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ABSTRACT. Polar motion data for the period 1981-1985 are used to 
obtain a combined solution from Doppler, Satellite Laser Ranging, and 
Astrometric observations. The combined solution is a weighted average 
of the three series, with weights determined from reported errors 
which are scaled so that they agree with errors estimated from 
differences among the various series. The combined solution is 
effective in removing spurious deviations in the pole path which 
appear in a single series. However, we also show that estimated 
errors can be unreliable when derived from short time series, when one 
series is much less noisy than the others. Thus, a combined solution 
where weights depend upon estimated errors can yield poor results, and 
we demonstrate this effect by comparing a combined solution for 1984-
85 with the independent IRIS series. 

1. INTRODUCTION 

The new methods of observing polar motion (Doppler, laser ranging 
to satellites, and VLBI) have produced a number of estimates of the 
pole coordinates based on quite different reduction techniques. It is 
important to compare these results among themselves and with the 
estimates obtained by classical methods which have been practiced for 
the past nine decades. Furthermore, it is useful to combine the 
various independent observations, since a combined solution can be 
superior to the best individual series if it is properly obtained. 

The most straightforward combination methods are linear and use a 
simple weighted average of the available data to obtain the combined 
solution. (Feissel, 1982; Vicente and Wilson, 1986). Additionally, 
the combined solution may include some dependence on the past 
estimate, and Kaiman filter theory can be used to determine the best 
least squares combination of new data and the past estimate (Steppe et 
al, 1985; Eubanks et al, 1985; Wilson and Vicente, 1986) 
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In the next section we summarize the calculations required for a 
combined solution. The critical factor is the determination of the 
relative noise level in the various data sets, and we propose a hybrid 
estimate based on both reported errors and estimated errors determined 
from differences among the various series. Polar motion is denoted by 
the complex variable M t, where t denotes time, and the datum for the 
kth series at time t is the complex scalar n^ t« The real component of 
the complex pole coordinate is associated with the X coordinate, and 
the imaginary component with the negative Y coordinate. When separate 
standard errors are given for X and Y coordinates, the square root of 
the sum of their squares is used as the standard error of the complex 
pole coordinate. 

2. LEAST SQUARES LINEAR COMBINATION METHODS 

If the kth polar motion series gives the pole position at time t 
as D ^ t , then the unbiased least squares optimum estimate of pole 
position from the combined series is the linear combination 

M t = a k D k t (1) 

where repeated subscript k denotes summation and the weights a^ sum to 
unity. There are other possible solutions to the linear combination 
problem, such as the Kaiman filter method described by Wilson and 
Vicente (1986) in which the estimate depends linearly on both D^ t and 
upon the past estimate M t_^. However, we shall concentrate here on 
solutions of the form of equation 1. 

The weighting functions are solutions to the linear equations: 

< 5 k k + a k
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where Ot is the variance at time t of the unknown pole position 
and ( J ^ 2 is the noise variance in the kth series. The assumption 
underlying equation 2 is that the noise is zero mean, uncorrelated 
among the various series, and is completely described by its variance. 

Clearly the noise does not have zero mean, because systematic 
differences among the various independent determinations of polar 
motion are well known. We will treat these systematic differences by 
removing the mean value from all series, combining them in a linear 
way by equation 1, and adding back the mean value of one of the series 
to the combined solution. 

As an example, the weighting functions for the case of 3 series 
which are constrained to sum to unity are 
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with &2 a n c* a 3 obtained by permuting the subscripts in the numerator^ 
When the weights are constrained to sum to unity, the value of 
does not affect the solution, and only the relative sizes of the 0^ 
are important. Thus, the critical problem in creating the combined 
solution is accurately determining the values of 0^ for each series. 

ο 

There are three logical choices for the values of 0 k to be 
used in equation 1 or 3. First (Method 1) we may take the reported 
error at each time sample as being an estimate of the true error. 
This reported error may be smaller than the true error, as in the case 
of the Doppler series (Feissel, 1982), and, since the reported error 
changes from time to time, the weights a^ do as well. 

A second choice (Method 2) is to estimate the error from the data 
by taking differences among the series and calculating the error 
variances using the Allan or conventional variance estimator (Feissel, 
1982; Vicente and Wilson, 1986), or by computing the cross 
correlations among the various series (Vicente and Wilson, 1986). 
Method 2 relies upon the assumption that the noise in each series is 
statistically stationary. This is certainly not true in some cases 
where the number of observations used to compute the pole coordinates 
is variable, or where instrumentation changes have altered the 
precision of individual observations. A further limitation of Method 2 
is that three or more independent series are required. 

A third choice (Method 3) for calculating the errors is to 
combine the first two approaches. Using the difference series, we 
compute the noise variances which represent an average for the the 
entire series of Ν samples. Then, we scale the reported variance at 
time t by the ratio of average reported variance to average estimated 
variance, so that the average over time agrees with the Method 2 
estimates. Thus we have taken advantage of the information contained 
in multiple independent observations of pole position, and we have 
used the information concerning the non stationarity of the noise that 
is contained in the reported errors. In the next section we compare 
the results obtained by each of these three approaches. 

3. COMBINED SOLUTIONS FOR 1981-1985 

Polar motion data for the period 1981-1985 given at 5 day 
intervals were taken from the BIH annual reports. We have available 
the data from 3 techniques for 1981-85: Doppler (DOP) (1981-1983 
Satellite 1970-671; 1984 Satellite 82D01; 1985 Satellite 77D02); 
Astrometric (AST); and Satellite Laser Ranging from the University of 
Texas Center for Space Research (CSR); and for 1984-85 the VLBI 
series (IRIS) also is available. Table I summarizes the data, 
together with the results of calculations discussed below. 
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Table I 

5 Day Polar Motion Data 
1981- 1985 

Series Name Sigma weight 
reported computed* (Method 2) 

CSR 9.6 13.8 0.58 
AST 14.1 22.8 0.22 
DOP 4.6 23.4 0.20 

Table II 

5 Day Polar Motion Data 
1984-1985 

Series Name Sigma weight Sigma 
reported computed * (Method 2) (series-IRIS) 

CSR 3.1 7.5 0.71 2.8 
AST 14.7 24.5 0.07 25.6 
DOP 4.4 13.6 0.22 15.4 
IRIS 3.1 

•Computed sigma determined from the conventional variance 
estimate of difference series after subtracting the mean 
value. 

Figure 1 shows the three series that we have used. Figure 2a 
shows the combined solution obtained by Method 1, with new weights 
recomputed at each time step according to the reported errors. Figure 
2b shows the combined solution by Method 2, with the same relative 
weight used for the entire 5 year period, as given in Table I. 
Finally, Figure 2c shows the combined solution by Method 3, where the 
reported variances have been adjusted to agree on average with the 
estimated variances, which are given in Table I. 

The discontinuity in the CSR series that is evident in Figure la, 
indicated by the arrow, has a reported error which is large due to 
inadequate observations, and thus does not represent a true deviation 
of the pole. However, it persists in the combined solution of Figure 
2b because the same relative weight is applied to the entire series. 
Allowing the weights to vary in time (Figures 2a or 2c) yields a 
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combined solution which shows no evidence of this discontinuity be-
cause it is properly given low weight. 

Figure 1. Data for the period 1981-1985. (a) Satellite 

Laser Ranging; (b) Astrometric; (c) Doppler 
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4. DISCUSSION 

The general appearance of the the three combined solutions is 
similar, but the smoothest is obtained by adjusting the reported 
errors using Method 3, as described in section 2, and illustrated in 
Figure 2c. This effectively removes the discontinuity that appears in 
the CSR series, which is associated with a large reported error. The 
adjustment of the reported errors by the computed errors also reduces 
the contribution of the DOP series relative to Figure 2a, since its 
reported error is known to be smaller than its true error. 

After the beginning of 1984, the IRIS VLBI observations are also 
available, and it is interesting to compare a combined DOP, AST, and 
CSR series with the IRIS results. Three combined solutions were 
determined for 1984-1985 using the Methods 1, 2, and 3. The standard 
deviations between IRIS, and these 3 combined solutions were 5.6, 
4.5, and 4.7 mas, respectively, after subtracting the mean from each 
series to remove systematic differences. Table II shows, however that 
the rms difference between IRIS and CSR is only 2.8 mas, which 
suggests that CSR alone is better than the combined CSR+DOP+AST 
series. 

Figure 2. Combined solutions (a) Method 1; (b) Method 2;(c) Method 3. 
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The CSR+AST+DOP combined solution for 1984-1985 is likely to be 
of poor quality due to erroneous estimates of the error in the three 
component series. We can identify the source of the problem by 
assuming that the rms differences between IRIS and the three series 
CSR, AST, and DOP are good estimates of the true errors. Referring to 
these values in Table II, we find that the reported error of CSR is 
approximately correct, while the reported errors for both DOP and AST 
are much too small. Thus Method 1, based upon reported errors, would 
fail to produce a good combined solution. The estimated errors for 
1984-85 are approximately correct for DOP and AST, but much too large 
for CSR, so both Methods 2 and 3, which rely on estimated errors, will 
perform poorly. 

The real problem in the combined solution via Method 3 is that 
the estimated errors for CSR are much too large. The CSR error 
estimate is poor because the CSR error is much smaller than both AST 
and DOP series. In order to understand how this occurs, assume that 
the error variance estimated from differences among the series is a 
random variable denoted by, The variance of this random 

variable will tend to be large for the one series among three which 
has a low noise level. For the case of 3 series (k = 1 (CSR), k=2 
(DOP), and k=3 (AST)), the estimate of of error variance in the low 
noise series (1) is 

ft 2 = . 5 ( d 1 2 d 2 3 + d 1 3 ) ( 4 ) 

where the estimated variance of the difference between series 1 and 2 
is indicated by d- 2̂

 a n c * s o forth. If each of the three estimates 
^12· ^23' ^13' behaves as a Chi-squared distributed random variable, 
then its variance will be proportional to its expected value, which 
will be large for the estimates involving the two noisy series (k=2 
and 3). Thus, the estimate of error for the CSR series (k=l) that has 
very low noise will tend to be poor because it depends upon quantities 
like d 2 3 which have a large variance. 

Thus, a proper combined solution in this case is not obtained 
with any of the three proposed methods. This leads us to propose a 
fourth method, which is to use the reported errors for CSR, but to 
adjust the reported errors by the estimated according to Method 3 for 
the AST and DOP series. When this is done, the combined solution for 
1984-85 gives the majority of weight (94%) to the CSR series and 
agrees with IRIS with a standard deviation of 2.8 mas, essentially the 
same as CSR alone. Thus little has been gained by combining the three 
series for this period. 
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The example shown in Figure 2c illustrates the need for multiple 
observational programs, and the value of a combined solution when one 
of the techniques does not provide an adequate result. Clearly care 
must be taken in the determination of the weights in the combined 
solution, as shown in the case of the 1984-85 data. In the future, as 
the observing programs for the two most accurate methods (Satellite 
Laser Ranging and Radio Interferometry) become well established and 
routine, the combined solution will probably be derived from these two 
series alone. However, the astrometric and other observational 
techniques will continue to be useful in the understanding of 
systematic differences, and perhaps in the determination of decade-
length low frequency variations of the pole which are not possible to 
study with such short periods of observation. 
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D I S C U S S I O N 

Schuh: Could you please describe your method of scaling the reported errors? 

Reply by Wilson: We multiply the reported errors by a constant so that the mean square value of the 
modified reported errors agrees with the estimated error obtained by taking differences among independent 
series. 

Vondrak: I came to exactly the same conclusions in a paper that will be published by the end of 1986 in 
the Bulletin of Astronomical Institutes of Czechoslovakia. 

Dickey: You mentioned that astrometric observations could be used for long-term polar motion. However, 
one should be cautioned that astrometric data has seasonal errors. 
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