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Karabuk University, Department of Mathematics, 78050 Karabuk, Turkey

e-mail: orhannil@yahoo.com

Abstract. Since Azumaya introduced the notion of A-injectivity in 1974, several
generalizations have been investigated by a number of authors. We introduce some
more generalizations and discuss their connection to the previous ones.

2000 Mathematics Subject Classification. Primary 16D50, Secondary 16D80.

1. Introduction. All rings considered have unities, and all modules are unital
right modules. The notations N ≤ eM and K ≤ ⊕M indicate that N is an essential
submodule and K is a direct summand of M, respectively. A summand will always
mean a direct summand. K is a complementary summand of L in M if M = K ⊕ L.
A closed submodule of M is one that has no proper essential extensions in M. A
module M is extending if every closed submodule of M is a summand. The graph of
a homomorphism ϕ : X −→ Y is the submodule 〈ϕ〉 = {x − ϕ(x) : x ∈ X} of X ⊕ Y .
A homomorphism � : U −→ V is called faithful if � = 0 only if U = 0. For modules
A and B, ϕ : A ≥ X −→ B will denote a partial homomorphism X −→ B. B is said to
be A-injective if for any ϕ : A ≥ X −→ B, there exists a homomorphism ϕ1 : A −→ B
that extends ϕ (see G. Azumaya, M-projective and M-injective modules, unpublished
work, 1974, and [1]). Baba [2] generalized the notion of A-injectivity as follows:

B is almost A-injective if for any ϕ : A ≥ X −→ B, there exists a homomorphism
ϕ1 : A −→ B that extends ϕ (injectivity behaviour), or there exists a non-zero summand
A2 ≤ A and a homomorphism ϕ2 : B −→ A2 such that ϕ2ϕ = πA2 |X , where πA2 is the
projection of A onto A2 (which we refer to as opposite injectivity behaviour). We
note that for an indecomposable module A, we have that B is almost A-injective if
and only if for any ϕ : A ≥ X −→ B, there exists a homomorphism ϕ1 : A −→ B or a
homomorphism ϕ2 : B −→ A such that the following diagrams commute:

0 �� X

ϕ

��

i �� A

ϕ1���
�

�
�

0 �� X

ϕ

��

i �� A

B B

ϕ2

���
�

�
�

∗ Dedicated to Professor Patrick F. Smith on his 65th birthday.
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In the following we investigate cases where we have a mixture of the two behaviours.
For ϕ : A ≥ X −→ B, we associate a class, denoted by [[ϕ : A ≥ X −→ B]], consisting of
all commutative diagrams

A2 A
πA2��

πA1 �� A1

ϕ1

��

��

X

1

��

ϕ

�� ��
B2

ϕ2

��

BπB2

��
πB1

�� B1

where A = A1 ⊕ A2, B = B1 ⊕ B2, and πAi and πBi , i = 1, 2, are the natural projections.
(The commutativity of the diagram is equivalent to: for x = a1 + a2 and ϕ(x) = b1 + b2,
we have ϕ1(a1) = b1 and ϕ2(b2) = a2.)

B is said to be A-ojective if for any ϕ : A ≥ X −→ B, there exists D ∈ [[ϕ :
A ≥ X −→ B]], with ϕ2 being a monomorphism [5, 8]. As a generalization we say that
B is A-mixed injective if for any ϕ : A ≥ X −→ B, there exists D ∈ [[ϕ : A ≥ X −→ B]]
with ϕ2 faithful. [4, 7] are the general references for notions of modules not defined in
this work.

2. Mixed injectivity. In this section we study various types of generalizations of
injectivity under one umbrella. First we note that

(1) [[ϕ : A ≥ X −→ B]] is not empty, as it always contains the trivial diagram

0 A
0�� 1 �� A

0

��

��

X

1

��

ϕ

�� ��
B

0

��

B
1

��
0

�� 0

By a non-trivial diagram, we mean one in which A2 ⊕ B1 �= 0. If such a diagram
exists for each ϕ we say that B is A-basic injective.

(2) For ϕ = 0, we have the diagram

0 A
0�� 1 �� A

0

��

��

X

1

��

0
�� ��

0

0

��

B
0

��
1

�� B
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PROPOSITION 2.1. For modules A and B,
(1) B is A-injective if and only if for any ϕ : A ≥ X −→ B, there exists D ∈ [[ϕ :

A ≥ X −→ B]] with A2 ⊕ B2 = 0.
(2) B is A-ojective if and only if for any ϕ : A ≥ X −→ B, there exists D ∈ [[ϕ :

A ≥ X −→ B]] with Ker ϕ2 = 0.
(3) B is A-mixed injective if and only if for any ϕ : A ≥ X −→ B, there exists D ∈

[[ϕ : A ≥ X −→ B]] with ϕ2 faithful.
(4) B is almost A-injective if and only if for any ϕ : A ≥ X −→ B, there exists D ∈

[[ϕ : A ≥ X −→ B]] such that A2 = 0 implies B2 = 0.

Proof. We only need to prove (4). Assume B is almost A-injective, and consider
ϕ : A ≥ X −→ B. The injectivity behaviour corresponds to the diagram

0 A
0�� 1 �� A

ϕ1

��

��

X

1

��

ϕ

�� ��
0

0

��

B
0

��
1

�� B

The opposite injectivity behaviour corresponds to the diagram

A2 A
πA2��

πA1 �� A1

0

��

��

X

1

��

ϕ

�� ��
B

ϕ2

��

B
1

��
0

�� 0

with A2 �= 0.
Conversely, assume the condition. Given ϕ : A ≥ X −→ B, we have a commutative

diagram

A2 A
πA2��

πA1 �� A1

ϕ1

��

��

X

1

��

ϕ

�� ��
B2

ϕ2

��

BπB2

��
πB1

�� B1

We consider two cases.
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(1) A2 = 0: The hypothesis implies B1 = B and we have the commutative diagram

0 A
0�� 1 �� A

ϕ1

��

��

X

1

��

ϕ

�� ��
0

0

��

B
0

��
1

�� B

which gives an injectivity behaviour.
(2) A2 �= 0: We may define ϕ′

2 : B −→ A2 as ϕ′
2 = ϕ2 on B2 and ϕ′

2 = 0 on B1. Then
the diagram reduces to

A2 A
πA2��

πA1 �� A1

0

��

��

X

1

��

ϕ

�� ��
B

ϕ′
2

��

B
1

��
0

�� 0

This is an opposite injectivity behaviour. �
The proof of the following lemma is straightforward.

LEMMA 2.2. Let M = A ⊕ B, where B �= 0, A = A1 ⊕ A2, B = B1 ⊕ B2 and ϕ2 :
B2 −→ A2. Consider the following conditions:

(1) A2 ⊕ B2 = 0.
(2) Ker ϕ2 = 0.
(3) ϕ2 is faithful.
(4) A2 = 0 implies B2 = 0.
(5) A2 ⊕ B1 �= 0.
Then (1)⇒(2)⇒(3)⇒(4)⇒(5).

As an immediate consequence of the above lemma and Proposition 2.1, we have
the hierarchy

injectivity ⇒ ojectivity ⇒ mixed injectivity ⇒ almost injectivity ⇒ basic injectivity.
Now we give examples to separate these cases.

EXAMPLES 2.3. (1) Let A = �4 and B = �6. Then B is A-ojective, and is not A-
injective.

(2) Let A be an injective module with exactly one non-zero proper submodule S.
Let B be an indecomposable module that contains a simple submodule not isomorphic
to S. Then B is A-mixed injective and is not A-ojective.

(3) Let A be an extending module whose socle is maximal and contains more than
one homogeneous component. Let B be an indecomposable module such that A and
B have no non-zero isomorphic submodules, and B is not A-ojective. Then B is almost
A-injective and is not A-mixed injective (cf. Theorem 3.6).
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(4) Let A be indecomposable. Let B = B1 ⊕ B2 such that A and B have no non-zero
isomorphic submodules, B1 is A-injective and B is not A-injective. Then B is A-basic
injective and is not almost A-injective.

However, for uniform modules, we have the following proposition.

PROPOSITION 2.4. For an indecomposable module A and a uniform module B, the
following are equivalent:

(1) B is A-basic injective.
(2) B is almost A-injective.
(3) B is A-mixed injective.
(4) B is A-ojective.

Proof. We only need to prove (1) ⇒ (4). Given ϕ : A ≥ X −→ B without loss of
generality, we may assume that ϕ �= 0. The hypothesis gives only the following two
diagrams:

0 X
0��

ϕ

��

1 �� A

ϕ1

��

A X
1��

ϕ

��

0 �� 0

0
��

0

0

��

B
0

��
1

�� B B

ϕ2

��

B
1

��
0

�� 0

In the second case, we have ϕ2ϕ = 1X . Hence, Ker ϕ2 ∩ ϕ(X) = 0. However, ϕ(X) is
essential in B, and consequently Ker ϕ2 = 0. �

The above proposition yields the following generalization of [8, Theorem 13],
which is also a generalization of [3, Lemma 8].

THEOREM 2.5. Let M = M1 ⊕ · · · ⊕ Mn, where the Mi are uniform. Then M is
extending and the decomposition is exchangeable if and only if Mi is Mj-basic injective
for all i �= j.

Next we give characterizations for different types of injectivity analogous to that
given in [8] for ojective modules. First we need some lemmas.

LEMMA 2.6. Let M = A ⊕ B and ϕ : A ≥ X −→ B. Then
(1) X ⊕ B = 〈ϕ〉 ⊕ B.
(2) Ker ϕ = 〈ϕ〉 ∩ A.
(3) ϕ is a monomorphism if and only if 〈ϕ〉 ∩ A = 0.
(4) ϕ = 0 if and only if 〈ϕ〉≤ A.

Proof. We prove only (2) and (4), the rest being obvious.
(2) x ∈ Ker ϕ ⇒ ϕ(x) = 0 ⇒ x − ϕ(x) = x ∈ 〈ϕ〉 ∩ X ≤ A ∩ 〈ϕ〉;

and a ∈ 〈ϕ〉 ∩ A ⇒ a = x − ϕ(x) for some x ∈ X
⇒ x − a = ϕ(x) ∈ A ∩ B = 0
⇒ a = x and x ∈ Ker ϕ.

(4) We have ϕ = 0 if and only if X = Ker ϕ = 〈ϕ〉 ∩ A. Also ϕ = 0 if and only if
X = 〈ϕ〉. Hence, ϕ = 0 if and only if 〈ϕ〉 = 〈ϕ〉 ∩ A if and only if 〈ϕ〉≤ A. �
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LEMMA 2.7. Let N ≤ A ⊕ B. Then N ∩ B = 0 if and only if there exists ϕ :
A ≥ X −→ B such that N = 〈ϕ〉. Moreover, ϕ = 0 if and only if N ≤ A, and ϕ is a
monomorphism if and only if N ∩ A = 0.

Proof. (⇒): Define X = A ∩ (N ⊕ B) and ϕ : X −→ B as the restriction to X of
the projection N ⊕ B −→ B along N. Given n ∈ N, let n = a + b with a ∈ A and b ∈ B.
Hence, a = n − b ∈ A ∩ (N ⊕ B) = X . This gives ϕ(a) = −b; hence, n = a − ϕ(a) ∈
〈ϕ〉. Now consider x ∈ X . Then x = n + b with n ∈ N and b ∈ B. Hence, ϕ(x) = b and
so x − ϕ(x) = n ∈ N. This proves that N = 〈ϕ〉.

(⇐): Obvious.
The last statement follows from Lemma 2.6. �

Some arguments in the proof of the following theorem are similar to those given
in [8, Theorem 7].

THEOREM 2.8. B is A-basic injective if and only if for any submodule N of M = A ⊕ B
with N ∩ B = 0, we have M = N ′ ⊕ A′ ⊕ B′ with A′ ≤ A, B′ ≤ B and N ≤ N ′ �= M.
Further, we have the following:

(1) B is A-injective if and only if M = N ′ ⊕ B.
(2) B is A-ojective if and only if N ′ ∩ B = 0.
(3) B is A-mixed injective if and only if N ′ ∩ B is not a non-zero complementary

summand of B′ in B.

Proof. ‘Only if ’: By Lemma 2.7, there is ϕ : A ≥ X −→ B such that N = 〈ϕ〉. The
hypothesis yields a non-trivial diagram in [[ϕ : A ≥ X −→ B]]. Then, by Lemma 2.6 (1),

M = A ⊕ B = A1 ⊕ B1 ⊕ A2 ⊕ B2

= 〈ϕ1〉 ⊕ B1 ⊕ A2 ⊕ 〈ϕ2〉
= 〈ϕ1〉 ⊕ 〈ϕ2〉 ⊕ A2 ⊕ B1.

We prove 〈ϕ〉 ≤ 〈ϕ1〉 ⊕ 〈ϕ2〉. Let x = a1 + a2 and ϕ(x) = b1 + b2. We get from the
diagram ϕ1(a1) = b1 and ϕ2(b2) = a2. Hence,

x − ϕ(x) = a1 − b1 − (b2 − a2) = a1 − ϕ1(a1) − (b2 − ϕ2(b2)) ∈ 〈ϕ1〉 ⊕ 〈ϕ2〉.
Thus, N = 〈ϕ〉 ≤ 〈ϕ1〉 ⊕ 〈ϕ2〉. Define N ′ = 〈ϕ1〉 ⊕ 〈ϕ2〉, A′ = A2 and B′ = B1. Then
M = N ′ ⊕ A′ ⊕ B′ with N ≤ N ′ �= M.

‘If ’: Consider ϕ : A ≥ X −→ B. Clearly, 〈ϕ〉 ∩ B = 0. The hypothesis then yields
a decomposition M = N ′ ⊕ A′ ⊕ B′ with A′ ≤ A, B′ ≤ B and 〈ϕ〉≤ N ′ �= M. For
simplicity, let A′ = A2 and B′ = B1. Then M = N ′ ⊕ A2 ⊕ B1. As M �= N ′, A2 ⊕
B1 �= 0. By the modular law, A = A1 ⊕ A2 and B = B1 ⊕ B2, where A1 = A ∩ (N ′ ⊕
B1) and B2 = B ∩ (N ′ ⊕ A2). Let η1 denote the projection of M onto B1 along
N ′ ⊕ A2, and η2 denote the projection of M onto A2 along N ′ ⊕ B1. It is clear
that A1 ⊕ B1 ≤ Ker η2 and A2 ⊕ B2 ≤ Ker η1. Also 〈ϕ〉≤ N ′ ≤ Ker ηi, i = 1, 2. Then
for every x ∈ X, ηiϕ(x) = ηi(x) and ηiπAj = 0 = ηiπBj for j �= i = 1, 2. Define ϕ1 =
η1 |A1 and ϕ2 = η2 |B2 . Then πB1ϕ(x) = η1πB1ϕ(x) = η1ϕ(x) = η1(x) = η1πA1 (x) =
ϕ1πA1 (x); ϕ2πB2ϕ(x) = η2πB2ϕ(x) = η2ϕ(x) = η2(x) = η2πA2 (x) = πA2 (x).

(1) Obvious.
(2) One can easily check that Ker ϕ2 = N ′ ∩ B. Hence, ϕ2 is a monomorphism if

and only if N ′ ∩ B = 0.
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(3) We have B2 = B ∩ (N ′ ⊕ A′) and Ker ϕ2 = N ′ ∩ B. If N ′ ∩ B �= 0, then clearly
B2 �= 0. As ϕ2 is faithful, ϕ2 �= 0, and hence, B2 �= Kerϕ2 = N ′ ∩ B. It then follows that
B = B′ ⊕ B2 �= B′ ⊕ (N ′ ∩ B).

Conversely assume that N ′ ∩ B is not a non-zero complementary summand of
B′ in B. If N ′ ∩ B = 0, then ϕ2 is a monomorphism. On the other hand, N ′ ∩ B �= 0
implies B �= B′ ⊕ N ′ ∩ B. This gives B2 �= N ′ ∩ B = Ker ϕ2, and hence, ϕ2 �= 0. In both
cases ϕ2 is faithful. �

COROLLARY 2.9. B is A-injective if and only if for any complement C of B in
M = A ⊕ B we have M = C ⊕ B.

COROLLARY 2.10. B is A-ojective if and only if for any complement C of B in
M = A ⊕ B, we have M = C ⊕ A′ ⊕ B′ with A′ ≤ A, B′ ≤ B.

We end this section by proving that A-mixed injectivity passes to summands of A.
The main idea of the proof is suggested in [6, Proposition 1.5]. We were not able to
give a proof using the characterization of mixed injectivity given in Theorem 2.8 (cf.
[8, Proposition 8]).

PROPOSITION 2.11. Let A and B be modules and let A∗ ≤ ⊕A. If B is A-mixed injective,
then B is A∗-mixed injective.

Proof. Let A = A∗ ⊕ A∗∗. Given a homomorphism ϕ : A∗ ≥ X −→ B, define
� : X ⊕ A∗∗ −→ B by � |X= ϕ and � |A∗∗= 0. As B is A-mixed injective, we get
decompositions A = A1 ⊕ A2 and B = B1 ⊕ B2, together with homomorphisms ϕ1 :
A1 −→ B1 and ϕ2 : B2 −→ A2 with ϕ2 faithful such that the following diagram
commutes:

A2 X ⊕ A∗∗πA2��

�

��

πA1 �� A1

ϕ1

��
B2

ϕ2

��

BπB2

��
πB1

�� B1

Clearly πA2 (A∗∗) = 0, and so A∗∗ ≤ A1. Hence, A1 = A∗∗ ⊕ (A1 ∩ A∗). It follows that
A = A∗∗ ⊕ (A1 ∩ A∗) ⊕ A2, and consequently, A∗ = (A1 ∩ A∗) ⊕ [(A2 ⊕ A∗∗) ∩ A∗].
Let A∗

1 = A1 ∩ A∗ and A∗
2 = (A2 ⊕ A∗∗) ∩ A∗. Now A = A∗

1 ⊕ A∗
2 ⊕ A∗∗ = A∗

1 ⊕ A∗∗ ⊕
A∗

2 = A1 ⊕ A∗
2. Let λ denote the natural projection of A onto A∗

2 along A1, and let
η = λ |A2 . Clearly η is a monomorphism, and hence, ηϕ2 is faithful. Let π1 and π2

denote the natural projections of A∗ onto A∗
1 and A∗

2, respectively. Now we have the
diagram

A∗
2 X

π2��

1

��

π1 �� A∗
1

1

��
A2

η

��

X ⊕ A∗∗πA2��

�

��

πA1 �� A1

ϕ1

��
B2

ϕ2

��

BπB2

��
πB1

�� B1

https://doi.org/10.1017/S0017089510000182 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089510000182
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Given x ∈ X , then x = a∗
1 + a∗

2 with a∗
1 ∈ A∗

1 and a∗
2 ∈ A∗

2. Then a∗
2 = a2 + a∗∗ for

a2 ∈ A2 and a∗∗ ∈ A∗∗. Hence, x = (a∗
1 + a∗∗) + a2, and a∗

2 = λ(a∗
2) = λ(a2 + a∗∗) =

λ(a2) = η(a2). Assume that ϕ(x) = b1 + b2. Then, ϕ1(a∗
1) = ϕ1(a∗

1 + a∗∗) = ϕ1πA1 (x) =
πB1�(x) = πB1ϕ(x) = b1; ηϕ2(b2) = ηϕ2πB2ϕ(x) = ηϕ2πB2�(x) = ηπA2 (x) = η(a2) =
a∗

2. �

3. Symmetric injectivity. B is A-essential injective if for any ϕ : A ≥ X −→ B with
essential kernel, there exists a homomorphism ϕ1 : A −→ B that extends ϕ (cf. [9]).
We note that essential injectivity behaves like injectivity concerning direct sums and
summands.

PROPOSITION 3.1. (cf. [9, Lemma 4]). B is A-essential injective if and only if for any
submodule N of M = A ⊕ B with N ∩ B = 0 and N ∩ A ≤ eA, we have M = N ′ ⊕ B with
N ≤ N ′.

COROLLARY 3.2. B is A-essential injective if and only if for any complement C of B
in M = A ⊕ B with C ∩ A ≤ eA, we have M = C ⊕ B.

LEMMA 3.3. Let M = A ⊕ B. If B is A-mixed injective, then B is A-essential injective.

Proof. Let N ≤ M with N ∩ B = 0 and N ∩ A ≤ eA. As B is A-mixed injective,
by Theorem 2.8, we get M = N ′ ⊕ A′ ⊕ B′ with N ≤ N ′, A′ ≤ A and B′ ≤ B. Now
(N ∩ A) ∩ A′ = N ∩ (A ∩ A′) = N ∩ A′ = 0. Hence, A′ = 0, and therefore, M = N ′ ⊕
B′. This implies B = B′ ⊕ N ′ ∩ B. Hence, N ′ ∩ B = 0, by (3) of Theorem 2.8. It then
follows that M = N ′ ⊕ B. �

By Theorem 2.8, B is A-ojective if and only if for any submodule N of M =
A ⊕ B with N ∩ B = 0, we have M = N ′ ⊕ A′ ⊕ B′ with A′ ≤ A, B′ ≤ B, N ≤ N ′ and
N ′ ∩ B = 0. We modify this characterization to give equal attention to both A and B.
We say that A and B are symmetrically injective if for any submodule N of M = A ⊕ B
with N ∩ (A ∪ B) = 0, we have M = N ′ ⊕ A′ ⊕ B′ with A′ ≤ A, B′ ≤ B, N ≤ N ′ and
N ′ ∩ (A ∪ B) = 0. (Note that for submodules X, Y and Z of M, X ∩ (Y ∪ Z) = 0 if
and only if X ∩ Y = 0 and X ∩ Z = 0.)

THEOREM 3.4. The following are equivalent:
(1) A and B are symmetrically injective.
(2) For any monomorphism ϕ : A ≥ X −→ B, there exists D ∈ [[ϕ : A ≥ X −→ B]],

with ϕ1 and ϕ2 being monomorphisms.
(3) For any monomorphism � : B ≥ Y −→ A, there exists D′ ∈ [[� : B ≥ Y −→ A]],

with �1 and �2 being monomorphisms.

Proof. (1)⇔(2): The proof is almost the same as in Theorem 2.8. We only need to
note the following observations:

(1)⇒(2): ϕ is a monomorphism, as N ∩ A = 0 (Lemma 2.6), and it is easy
to check that Ker ϕ1 = N ′ ∩ A and Ker ϕ2 = N ′ ∩ B, and therefore, ϕ1 and ϕ2 are
monomorphisms if and only if N ′ ∩ (A ∪ B) = 0.

(2)⇒(1): For a monomorphism ϕ : A ≥ X −→ B, 〈ϕ〉 ∩ A = 0 (Lemma 2.6), and
clearly 〈ϕ〉 ∩ B = 0. Hence, 〈ϕ〉 ∩ (A ∪ B) = 0.

(1)⇔(3): Follows by symmetry. �
REMARK. Let X, Y and Z be submodules of a module M with Z ∩ (X ∪ Y ) = 0. By
Zorn’s lemma, we can find a submodule Z′ of M maximal with respect to the property
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that Z ≤ Z′ and Z′ ∩ (X ∪ Y ) = 0. Clearly Z′ is a closed submodule of M. An example
of such a submodule is a complement C of X with C ∩ Y = 0 (or a complement C of
Y with C ∩ X = 0).

The following corollary is analogous to Corollary 2.10.

COROLLARY 3.5. A and B are symmetrically injective if and only if for any submodule
K of M = A ⊕ B maximal with K ∩ (A ∪ B) = 0, we have M = K ⊕ A′ ⊕ B′ with A′ ≤ A
and B′ ≤ B.

THEOREM 3.6. Let M = A ⊕ B with A extending. Then the following are equivalent:
(1) B is A-ojective.
(2) B is A-mixed injective and A and B are symmetrically injective for every A ≤ ⊕A.
(3) B is A-essential injective and for every closed submodule K of M with K ∩ (A ∪

B) = 0, we have M = K ⊕ A′ ⊕ B′ with A′ ≤ A and B′ ≤ B.

Proof. (1)⇒(2): That B is A-mixed injective is trivial. Also B is A-ojective by [8,
Proposition 8], and A is extending. Hence, there is no loss of generality if we assume
that A = A. Let K be a submodule of M maximal with K ∩ (A ∪ B) = 0. Then K is
a closed submodule of M with K ∩ B = 0. As A is extending, we get by [8, Lemma
9] that M = K ⊕ A′ ⊕ B′ with A′ ≤ A and B′ ≤ B. Hence, A and B are symmetrically
injective.

(2)⇒(3): B is A-essential injective by Lemma 3.3. Let K be a closed submodule
of M with K ∩ (A ∪ B) = 0. Now K ⊕ B = (K ⊕ B) ∩ A ⊕ B. Since A is extending,
(K ⊕ B) ∩ A ≤ eA1, where A1 ≤ ⊕A. Let A = A1 ⊕ A2 and N = A1 ⊕ B. Then K ≤ N
and K ⊕ B ≤ eN. Hence, K is a complement of B in N. As K ∩ A1 = 0, K is maximal in
N such that K ∩ (A1 ∪ B) = 0. Since A1 and B are symmetrically injective, we get N =
K ⊕ A′

1 ⊕ B′ with A′
1 ≤ A1 and B′ ≤ B. Hence, M = A2 ⊕ N = K ⊕ (A2 ⊕ A′

1) ⊕ B′.
(3)⇒(1): Let C be a complement of B in M. Since A is extending, C ∩ A ≤ eA∗,

where A = A∗ ⊕ A∗∗. Let N = A∗ ⊕ B and C∗ = C ∩ N. Then by [8, Lemma 2], C∗ is
a complement of B in N. Now C∗ ∩ A∗ = C ∩ N ∩ A∗ = C ∩ A∗ = C ∩ A ∩ A∗ = C ∩
A ≤ eA∗. As B is A-essential injective, B is A∗-essential injective. Hence, N = C∗ ⊕ B,
by Corollary 3.2. This gives M = C∗ ⊕ A∗∗ ⊕ B = C∗ ⊕ L, where L = A∗∗ ⊕ B. Let
C∗∗ = C ∩ L. Then C = C∗ ⊕ C∗∗. Clearly C∗∗ is a closed submodule in M. Also C∗∗ ∩
A = L ∩ C ∩ A ≤ L ∩ A∗ = 0. Then C∗∗ ∩ (A ∪ B) = 0. The hypothesis then implies
that M = C∗∗ ⊕ A′ ⊕ B′ with A′ ≤ A and B′ ≤ B. Hence, L = C∗∗ ⊕ (A′ ∩ L) ⊕ B′, and
consequently M = C∗ ⊕ L = C∗ ⊕ C∗∗ ⊕ (A′ ∩ L) ⊕ B′ = C ⊕ (A′ ∩ L) ⊕ B′. Hence,
by Theorem 2.8 (2), B is A-ojective. �

COROLLARY 3.7. Let A and B be extending, and A be B-ojective. Then B is A-ojective
if and only if B is A-mixed injective (if and only if B is A-essential injective.)

THEOREM 3.8. Let M = A ⊕ B such that A and B are extending. Then the following
are equivalent:

(1) M is extending and the decomposition is exchangeable.
(2) A is B-ojective and B is A-essential injective.
(3) B is A-ojective and A is B-essential injective.
(4) A is B-ojective and B is A-mixed injective.
(5) B is A-ojective and A is B-mixed injective.

Proof. Corollary 3.7 and [8, Theorem 10*]. �

https://doi.org/10.1017/S0017089510000182 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089510000182
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