt to
depict the law of large numbers. Hence they are applicable in portfolio
decisions. Here reinsurance is an important mean, may it be to reduce the ratio
of the portfolios volatility to the companies equity below a desired limit, or
may it be to reduce volatility of the various companies portfolios through risk
exchanges such that, eventually, the companies portfolios become proportional
to the market portfolio. In such decisions comonotonic additivity P8 which—
as pointed out above—applies to most risk sharing schemes, is very useful and
can simplify decisions. Notice that the standard deviation principle is not
comonotonic additive.

4. GENERALISATIONS AND THE GINI PRINCIPLE

As the reader may have guessed already, the representation

HX= f Fx(q)dy(q)
Jo

of the absolute deviation principle is capable of generalisation. One can replace
the piecewise linear function y by any distribution function on the unit interval
[0, 1]. Such a function y is called a distortion of probabilities. Condition PI
means that the graph of y lies below the diagonal, y{q) < q, P6 is valid if y is
convex and has bounded density. For P7 bounded density is needed, too, and
the Lipschitz constant is the supremum \\y'\\x of the density /(I I/Ho, = 1 +p in
case of the absolute deviation principle). All the other properties remain valid
without further restrictions. In DENNEBERG 1989 (see also DENNEBERG 1990)
these assertions are proved and the converse, too: any functional H on L1 with
properties PI through P8 can be represented by the above integral with a
convex distribution function y having bounded density.

Sometimes the absolute deviation principle may not be appropriate owing to
the piecewise linearity of y. For excess of loss or stop loss reinsurance the latter
implies that the safety loading factor remains constant with rising priority or
stop loss point, respectively. In practice one rather observes rising safety
loading factors, too. Already the next simple distortion allows to model this
phenomenon. For the absolute deviation principle the density can be written as

y'(q) = l+/?sgn | q - -
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Replace the signum by the next elementary odd function, the identity:

y'(q) = \+p

The corresponding distortion is the quadratic polynomial
y(q) = q+%p{q2-q), which is convex on [0,1] for 0 < p < 2, and the
premium functional is

HX = EX+p-GrniX,

where

GiniA'— F(q) dq2-EX = EXgmi X
Jo

and gini X is the (normed) Gini coefficient, which is used in economic welfare
theory as an inequality measure for wealth distributions in populations. The
usual definition for the Gini coefficient is twice the area between the diagnoal
and the Lorenz function

-=— f F(p)dP,
EX Jo

* = 2 f (q-l(q))dq.
Jo

The equivalence to the above formula is calculated easily with Fubinis theorem.
Another representation of the Gini coefficient is

Gini.r = - IIZ-7H,
2

where Y is a random variable such that X, Y are independent and identically
distributed (see ZAGIER). This new premium functional could be called the Gini
principle.

The above general premium functional can further be generalised. First the
basic probability measure P or the distorted y o p can be replaced by more
general set functions. Second—as in expected utility—the claims in money
terms can be valued by a non linear utility function. Thus the proportionality
property P4 could be weakened. Functionals of this type and their axiomatic
representations are investigated in economic decision theory (see e.g. WAKKER,

where the literature is discussed, too).
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