MIXED INJECTIVE MODULES*

DERYA KESKIN TÜTÜNCÜ
Department of Mathematics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
e-mail: keskin@hacettepe.edu.tr
SAAD H. MOHAMED
Department of Mathematics, Faculty of Education, Ain Shams University, Cairo, Egypt e-mail: sshhmohamed@yahoo.ca
and NIL ORHAN ERTAŞ
Karabuk University, Department of Mathematics, 78050 Karabuk, Turkey
e-mail: orhannil@yahoo.com

Abstract

Since Azumaya introduced the notion of A-injectivity in 1974, several generalizations have been investigated by a number of authors. We introduce some more generalizations and discuss their connection to the previous ones.

2000 Mathematics Subject Classification. Primary 16D50, Secondary 16D80.

1. Introduction. All rings considered have unities, and all modules are unital right modules. The notations $N \leq{ }^{e} M$ and $K \leq{ }^{\oplus} M$ indicate that N is an essential submodule and K is a direct summand of M, respectively. A summand will always mean a direct summand. K is a complementary summand of L in M if $M=K \oplus L$. A closed submodule of M is one that has no proper essential extensions in M. A module M is extending if every closed submodule of M is a summand. The graph of a homomorphism $\varphi: X \longrightarrow Y$ is the submodule $\langle\varphi\rangle=\{x-\varphi(x): x \in X\}$ of $X \oplus Y$. A homomorphism $\Psi: U \longrightarrow V$ is called faithful if $\Psi=0$ only if $U=0$. For modules A and $B, \varphi: A \geq X \longrightarrow B$ will denote a partial homomorphism $X \longrightarrow B . B$ is said to be A-injective if for any $\varphi: A \geq X \longrightarrow B$, there exists a homomorphism $\varphi_{1}: A \longrightarrow B$ that extends φ (see G. Azumaya, M-projective and M-injective modules, unpublished work, 1974, and [1]). Baba [2] generalized the notion of A-injectivity as follows:
B is almost A-injective if for any $\varphi: A \geq X \longrightarrow B$, there exists a homomorphism $\varphi_{1}: A \longrightarrow B$ that extends φ (injectivity behaviour), or there exists a non-zero summand $A_{2} \leq A$ and a homomorphism $\varphi_{2}: B \longrightarrow A_{2}$ such that $\varphi_{2} \varphi=\left.\pi_{A_{2}}\right|_{X}$, where $\pi_{A_{2}}$ is the projection of A onto A_{2} (which we refer to as opposite injectivity behaviour). We note that for an indecomposable module A, we have that B is almost A-injective if and only if for any $\varphi: A \geq X \longrightarrow B$, there exists a homomorphism $\varphi_{1}: A \longrightarrow B$ or a homomorphism $\varphi_{2}: B \longrightarrow A$ such that the following diagrams commute:

[^0]
112 DERYA KESKIN TÜTÜNCÜ, SAAD H. MOHAMED AND NIL ORHAN ERTAŞ

In the following we investigate cases where we have a mixture of the two behaviours. For $\varphi: A \geq X \longrightarrow B$, we associate a class, denoted by [$[\varphi: A \geq X \longrightarrow B]]$, consisting of all commutative diagrams

where $A=A_{1} \oplus A_{2}, B=B_{1} \oplus B_{2}$, and $\pi_{A_{i}}$ and $\pi_{B_{i}}, i=1,2$, are the natural projections. (The commutativity of the diagram is equivalent to: for $x=a_{1}+a_{2}$ and $\varphi(x)=b_{1}+b_{2}$, we have $\varphi_{1}\left(a_{1}\right)=b_{1}$ and $\varphi_{2}\left(b_{2}\right)=a_{2}$.)
B is said to be A-ojective if for any $\varphi: A \geq X \longrightarrow B$, there exists $D \in[[\varphi:$ $A \geq X \longrightarrow B]]$, with φ_{2} being a monomorphism [5, 8]. As a generalization we say that B is A-mixed injective if for any $\varphi: A \geq X \longrightarrow B$, there exists $D \in[[\varphi: A \geq X \longrightarrow B]]$ with φ_{2} faithful. $[4,7]$ are the general references for notions of modules not defined in this work.
2. Mixed injectivity. In this section we study various types of generalizations of injectivity under one umbrella. First we note that
(1) $[[\varphi: A \geq X \longrightarrow B]]$ is not empty, as it always contains the trivial diagram

By a non-trivial diagram, we mean one in which $A_{2} \oplus B_{1} \neq 0$. If such a diagram exists for each φ we say that B is A-basic injective.
(2) For $\varphi=0$, we have the diagram

Proposition 2.1. For modules A and B,
(1) B is A-injective if and only if for any $\varphi: A \geq X \longrightarrow B$, there exists $D \in[[\varphi:$ $A \geq X \longrightarrow B]]$ with $A_{2} \oplus B_{2}=0$.
(2) B is A-ojective if and only if for any $\varphi: A \geq X \longrightarrow B$, there exists $D \in[[\varphi:$ $A \geq X \longrightarrow B]]$ with Ker $\varphi_{2}=0$.
(3) B is A-mixed injective if and only if for any $\varphi: A \geq X \longrightarrow B$, there exists $D \in$ $[[\varphi: A \geq X \longrightarrow B]]$ with φ_{2} faithful.
(4) B is almost A-injective if and only if for any $\varphi: A \geq X \longrightarrow B$, there exists $D \in$ $[[\varphi: A \geq X \longrightarrow B]]$ such that $A_{2}=0$ implies $B_{2}=0$.

Proof. We only need to prove (4). Assume B is almost A-injective, and consider $\varphi: A \geq X \longrightarrow B$. The injectivity behaviour corresponds to the diagram

The opposite injectivity behaviour corresponds to the diagram

with $A_{2} \neq 0$.
Conversely, assume the condition. Given $\varphi: A \geq X \longrightarrow B$, we have a commutative diagram

We consider two cases.

114 DERYA KESKIN TÜTÜNCÜ, SAAD H. MOHAMED AND NIL ORHAN ERTAŞ
(1) $A_{2}=0$: The hypothesis implies $B_{1}=B$ and we have the commutative diagram

which gives an injectivity behaviour.
(2) $A_{2} \neq 0$: We may define $\varphi_{2}^{\prime}: B \longrightarrow A_{2}$ as $\varphi_{2}^{\prime}=\varphi_{2}$ on B_{2} and $\varphi_{2}^{\prime}=0$ on B_{1}. Then the diagram reduces to

This is an opposite injectivity behaviour.
The proof of the following lemma is straightforward.
Lemma 2.2. Let $M=A \oplus B$, where $B \neq 0, A=A_{1} \oplus A_{2}, B=B_{1} \oplus B_{2}$ and φ_{2} : $B_{2} \longrightarrow A_{2}$. Consider the following conditions:
(1) $A_{2} \oplus B_{2}=0$.
(2) $\operatorname{Ker} \varphi_{2}=0$.
(3) φ_{2} is faithful.
(4) $A_{2}=0$ implies $B_{2}=0$.
(5) $A_{2} \oplus B_{1} \neq 0$.

Then $(1) \Rightarrow(2) \Rightarrow(3) \Rightarrow(4) \Rightarrow(5)$.
As an immediate consequence of the above lemma and Proposition 2.1, we have the hierarchy
injectivity \Rightarrow ojectivity \Rightarrow mixed injectivity \Rightarrow almost injectivity \Rightarrow basic injectivity.
Now we give examples to separate these cases.
Examples 2.3. (1) Let $A=\mathbb{Z}_{4}$ and $B=\mathbb{Z}_{6}$. Then B is A-ojective, and is not A injective.
(2) Let A be an injective module with exactly one non-zero proper submodule S. Let B be an indecomposable module that contains a simple submodule not isomorphic to S. Then B is A-mixed injective and is not A-ojective.
(3) Let A be an extending module whose socle is maximal and contains more than one homogeneous component. Let B be an indecomposable module such that A and B have no non-zero isomorphic submodules, and B is not A-ojective. Then B is almost A-injective and is not A-mixed injective (cf. Theorem 3.6).
(4) Let A be indecomposable. Let $B=B_{1} \oplus B_{2}$ such that A and B have no non-zero isomorphic submodules, B_{1} is A-injective and B is not A-injective. Then B is A-basic injective and is not almost A-injective.

However, for uniform modules, we have the following proposition.
Proposition 2.4. For an indecomposable module A and a uniform module B, the following are equivalent:
(1) B is A-basic injective.
(2) B is almost A-injective.
(3) B is A-mixed injective.
(4) B is A-ojective.

Proof. We only need to prove (1) \Rightarrow (4). Given $\varphi: A \geq X \longrightarrow B$ without loss of generality, we may assume that $\varphi \neq 0$. The hypothesis gives only the following two diagrams:

In the second case, we have $\varphi_{2} \varphi=1_{X}$. Hence, $\operatorname{Ker} \varphi_{2} \cap \varphi(X)=0$. However, $\varphi(X)$ is essential in B, and consequently $\operatorname{Ker} \varphi_{2}=0$.

The above proposition yields the following generalization of [8, Theorem 13], which is also a generalization of [3, Lemma 8].

Theorem 2.5. Let $M=M_{1} \oplus \cdots \oplus M_{n}$, where the M_{i} are uniform. Then M is extending and the decomposition is exchangeable if and only if M_{i} is M_{j}-basic injective for all $i \neq j$.

Next we give characterizations for different types of injectivity analogous to that given in [8] for ojective modules. First we need some lemmas.

Lemma 2.6. Let $M=A \oplus B$ and $\varphi: A \geq X \longrightarrow B$. Then
(1) $X \oplus B=\langle\varphi\rangle \oplus B$.
(2) $\operatorname{Ker} \varphi=\langle\varphi\rangle \cap A$.
(3) φ is a monomorphism if and only if $\langle\varphi\rangle \cap A=0$.
(4) $\varphi=0$ if and only if $\langle\varphi\rangle \leq A$.

Proof. We prove only (2) and (4), the rest being obvious.
(2) $x \in \operatorname{Ker} \varphi \Rightarrow \varphi(x)=0 \Rightarrow x-\varphi(x)=x \in\langle\varphi\rangle \cap X \leq A \cap\langle\varphi\rangle$;

$$
\text { and } \quad \begin{aligned}
a \in\langle\varphi\rangle \cap A & \Rightarrow a=x-\varphi(x) \text { for some } x \in X \\
& \Rightarrow x-a=\varphi(x) \in A \cap B=0 \\
& \Rightarrow a=x \quad \text { and } \quad x \in \operatorname{Ker} \varphi .
\end{aligned}
$$

(4) We have $\varphi=0$ if and only if $X=\operatorname{Ker} \varphi=\langle\varphi\rangle \cap A$. Also $\varphi=0$ if and only if $X=\langle\varphi\rangle$. Hence, $\varphi=0$ if and only if $\langle\varphi\rangle=\langle\varphi\rangle \cap A$ if and only if $\langle\varphi\rangle \leq A$.

116 DERYA KESKIN TÜTÜNCÜ, SAAD H. MOHAMED AND NIL ORHAN ERTAŞ

Lemma 2.7. Let $N \leq A \oplus B$. Then $N \cap B=0$ if and only if there exists φ : $A \geq X \longrightarrow B$ such that $N=\langle\varphi\rangle$. Moreover, $\varphi=0$ if and only if $N \leq A$, and φ is a monomorphism if and only if $N \cap A=0$.

Proof. (\Rightarrow) : Define $X=A \cap(N \oplus B)$ and $\varphi: X \longrightarrow B$ as the restriction to X of the projection $N \oplus B \longrightarrow B$ along N. Given $n \in N$, let $n=a+b$ with $a \in A$ and $b \in B$. Hence, $a=n-b \in A \cap(N \oplus B)=X$. This gives $\varphi(a)=-b$; hence, $n=a-\varphi(a) \in$ $\langle\varphi\rangle$. Now consider $x \in X$. Then $x=n+b$ with $n \in N$ and $b \in B$. Hence, $\varphi(x)=b$ and so $x-\varphi(x)=n \in N$. This proves that $N=\langle\varphi\rangle$.
(\Leftarrow) : Obvious.
The last statement follows from Lemma 2.6.
Some arguments in the proof of the following theorem are similar to those given in [8, Theorem 7].

Theorem 2.8. B is A-basic injective if and only iffor any submodule N of $M=A \oplus B$ with $N \cap B=0$, we have $M=N^{\prime} \oplus A^{\prime} \oplus B^{\prime}$ with $A^{\prime} \leq A, B^{\prime} \leq B$ and $N \leq N^{\prime} \neq M$. Further, we have the following:
(1) B is A-injective if and only if $M=N^{\prime} \oplus B$.
(2) B is A-ojective if and only if $N^{\prime} \cap B=0$.
(3) B is A-mixed injective if and only if $N^{\prime} \cap B$ is not a non-zero complementary summand of B^{\prime} in B.

Proof. 'Only if': By Lemma 2.7, there is $\varphi: A \geq X \longrightarrow B$ such that $N=\langle\varphi\rangle$. The hypothesis yields a non-trivial diagram in $[[\varphi: A \geq X \longrightarrow B]]$. Then, by Lemma 2.6 (1),

$$
\begin{aligned}
M=A \oplus B & =A_{1} \oplus B_{1} \oplus A_{2} \oplus B_{2} \\
& =\left\langle\varphi_{1}\right\rangle \oplus B_{1} \oplus A_{2} \oplus\left\langle\varphi_{2}\right\rangle \\
& =\left\langle\varphi_{1}\right\rangle \oplus\left\langle\varphi_{2}\right\rangle \oplus A_{2} \oplus B_{1} .
\end{aligned}
$$

We prove $\langle\varphi\rangle \leq\left\langle\varphi_{1}\right\rangle \oplus\left\langle\varphi_{2}\right\rangle$. Let $x=a_{1}+a_{2}$ and $\varphi(x)=b_{1}+b_{2}$. We get from the diagram $\varphi_{1}\left(a_{1}\right)=b_{1}$ and $\varphi_{2}\left(b_{2}\right)=a_{2}$. Hence,

$$
x-\varphi(x)=a_{1}-b_{1}-\left(b_{2}-a_{2}\right)=a_{1}-\varphi_{1}\left(a_{1}\right)-\left(b_{2}-\varphi_{2}\left(b_{2}\right)\right) \in\left\langle\varphi_{1}\right\rangle \oplus\left\langle\varphi_{2}\right\rangle .
$$

Thus, $N=\langle\varphi\rangle \leq\left\langle\varphi_{1}\right\rangle \oplus\left\langle\varphi_{2}\right\rangle$. Define $N^{\prime}=\left\langle\varphi_{1}\right\rangle \oplus\left\langle\varphi_{2}\right\rangle, A^{\prime}=A_{2}$ and $B^{\prime}=B_{1}$. Then $M=N^{\prime} \oplus A^{\prime} \oplus B^{\prime}$ with $N \leq N^{\prime} \neq M$.
'If': Consider $\varphi: A \geq X \longrightarrow B$. Clearly, $\langle\varphi\rangle \cap B=0$. The hypothesis then yields a decomposition $M=N^{\prime} \oplus A^{\prime} \oplus B^{\prime}$ with $A^{\prime} \leq A, B^{\prime} \leq B$ and $\langle\varphi\rangle \leq N^{\prime} \neq M$. For simplicity, let $A^{\prime}=A_{2}$ and $B^{\prime}=B_{1}$. Then $M=N^{\prime} \oplus A_{2} \oplus B_{1}$. As $M \neq N^{\prime}, A_{2} \oplus$ $B_{1} \neq 0$. By the modular law, $A=A_{1} \oplus A_{2}$ and $B=B_{1} \oplus B_{2}$, where $A_{1}=A \cap\left(N^{\prime} \oplus\right.$ B_{1}) and $B_{2}=B \cap\left(N^{\prime} \oplus A_{2}\right)$. Let η_{1} denote the projection of M onto B_{1} along $N^{\prime} \oplus A_{2}$, and η_{2} denote the projection of M onto A_{2} along $N^{\prime} \oplus B_{1}$. It is clear that $A_{1} \oplus B_{1} \leq \operatorname{Ker} \eta_{2}$ and $A_{2} \oplus B_{2} \leq \operatorname{Ker} \eta_{1}$. Also $\langle\varphi\rangle \leq N^{\prime} \leq \operatorname{Ker} \eta_{i}, i=1,2$. Then for every $x \in X, \eta_{i} \varphi(x)=\eta_{i}(x)$ and $\eta_{i} \pi_{A_{j}}=0=\eta_{i} \pi_{B_{j}}$ for $j \neq i=1,2$. Define $\varphi_{1}=$ $\left.\eta_{1}\right|_{A_{1}}$ and $\varphi_{2}=\left.\eta_{2}\right|_{B_{2}}$. Then $\pi_{B_{1}} \varphi(x)=\eta_{1} \pi_{B_{1}} \varphi(x)=\eta_{1} \varphi(x)=\eta_{1}(x)=\eta_{1} \pi_{A_{1}}(x)=$ $\varphi_{1} \pi_{A_{1}}(x) ; \varphi_{2} \pi_{B_{2}} \varphi(x)=\eta_{2} \pi_{B_{2}} \varphi(x)=\eta_{2} \varphi(x)=\eta_{2}(x)=\eta_{2} \pi_{A_{2}}(x)=\pi_{A_{2}}(x)$.
(1) Obvious.
(2) One can easily check that $\operatorname{Ker} \varphi_{2}=N^{\prime} \cap B$. Hence, φ_{2} is a monomorphism if and only if $N^{\prime} \cap B=0$.
(3) We have $B_{2}=B \cap\left(N^{\prime} \oplus A^{\prime}\right)$ and $\operatorname{Ker} \varphi_{2}=N^{\prime} \cap B$. If $N^{\prime} \cap B \neq 0$, then clearly $B_{2} \neq 0$. As φ_{2} is faithful, $\varphi_{2} \neq 0$, and hence, $B_{2} \neq \operatorname{Ker} \varphi_{2}=N^{\prime} \cap B$. It then follows that $B=B^{\prime} \oplus B_{2} \neq B^{\prime} \oplus\left(N^{\prime} \cap B\right)$.

Conversely assume that $N^{\prime} \cap B$ is not a non-zero complementary summand of B^{\prime} in B. If $N^{\prime} \cap B=0$, then φ_{2} is a monomorphism. On the other hand, $N^{\prime} \cap B \neq 0$ implies $B \neq B^{\prime} \oplus N^{\prime} \cap B$. This gives $B_{2} \neq N^{\prime} \cap B=\operatorname{Ker} \varphi_{2}$, and hence, $\varphi_{2} \neq 0$. In both cases φ_{2} is faithful.

Corollary 2.9. B is A-injective if and only if for any complement C of B in $M=A \oplus B$ we have $M=C \oplus B$.

Corollary 2.10. B is A-ojective if and only if for any complement C of B in $M=A \oplus B$, we have $M=C \oplus A^{\prime} \oplus B^{\prime}$ with $A^{\prime} \leq A, B^{\prime} \leq B$.

We end this section by proving that A-mixed injectivity passes to summands of A. The main idea of the proof is suggested in [6, Proposition 1.5]. We were not able to give a proof using the characterization of mixed injectivity given in Theorem 2.8 (cf. [8, Proposition 8]).

Proposition 2.11. Let A and B be modules and let $A^{*} \leq{ }^{\oplus} A$. If B is A-mixed injective, then B is A^{*}-mixed injective.

Proof. Let $A=A^{*} \oplus A^{* *}$. Given a homomorphism $\varphi: A^{*} \geq X \longrightarrow B$, define $\Psi: X \oplus A^{* *} \longrightarrow B$ by $\left.\Psi\right|_{X}=\varphi$ and $\left.\Psi\right|_{A^{* *}}=0$. As B is A-mixed injective, we get decompositions $A=A_{1} \oplus A_{2}$ and $B=B_{1} \oplus B_{2}$, together with homomorphisms φ_{1} : $A_{1} \longrightarrow B_{1}$ and $\varphi_{2}: B_{2} \longrightarrow A_{2}$ with φ_{2} faithful such that the following diagram commutes:

Clearly $\pi_{A_{2}}\left(A^{* *}\right)=0$, and so $A^{* *} \leq A_{1}$. Hence, $A_{1}=A^{* *} \oplus\left(A_{1} \cap A^{*}\right)$. It follows that $A=A^{* *} \oplus\left(A_{1} \cap A^{*}\right) \oplus A_{2}$, and consequently, $A^{*}=\left(A_{1} \cap A^{*}\right) \oplus\left[\left(A_{2} \oplus A^{* *}\right) \cap A^{*}\right]$. Let $A_{1}^{*}=A_{1} \cap A^{*}$ and $A_{2}^{*}=\left(A_{2} \oplus A^{* *}\right) \cap A^{*}$. Now $A=A_{1}^{*} \oplus A_{2}^{*} \oplus A^{* *}=A_{1}^{*} \oplus A^{* *} \oplus$ $A_{2}^{*}=A_{1} \oplus A_{2}^{*}$. Let λ denote the natural projection of A onto A_{2}^{*} along A_{1}, and let $\eta=\left.\lambda\right|_{A_{2}}$. Clearly η is a monomorphism, and hence, $\eta \varphi_{2}$ is faithful. Let π_{1} and π_{2} denote the natural projections of A^{*} onto A_{1}^{*} and A_{2}^{*}, respectively. Now we have the diagram

Given $x \in X$, then $x=a_{1}^{*}+a_{2}^{*}$ with $a_{1}^{*} \in A_{1}^{*}$ and $a_{2}^{*} \in A_{2}^{*}$. Then $a_{2}^{*}=a_{2}+a^{* *}$ for $a_{2} \in A_{2}$ and $a^{* *} \in A^{* *}$. Hence, $x=\left(a_{1}^{*}+a^{* *}\right)+a_{2}$, and $a_{2}^{*}=\lambda\left(a_{2}^{*}\right)=\lambda\left(a_{2}+a^{* *}\right)=$ $\lambda\left(a_{2}\right)=\eta\left(a_{2}\right)$. Assume that $\varphi(x)=b_{1}+b_{2}$. Then, $\varphi_{1}\left(a_{1}^{*}\right)=\varphi_{1}\left(a_{1}^{*}+a^{* *}\right)=\varphi_{1} \pi_{A_{1}}(x)=$ $\pi_{B_{1}} \Psi(x)=\pi_{B_{1}} \varphi(x)=b_{1} ; \eta \varphi_{2}\left(b_{2}\right)=\eta \varphi_{2} \pi_{B_{2}} \varphi(x)=\eta \varphi_{2} \pi_{B_{2}} \Psi(x)=\eta \pi_{A_{2}}(x)=\eta\left(a_{2}\right)=$ a_{2}^{*}.
3. Symmetric injectivity. B is A-essential injective if for any $\varphi: A \geq X \longrightarrow B$ with essential kernel, there exists a homomorphism $\varphi_{1}: A \longrightarrow B$ that extends φ (cf. [9]). We note that essential injectivity behaves like injectivity concerning direct sums and summands.

Proposition 3.1. (cf. [9, Lemma 4]). B is A-essential injective if and only if for any submodule N of $M=A \oplus B$ with $N \cap B=0$ and $N \cap A \leq^{e} A$, we have $M=N^{\prime} \oplus B$ with $N \leq N^{\prime}$.

Corollary 3.2. B is A-essential injective if and only if for any complement C of B in $M=A \oplus B$ with $C \cap A \leq^{e} A$, we have $M=C \oplus B$.

Lemma 3.3. Let $M=A \oplus B$. If B is A-mixed injective, then B is A-essential injective.
Proof. Let $N \leq M$ with $N \cap B=0$ and $N \cap A \leq^{e} A$. As B is A-mixed injective, by Theorem 2.8 , we get $M=N^{\prime} \oplus A^{\prime} \oplus B^{\prime}$ with $N \leq N^{\prime}, A^{\prime} \leq A$ and $B^{\prime} \leq B$. Now $(N \cap A) \cap A^{\prime}=N \cap\left(A \cap A^{\prime}\right)=N \cap A^{\prime}=0$. Hence, $A^{\prime}=0$, and therefore, $M=N^{\prime} \oplus$ B^{\prime}. This implies $B=B^{\prime} \oplus N^{\prime} \cap B$. Hence, $N^{\prime} \cap B=0$, by (3) of Theorem 2.8. It then follows that $M=N^{\prime} \oplus B$.

By Theorem 2.8, B is A-ojective if and only if for any submodule N of $M=$ $A \oplus B$ with $N \cap B=0$, we have $M=N^{\prime} \oplus A^{\prime} \oplus B^{\prime}$ with $A^{\prime} \leq A, B^{\prime} \leq B, N \leq N^{\prime}$ and $N^{\prime} \cap B=0$. We modify this characterization to give equal attention to both A and B. We say that A and B are symmetrically injective if for any submodule N of $M=A \oplus B$ with $N \cap(A \cup B)=0$, we have $M=N^{\prime} \oplus A^{\prime} \oplus B^{\prime}$ with $A^{\prime} \leq A, B^{\prime} \leq B, N \leq N^{\prime}$ and $N^{\prime} \cap(A \cup B)=0$. (Note that for submodules X, Y and Z of $M, X \cap(Y \cup Z)=0$ if and only if $X \cap Y=0$ and $X \cap Z=0$.)

Theorem 3.4. The following are equivalent:
(1) A and B are symmetrically injective.
(2) For any monomorphism $\varphi: A \geq X \longrightarrow B$, there exists $D \in[[\varphi: A \geq X \longrightarrow B]]$, with φ_{1} and φ_{2} being monomorphisms.
(3) For any monomorphism $\Psi: B \geq Y \longrightarrow A$, there exists $D^{\prime} \in[[\Psi: B \geq Y \longrightarrow A]]$, with Ψ_{1} and Ψ_{2} being monomorphisms.

Proof. $(1) \Leftrightarrow(2)$: The proof is almost the same as in Theorem 2.8. We only need to note the following observations:
(1) $\Rightarrow(2): \varphi$ is a monomorphism, as $N \cap A=0$ (Lemma 2.6), and it is easy to check that $\operatorname{Ker} \varphi_{1}=N^{\prime} \cap A$ and $\operatorname{Ker} \varphi_{2}=N^{\prime} \cap B$, and therefore, φ_{1} and φ_{2} are monomorphisms if and only if $N^{\prime} \cap(A \cup B)=0$.
(2) \Rightarrow (1): For a monomorphism $\varphi: A \geq X \longrightarrow B,\langle\varphi\rangle \cap A=0$ (Lemma 2.6), and clearly $\langle\varphi\rangle \cap B=0$. Hence, $\langle\varphi\rangle \cap(A \cup B)=0$.
$(1) \Leftrightarrow(3)$: Follows by symmetry.
Remark. Let X, Y and Z be submodules of a module M with $Z \cap(X \cup Y)=0$. By Zorn's lemma, we can find a submodule Z^{\prime} of M maximal with respect to the property
that $Z \leq Z^{\prime}$ and $Z^{\prime} \cap(X \cup Y)=0$. Clearly Z^{\prime} is a closed submodule of M. An example of such a submodule is a complement C of X with $C \cap Y=0$ (or a complement C of Y with $C \cap X=0$).

The following corollary is analogous to Corollary 2.10.
Corollary 3.5. A and B are symmetrically injective if and only if for any submodule K of $M=A \oplus B$ maximal with $K \cap(A \cup B)=0$, we have $M=K \oplus A^{\prime} \oplus B^{\prime}$ with $A^{\prime} \leq A$ and $B^{\prime} \leq B$.

Theorem 3.6. Let $M=A \oplus B$ with A extending. Then the following are equivalent:
(1) B is A-ojective.
(2) B is A-mixed injective and \bar{A} and B are symmetrically injective for every $\bar{A} \leq{ }^{\oplus} A$.
(3) B is A-essential injective and for every closed submodule K of M with $K \cap(A \cup$ $B)=0$, we have $M=K \oplus A^{\prime} \oplus B^{\prime}$ with $A^{\prime} \leq A$ and $B^{\prime} \leq B$.

Proof. (1) \Rightarrow (2): That B is A-mixed injective is trivial. Also B is \bar{A}-ojective by [8, Proposition 8], and \bar{A} is extending. Hence, there is no loss of generality if we assume that $\bar{A}=A$. Let K be a submodule of M maximal with $K \cap(A \cup B)=0$. Then K is a closed submodule of M with $K \cap B=0$. As A is extending, we get by [8, Lemma 9] that $M=K \oplus A^{\prime} \oplus B^{\prime}$ with $A^{\prime} \leq A$ and $B^{\prime} \leq B$. Hence, A and B are symmetrically injective.
(2) \Rightarrow (3): B is A-essential injective by Lemma 3.3. Let K be a closed submodule of M with $K \cap(A \cup B)=0$. Now $K \oplus B=(K \oplus B) \cap A \oplus B$. Since A is extending, $(K \oplus B) \cap A \leq{ }^{e} A_{1}$, where $A_{1} \leq{ }^{\oplus} A$. Let $A=A_{1} \oplus A_{2}$ and $N=A_{1} \oplus B$. Then $K \leq N$ and $K \oplus B \leq^{e} N$. Hence, K is a complement of B in N. As $K \cap A_{1}=0, K$ is maximal in N such that $K \cap\left(A_{1} \cup B\right)=0$. Since A_{1} and B are symmetrically injective, we get $N=$ $K \oplus A_{1}^{\prime} \oplus B^{\prime}$ with $A_{1}^{\prime} \leq A_{1}$ and $B^{\prime} \leq B$. Hence, $M=A_{2} \oplus N=K \oplus\left(A_{2} \oplus A_{1}^{\prime}\right) \oplus B^{\prime}$.
(3) $\Rightarrow(1)$: Let C be a complement of B in M. Since A is extending, $C \cap A \leq{ }^{e} A^{*}$, where $A=A^{*} \oplus A^{* *}$. Let $N=A^{*} \oplus B$ and $C^{*}=C \cap N$. Then by [8, Lemma 2], C^{*} is a complement of B in N. Now $C^{*} \cap A^{*}=C \cap N \cap A^{*}=C \cap A^{*}=C \cap A \cap A^{*}=C \cap$ $A \leq{ }^{e} A^{*}$. As B is A-essential injective, B is A^{*}-essential injective. Hence, $N=C^{*} \oplus B$, by Corollary 3.2. This gives $M=C^{*} \oplus A^{* *} \oplus B=C^{*} \oplus L$, where $L=A^{* *} \oplus B$. Let $C^{* *}=C \cap L$. Then $C=C^{*} \oplus C^{* *}$. Clearly $C^{* *}$ is a closed submodule in M. Also $C^{* *} \cap$ $A=L \cap C \cap A \leq L \cap A^{*}=0$. Then $C^{* *} \cap(A \cup B)=0$. The hypothesis then implies that $M=C^{* *} \oplus A^{\prime} \oplus B^{\prime}$ with $A^{\prime} \leq A$ and $B^{\prime} \leq B$. Hence, $L=C^{* *} \oplus\left(A^{\prime} \cap L\right) \oplus B^{\prime}$, and consequently $M=C^{*} \oplus L=C^{*} \oplus C^{* *} \oplus\left(A^{\prime} \cap L\right) \oplus B^{\prime}=C \oplus\left(A^{\prime} \cap L\right) \oplus B^{\prime}$. Hence, by Theorem 2.8 (2), B is A-ojective.

Corollary 3.7. Let A and B be extending, and A be B-ojective. Then B is A-ojective if and only if B is A-mixed injective (if and only if B is A-essential injective.)

Theorem 3.8. Let $M=A \oplus B$ such that A and B are extending. Then the following are equivalent:
(1) M is extending and the decomposition is exchangeable.
(2) A is B-ojective and B is A-essential injective.
(3) B is A-ojective and A is B-essential injective.
(4) A is B-ojective and B is A-mixed injective.
(5) B is A-ojective and A is B-mixed injective.

Proof. Corollary 3.7 and [8, Theorem 10*].

Acknowledgements. This paper was prepared during the second author's visit to the Department of Mathematics, Hacettepe University. The authors gratefully acknowledge the support from the Turkish Scientific Research Council (TÜBİTAK). The authors also sincerely thank the referee for his numerous valuable comments in the report, which have largely improved the presentation of the paper. The first author is grateful to Hacettepe University for the financial support under the 08 G 702001 Project.

REFERENCES

1. G. Azumaya, F. Mbuntum and K. Varadarajan, On M-projective and M-injective modules, Pacific J. Math. 95 (1975), 9-16.
2. Y. Baba, Note on almost M-injectives, Osaka J. Math. 26 (1989), 687-698.
3. Y. Baba and M. Harada, On almost M-projectives and almost M-injectives, Tsukuba J. Math. 14 (1990), 53-69.
4. W. Burgess and R. Raphael, On modules with the absolute direct summand property, in Proceedings of the Biennial Ohio State-Denison Conference, 1992 (World Scientific, Singapore, 1993), 137-148.
5. K. Hanada, J. Kado and K. Oshiro, On direct sums of extending modules and internal exchange property, in Proceedings of the 2nd Japan-China Symposium on Ring Theory, 1995 (Okayama, 1996), 41-44.
6. K. Hanada, Y. Kuratomi and K. Oshiro, On direct sums of extending modules and internal exchange property, J. Algebra 250 (2002), 115-133.
7. S. H. Mohamed and B. J. Müller, Continuous and discrete modules, London Mathematical Society Lecture Note Series 147 (Cambridge University Press, 1990).
8. S. H. Mohamed and B. J. Müller, Ojective modules, Comm. Algebra 30 (2002), 1817-1827.
9. C. Santa-Clara, Extending modules with injective or semisimple summands, J. Pure Appl. Algebra 127 (1998), 193-203.

[^0]: * Dedicated to Professor Patrick F. Smith on his 65th birthday.

