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DELEEUW’S THEOREM ON

LITTLEWOOD-PALEY FUNCTIONS

CHANG-PAO CHEN, DASHAN FAN and SHUICHI SATO

Abstract. We establish certain deLeeuw type theorems for Littlewood-Paley
functions. By these theorems, we know that the boundedness of a Littlewood-
Paley function on

� n is equivalent to the boundedness of its corresponding
Littlewood-Paley function on the torus � n.

§1. Introduction

Let R
n be the n-dimensional Euclidean space and T

n be the n-dimen-

sional torus. T
n can be identified with R

n/Λ, where Λ is the unit lattice

which is the additive group of points in R
n having integral coordinates.

For an L1(Rn) function Φ we define Φt(x) = 2−tnΦ(x/2t), t ∈ R. Then the

Fourier transform of Φt is Φ̂t(ξ) = Φ̂(2tξ). The Littlewood-Paley g-function

gΦ(f) on R
n is defined by

gΦf(x) =

(
∫

� |Φt ∗ f(x)|2dt

)1/2

,(1.1)

initially, for f in the Schwartz space S(Rn).

The Littlewood-Paley g-function on T
n can be defined similarly. For

f̃ ∈ C∞(Tn), f̃ has the Fourier series

f̃(x) =
∑

k∈Λ

ake
2πi〈k,x〉,

where 〈x, ξ〉 = x1ξ1 + x2ξ2 + · · · + xnξn for x = (x1, . . . , xn) ∈ R
n and

ξ = (ξ1, . . . , ξn) ∈ R
n. We let

(1.1′) GΦf̃(x) =

(
∫

� |Φ̃t ∗ f̃(x)|2dt

)1/2
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where

Φ̃t ∗ f̃(x) =
∑

k∈Λ

Φ̂(2tk)ake
2πi〈k,x〉.

For a nice function Φ, the following theorem is well-known.

Theorem A. Suppose that Φ ∈ S(Rn) satisfies
∫

�
n Φ(x)dx = 0. Then

for any p ∈ (1,∞)

‖gΦ(f)‖Lp(
�

n) ≤ A1‖f‖Lp(
�

n),(1.2)

‖GΦ(f̃)‖Lp( � n) ≤ A2‖f̃‖Lp( � n).(1.3)

In additional, if Φ is radial and non-zero, then

(1.2′) ‖f‖Lp(
�

n) ≤ B1‖gΦ(f)‖Lp(
�

n),

(1.3′) ‖f̃‖Lp( � n) ≤ B2‖GΦ(f̃)‖Lp( � n)

for any f̃ satisfying
∫

� n f̃ = 0, where A1, A2, B1 and B2 are positive

constants independent of f and f̃ .

The smoothness condition on Φ in Theorem A can be replaced by some

weaker conditions (see [DFP], [Sa1]). One of the results in [DFP] is the

following

Theorem B. Let m,n ∈ N and A : R
n → R

m be a linear transforma-

tion.

Suppose that Φ ∈ L1(Rn) satisfies

(i) ‖ sup
t∈

� |Φt| ∗ f‖Lp(
�

n) ≤ Cp‖f‖Lp(
�

n) for all p ∈ (1,∞),

(ii) |Φ̂(ξ)| ≤ C min(|Aξ|α, |Aξ|−β)

for some α, β > 0 all ξ ∈ R
n. Then for every p ∈ (1,∞), there exist

constants C = C(p) > 0 and C ′ = C ′(p) > 0 such that

‖gΦ(f)‖Lp(
�

n) ≤ C‖f‖Lp(
�

n)(1.4)
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and

‖GΦ(f̃)‖Lp( � n) ≤ C ′‖f̃‖Lp( � n),(1.5)

for f ∈ S(Rn) and f̃ ∈ C∞(Tn).

When Φ ∈ S(Rn) and
∫

�
n Φ(x)dx = 0, one sees easily that (i) is satisfied

and |Φ̂(ξ)| ≤ C min{|ξ|, |ξ|−1} always holds.

After submitting the paper, the second author of [DFP] noticed that in

early 80’s, Kaneko [K] already established several deLeeuw type theorems

and proved that, merely assuming Φ ∈ L1(Rn) (without conditions (i) and

(ii)), inequalities (1.4) and (1.5) are equivalent (see [L][K][KS][KT][SW] for

the history of deLeeuw’s Theorem). The first purpose in this paper is to

give a different proof from that in [K] and we will show that the constants

C and C ′ in (1.4), (1.5) are the same. More precisely, let

B = sup{‖gΦ(f)‖Lp(
�

n), ‖f‖Lp(
�

n) = 1}

and

B̃ = sup{‖GΦ(f̃)‖Lp( � n), ‖f̃‖Lp( � n) = 1}.

Theorem 1. Suppose Φ ∈ L1(Rn) and 1 < p < ∞. Then B = B̃.

The proof of B ≤ B̃ is essentially contained in Theorem 2 of [K]. We

will only prove B̃ ≤ B. To this end, we will invoke the following lemma in

[F].

Lemma 1. ([F] Lemma 3.7) Suppose that Φ ∈ L1(Rn). Let Ψ(x) be a

continuous function with compact support, and set Ψ1/N(ξ) = Ψ(ξ/N). If

Ψ satisfies Ψ(0) = 1 and Ψ̂ ∈ L1(Rn), then for any f̃ =
∑

k∈Λ cke
2πi〈x,k〉 ∈

C∞(Tn) and any positive integer N ,

Ψ(y/N)(Φ̃t ∗ f̃)(y) = Φt ∗ (f̃Ψ1/N )(y) + JN,2t(y)(1.6)

for all y ∈ R
n, where

JN,2t(y) = −
∑

k∈Λ

cke
2πi〈y,k〉

∫

�
n

Ψ̂(x)e2πi〈x/N,y〉{Φ̂(2tx/N +2tk)− Φ̂(2tk)}dx

tends to zero uniformly for y ∈ R
n and −R ≤ t ≤ R (R > 0 is any fixed

number), as N → ∞.
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The proof of B̃ ≤ B can be found in Section 2. As mentioned before,

we use a different proof from that in [K], which also allows us to treat the

case 0 < p ≤ 1, namely the Hardy spaces Hp. Let Hp(Rn) and Hp(Tn),

0 < p ≤ 1 be the Hardy spaces on R
n and T

n, respectively. We have the

following result.

Theorem 2. Suppose that Φ ∈ L1(Rn), 0 < p ≤ 1. Then

‖gΦ(f)‖Lp(
�

n) ≤ C‖f‖Hp(
�

n)(1.7)

for all f ∈ Hp(Rn) ∩ S(Rn) if and only if

‖GΦ(f̃)‖Lp( � n) ≤ C ′‖f̃‖Hp( � n)(1.8)

for all f̃ ∈ C∞(Tn). Here C and C ′ are two positive constants.

Let |E| denote the Lebesgue measure of a measurable set E. We also

can establish a weak type theorem.

Theorem 3. Suppose that Φ ∈ L1(Rn).

(i) |{x ∈ R
n, gΦ(f)(x) > λ}| ≤ B‖f‖p

Lp(
�

n)/λp

for all f ∈ S(Rn) and all λ > 0 if and only if

|{x ∈ Q,GΦ(f̃)(x) > λ}| ≤ B̃‖f̃‖p
Lp( � n)/λp

for all f̃ ∈ C∞(Tn) and all λ > 0, where 1 ≤ p < ∞ and B̃ = B.

(ii) |{x ∈ R
n, gΦ(f)(x) > λ}| ≤ C‖f‖p

Hp(
�

n)/λp

for all f ∈ S(Rn) ∩ Hp(Rn) and all λ > 0 if and only if

|{x ∈ Q,GΦ(f̃)(x) > λ}| ≤ C ′‖f̃‖p
Hp( � n)/λp

for all f̃ ∈ C∞(Tn) and all λ > 0, where 0 < p ≤ 1. Here Q = [−1/2, 1/2]n

is the fundamental cube on which

∫

� n

f̃(x)dx =

∫

Q
f̃(x)dx.
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Theorem 2 and Theorem 3 will be proved in Section 3 and Section 4,

respectively. But here we want to remark that the proof of B ≤ B̃ in (i)

of Theorem 3 was obtained in [K] already, while the “only if” part of (i)

in Theorem 3 is a significant improvement over Theorem 1 of [K]. In [K],

Kaneko obtained B̃ ≤ pB/(p − 1) so that his result works only for p > 1.

In Section 5 we will study deLeeuw’s theorem on (1.2′) implies (1.3′).

Precisely, we will prove

Theorem 4. Suppose that Φ is a nonzero function which satisfies

|Φ(x)| ≤ C(1 + |x|)−n−δ with some δ > 0, and
∫

�
n Φ(x)dx = 0. Then

(1.2′) implies (1.3′) for p ∈ (1,∞).

In the case 0 < p ≤ 1, we have

Theorem 5. Suppose Φ is the function as in Theorem 4. If

‖f‖Hp(
�

n) ≤ C‖gΦ(f)‖Lp(
�

n)(1.9)

for all f ∈ Hp(Rn) ∩ S(Rn), then

‖f̃‖Hp( � n) ≤ C ′‖GΦ(f̃)‖Lp( � n)(1.10)

for all f̃ ∈ C∞(Tn) satisfying
∫

� n f̃dx = 0.

Remark. It is easy to see that the condition
∫

� n f̃dx = 0 is necessary
in Theorems 4 and 5.

In this paper, we will adopt some ideas in our previous paper [FS1].

Also, the letter C and C ′ will denote positive constants that may vary at

each occurrence but are independent of the essential variables. We also

denote f(x) ∼= g(x) if there exist positive constants C1 and C2 independent

of x such that C1f(x) ≤ g(x) ≤ C2f(x).

§2. The “B̃ ≤ B” part of Theorem 1

Fix R > 0, we define

∆Rf̃(x) =
{

∫

|t|≤R
|Φ̃t ∗ f̃(x)|2dt

}1/2
.(2.1)

Since ∆Rf̃ increasingly tends to {
∫

� |Φ̃t ∗ f̃(x)|2dt}1/2 and C∞(Tn) is dense

in Lp(Tn), it sufficies to show that

‖∆Rf̃‖Lp( � n) ≤ B‖f̃‖Lp( � n)(2.2)
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uniformly for f̃ ∈ C∞(Tn) and R > 0. Fix a positive integer K, define the

set ΩK by

ΩK = [−1/2 − 1/K, 1/2 + 1/K]n.

Let Ψ be a function in S(Rn) satisfying suppΨ ⊆ ΩK , 0 ≤ Ψ(x) ≤ 1, and

Ψ(x) ≡ 1 on Q. Noting ∆Rf̃ is a periodic function, we have

‖∆Rf̃‖Lp( � n) =

{

N−n

∫

NQ
Ψ(x/N)|∆Rf̃(x)|pdx

}1/p

=







N−n

∫

NQ

(

∫

|t|≤R
|Ψ(x/N)Φ̃t ∗ f̃(x)|2dt

)p/2

dx







1/p

.

Thus by Lemma 1, we have that

‖∆Rf̃‖Lp( � n) ≤

{

N−n

∫

�
n

(
∫

� |Φt ∗ (Ψ1/N f̃)(x)|2dt

)p/2

dx

}1/p

(2.3)

+







N−n

∫

NQ

(

∫

|t|≤R
|JN,2t(x)|2dt

)p/2

dx







1/p

,

and that the second integral on the right side of the above inequality goes

to zero as N → ∞. On the other hand, the first integral on the right side

of the above inequality is equal to

N−n/p‖gΦ(Ψ1/N f̃)‖Lp(
�

n).(2.4)

Thus by the assumption and the choice of Ψ, it is bounded by

N−n/pB‖Ψ1/N f̃‖Lp(
�

n) ≤ BN−n/p

{
∫

NΩK

|f̃(x)|pdx

}1/p

(2.5)

where NΩK = [−N/2−N/K,N/2+N/K]n . Choose N such that N/K are

integers. Then as N → ∞ we have, since f̃ is a periodic function, that

‖∆R(f̃)‖Lp(
�

n) ≤ B

{

N−n(N + 2N/K)n
∫

Q
|f̃(x)|pdx

}1/p

+ o(1)

= B(1 + 2/K)n/p‖f̃‖Lp( � n) + o(1).

Letting N → ∞, then K → ∞, finally R → ∞, we obtain ‖GΦ(f̃)‖Lp( � n) ≤

B‖f̃‖Lp( � n). The proof is complete.

We now present several applications.
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Corollary 1. Suppose Φ ∈ L1(Rn) and satisfies
∫

Φ = 0. If

sup
|ξ|=1

∫ ∫

�
n×

�
n

| Φ(x)Φ(y) log |〈ξ, x − y〉| | dxdy < ∞

then

‖GΦ(f̃)‖Lp( � n) ≤ C‖f̃‖Lp( � n).

Proof. We obtain this corollary by Theorem 1 and Proposition 3 of
[Sa1]. Similarly by Theorem 1 and Theorem 1 in [Sa1], we have

Corollary 2. Let Φ ∈ L1(Rn) satisfy
∫

Φ = 0. If Φ satisfies the

following conditions

(1) Bε(Φ) =

∫

|x|>1
|Φ(x)| |x|εdx < ∞ for some ε > 0,

(2) Du(Φ) =
(

∫

|x|<1
|Φ(x)|udx

)1/u
< ∞ for some u > 1,

(3) HΦ(x) = sup
|y|≥|x|

|Φ(y)| ∈ L1(Rn),

then

‖GΦ(f̃)‖Lp( � n) ≤ C‖f̃‖Lp( � n) for all p ∈ (1,∞).

In the one dimensional case, we let Φ(x) = signx(1−|x|)α−1 with α > 0
if |x| < 1 and Φ(x) = 0 otherwise; and denote GΦ(f̃) = µα(f̃). The square
function µ1 coincides with the ordinary Marcinkiewicz integral on T

1. By
Theorem 1 again together with Theorem 4 in [Sa2], we now have

Corollary 3. For p ∈ (1,∞) and α > 0 we have

‖µα(f̃)‖Lp( � 1) ≤ C‖f̃‖Lp( � 1)

provided α > (2 − p)/2p.
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§3. Proof of Theorem 2

First we prove the “only if” part. Let ∆R be defined in Section 2. It

sufficies to show

‖∆R(f̃)‖Lp( � n) ≤ C‖f̃‖Hp( � n)(3.1)

with C independent of f̃ and R > 0. By the discussion in [FS1], we may

assume
∫

Q f̃(x)dx = 0. Take

Ψ(x) =
n
∏

j=1

(1 − 4x2
j )+.(3.2)

Then from (2.3) and (2.4) we have, as N → ∞,

‖∆R(f̃)‖p
Lp( � n) ≤ N−n‖gΦ(Ψ1/N f̃)‖p

Lp(
�

n) + o(1).(3.3)

Thus by the assumption,

‖∆R(f̃)‖p
Lp( � n) ≤ CN−n‖Ψ1/N f̃‖p

Hp(
�

n) + o(1).

By checking the proof of (4.7) in [FS1], we have

N−n‖Ψ1/N f̃‖p
Hp(

�
n) ≤ C‖f̃‖p

Hp( � n)(3.4)

with C being independent of f̃ and N . Thus we prove the “only if” part

by letting N → ∞.

Next, we turn to prove the “if” part. Let D(Rn) = {f ∈ S(Rn) : f has

compact support}. Since D(Rn)∩Hp(Rn) is dense in Hp(Rn), it is enough

to prove the theorem when f is in D(Rn) ∩ Hp(Rn). In order to do so,

we follow the idea in [SW] to define f̃ε, for ε > 0, to be the dilated and

periodized version of f , viz

f̃ε(x) = ε−n
∑

m∈Λ

f(ε−1(x + m)).

Then by the Poisson summation formula

f̃ε(x) =
∑

k∈Λ

f̂(εk)e2πi〈k,x〉.

By the definition of the Riemann integral, we know that

Φt ∗ f(x) = lim
ε→0+

εn
∑

m∈Λ

Φ̂(2tεm)f̂(εm)e2πiε〈m,x〉.
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Thus by the Fatou Lemma, we have
∫

� |Φt ∗ f(x)|2dt ≤ lim inf
ε→0

∫

� |εn
∑

m∈Λ

Φ̂(2tεm)f̂(εm)e2πiε〈m,x〉|2dt.

Following the proof on page 265 in [SW] we let η(x) ≥ 0 be a function in

D(Rn) satisfying η(0) = 1 and
∑

m∈Λ η(x + m) = 1. By Fatou’s lemma

again, we have

‖gΦ(f)‖p
Lp(

�
n)

≤ lim inf
ε→0

∫

�
n

η(εx)
{

∫

� |εn
∑

m∈Λ

Φ̂(2tεm)f̂(εm)e2πiε〈m,x〉|2dt
}p/2

dx.

By changing variables on x, it is easy to see that

‖gΦ(f)‖p
Lp(

�
n)

≤ lim inf
ε→0

εnp−n

∫

�
n

η(x)
{

∫

� |
∑

m∈Λ

Φ̂(2tεm)f̂(εm)e2πi〈m,x〉|2dt
}p/2

dx.

After changing variables 2tε → 2t and using the fact
∑

m∈Λ η(x + m) = 1,

we now have

‖gΦ(f)‖p
Lp(

�
n)

≤ lim inf
ε→0

εnp−n

∫

Q

{

∫

� |
∑

m∈Λ

Φ̂(2tm)f̂(εm)e2πi〈m,x〉|2dt
}p/2

dx

= lim inf
ε→0

εnp−n‖GΦ(f̃ε)‖
p
Lp( � n).

By the assumption, we have that

‖gΦ(f)‖p
Lp(

�
n) ≤ C ′ lim inf

ε→0
εnp−n‖f̃ε‖

p
Hp( � n).

From Lemma 3 in [LL], lim infε→0 εn(1−1/p)‖f̃ε‖Hp( � n) = ‖f‖Hp(
�

n). Thus

we have

‖gΦ(f)‖Lp(
�

n) ≤ C ′‖f‖Hp(
�

n).

Let µα be defined as in Corollary 3. By Theorem 2 and Theorem 4 in

[Sa2] we have

Corollary 4. For α > 0 and 1 ≥ p > 2/(2α + 1) we have

‖µα(f̃)‖Lp( � 1) ≤ C‖f̃‖Hp( � 1).

https://doi.org/10.1017/S0027763000008126 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000008126


165-02 : 2002/3/11(17:20)

32 C.-P. CHEN, D. FAN AND S. SATO

§4. Proof of Theorem 3

First we prove the “if” part. The proofs for (i) and (ii) are essentially

the same. We prove (ii) only. For f ∈ D(Rn) we define f̃ε, for ε > 0 as in

Section 3 and define

Φ̃t,ε ∗ f̃ε(x) =
∑

m∈Λ

Φ̂(2tεm)f̂(εm)e2πi〈m,x〉.

Then we proved in Section 3 that limε→0 εnΦ̃t,ε ∗ f̃ε(εx) = Φt ∗ f(x). We

write
(

∫

� |Φ̃t,ε ∗ f̃ε(x)|2dt
)1/2

= Tεf̃ε(x).

By changing variables 2tε → 2t, it is easy to see that

Tεf̃ε(x) ∼= GΦ(f̃ε)(x).(4.1)

Let η(x) = χQ(x). Then by the Fatou Lemma for each x ∈ R
n, we have

gΦ(f)(x) ≤ lim inf
ε→0

η(εx)εnTεf̃ε(εx).

By Fatou’s lemma again, for each λ > 0

|{x ∈ R
n, gΦ(f)(x) > λ}|

≤ lim inf
ε→0

|{x ∈ R
n, η(εx)Tεf̃ε(x) > λε−n}|.

(by changing variables on x)

≤ lim inf
ε→0

ε−n|{x ∈ Q,Tεf̃ε(x) > λε−n}|.

By (4.1) and the assumption of the theorem and Lemma 3 in [LL], the

above limit is bounded by

lim inf
ε→0

C‖f̃ε‖
p
Hp( � n)ε

np−n/λp ≤ C‖f‖p
Hp(

�
n)/λp.

The “if” part is proved. Now we turn to prove the “only if” part. For any

f̃ , without loss of generality, we assume
∫

Q f̃(x)dx = 0. Let ∆R be defined

as in Section 2 and Ψ be as in (3.2). Then for any λ > 0 fixed,

|{x ∈ Q : |∆Rf̃(x)| > λ}| = N−n|{x ∈ NQ : |∆Rf̃(x)| > λ}|

≤ N−n|{x ∈ NQ : |Ψ(x/2N)∆Rf̃(x)| > (3/4)nλ}|.
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By Lemma 1 we know that EN (x) = (
∫ R
−R |JN,2t(x)|2dt)1/2 → 0 uniformly

on x, for any ε ∈ (0, λ), so that we can choose N sufficiently large such that

|{x ∈ Q : |∆Rf̃(x)| > λ}

≤ N−n|{x ∈ R
n : |gΦ(Ψ1/(2N)f̃)(x)| > (3/4)n(λ − ε)}|.

Thus in case (ii), by the assumption and (3.4) we have

|{x ∈ Q : |∆Rf̃(x)| > λ}| ≤ CN−n{‖Ψ1/(2N)f̃‖Hp(
�

n)/(λ − ε)}p

≤ C{‖f̃‖Hp( � n)/(λ − ε)}p,

where C is independent of ε and R. Letting R → ∞ and noting ε is

arbitrary, Theorem 3 (ii) is proved.

We can prove case (i) by combining the idea of the proof for case (ii)

and the method of Section 2.

§5. Proofs of Theorems 4 and 5

5.1. Proof of Theorem 4

Choose a function Ψ ∈ C∞ such that Ψ(x) ≡ 1 on [−1/2, 1/2]n, 0 ≤

Ψ(x) ≤ 1, and suppΨ ⊆ [−1, 1]n. As in the argument in Section 3, for any

f̃(x) =
∑

k 6=0 cke
2πi〈x,k〉 and any positive integer N ,

‖GΦ(f̃)‖Lp( � n)

≥
{

(8N)−n

∫

[−4N,4N ]n

{

∫

� |Ψ(x/N)Φ̃t ∗ f̃(x)|2dt
}p/2

dx
}1/p

.

Thus by Lemma 1, we have that

‖GΦ(f̃)‖Lp( � n)

≥
{

(8N)−n

∫

[−4N,4N ]n

{

∫

� |Φt ∗ (Ψ1/N f̃)(x)|2dt
}p/2

dx
}1/p

− EN ,

where

EN =
{

(8N)−n

∫

[−4N,4N ]n

(

∫

� |JN,2t(x)|2dt
)p/2

dx
}1/p

.

Furthermore, we have that

‖GΦ(f̃)‖Lp(
�

n) ≥ (8N)−n/p‖gΦ(Ψ1/N f̃)‖Lp(
�

n) − EN − EN(5.1)
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with EN = {(8N)−n
∫

|x|∗>2N (
∫

� |Φt∗(Ψ
1/N f̃)(x)|2dt)p/2dx}1/p, where |x|∗ =

max{|x1|, . . . , |xn|}. By the assumption,

(8N)−n/p‖gΦ(Ψ1/N f̃)‖Lp(
�

n) ≥ (8N)−n/pB−1
1 ‖Ψ1/N f̃‖Lp(

�
n)

≥ CN−n/p
{

∫

[−N/2,N/2]n
|f̃(x)|pdx

}1/p

≥ C‖f̃‖Lp( � n).

This shows that there is a positive constant C independent of N such that

‖GΦ(f̃)‖Lp( � n) ≥ C‖f̃‖Lp( � n) − EN − EN .

Thus to complete the proof of Theorem 4, it remains to show

lim
N→∞

EN = 0,(5.2)

(5.2′) lim
N→∞

EN = 0.

We prove (5.2′) first. Changing variables y/N → y, x/N → x and 2tN → t,

it is easy to see that EN is bounded by, up to a constant independent of N ,

{

∫

|x|∗≥2

(

∫ ∞

0
|

∫

�
n

t−nΦ(t−1(x−y))Ψ(y)
∑

k 6=0

cke
2πi〈,k,Ny〉dy|2t−1dt

)p/2
dx
}1/p

.

For any ε > 0, there is an M > 0 such that
∑

|k|≥M |ck| < ε. Thus,

EN ≤ εI +
∑

|k|<M,k 6=0

|ck|IN,k,

where

I =
{

∫

|x|∗≥2

(

∫ ∞

0

(

∫

�
n

|t−nΦ(t−1(x − y))Ψ(y)|dy
)2

t−1dt
)p/2

dx
}1/p

,

IN,k =
{

∫

|x|∗>2

(

∫ ∞

0

∣

∣

∣

∫

�
n

t−nΦ

(

x − y

t

)

Ψ(y)e2πi〈k,Ny〉dy
∣

∣

∣

2 dt

t

)p/2
dx
}1/p

.

Clearly, to prove (5.2′), it suffices to show I ≤ C and limN→∞ IN,k = 0 for

each k 6= 0.
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Recall supp Ψ ⊆ [−1, 1]n. We have that Φ
(x−y

t

)

≤ C(1 + |x|/t)−n−δ if

y ∈ [−1, 1]n and |x|∗ ≥ 2. Thus

I ≤ C
{

∫

|x|∗>2

{

∫ ∞

0
(1 + |x|/t)−2n−2δt−2n−1dt

}p/2
dx
}1/p

≤ C
{

∫

|x|∗>2

{

∫ |x|

0
(t/|x|)2n+2δt−2n−1dt

}p/2
dx
}1/p

+C
{

∫

|x|∗>2

{

∫ ∞

|x|
t−2n−1dt}p/2dx

}1/p

≤
{

∫

|x|∗>2
|x|−npdx

}1/p
≤ C, because p > 1.

Next we prove limN→∞ IN,k = 0 for all k 6= 0. Put

FN (x, t) =

∫

�
n

t−nΦ(t−1(x − y))Ψ(y)e2πi〈k,Ny〉dy,

GN (x) =

∫ ∞

0
|FN (x, t)|2t−1dt.

Then by the Riemann-Lebesgue theorem FN (x, t) → 0 as N → ∞, since

k 6= 0; and for |x|∗ > 2

|FN (x, t)|2 ≤ C(1 + |x|/t)−2n−2δt−2n

with a constant C independent of N . Thus by the dominated convergence

theorem we see that GN (x) → 0 as N → ∞ for each fixed x with |x|∗ > 2.

Furthermore, by the estimate in the previous paragraph we have

GN (x) ≤ C|x|−2n

with a constant C independent of N . Applying the dominated convergence

theorem again, we have

lim
N→∞

IN,k = lim
N→∞

(

∫

|x|∗>2
GN (x)p/2dx

)1/p
= 0.

This completes the proof of (5.2′).

Now we turn to prove (5.2). We prove

lim
N→∞

∫

� |JN,2t |2dt = 0(5.3)
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uniformly for x ∈ R
n. The proof is similar to that of Proposition in [FS2],

but here we need the idea in [Sa1]. Since

|JN,2t(x)| ≤ C
∑

k∈Λ

k 6=0

|ck|

∫

�
n

|Ψ̂(ξ)| |Φ̂(2tk) − Φ̂(2tk + 2tξ/N)|dξ

and {ck} decays rapidly, it suffices to show

(

∫

�

(

∫

�
n

|Ψ̂(ξ)Φ̂(2tk)|dξ
)2

dt
)1/2

≤ C,(5.4)

(

∫

�

(

∫

�
n

|Ψ̂(ξ)Φ̂(2tk + 2tξ/N)|dξ
)2

dt
)1/2

≤ C,(5.5)

lim
N→∞

(

∫

�

(

∫

�
n

|Ψ̂(ξ){Φ̂(2tk) − Φ̂(2tk + 2tξ/N)}|dξ
)2

dt
)1/2

= 0(5.6)

for each k 6= 0, where C is independent of k and N . The proofs of (5.4) and

(5.5) are the same. We prove (5.5) only. It is easy to see that Φ satisfies

the assumption of Corollary 1. So, by the proof of Proposition 3 of [Sa1]

we have

sup
ξ∈

�
n

∫

� |Φ̂(2tξ)|2dt ≤ C.

Thus by the Minkowski inequality,

(

∫

�

(

∫

�
n

|Ψ̂(ξ)Φ̂(2tk + 2tξ/N)dξ
)2

dt
)1/2

≤
(

∫

�
n

|Ψ̂(ξ)|2
(

∫

� |Φ̂(2tk + 2tξ/N)|2dt
)1/2

dξ

≤ C

∫

�
n

|Ψ̂(ξ)|2dξ ≤ C.

Finally, we prove (5.6). If we change variables 2t → t, by checking the proof

of (5.5) and by the dominated convergence theorem, we only need to show

lim
N→∞

∫ ∞

0
|Φ̂(tk) + Φ̂(t(k + ξ/N))|2t−1dt = 0,(5.7)

for each fixed ξ ∈ R
n. Put m = k + ξ/N . Note that

|Φ̂(2tk) − Φ̂(tm)|2

=

∫ ∫

�
n×

�
n

Φ(x)Φ̃(y)(e−2πi〈x,tk〉 − e−2πi〈x,tm〉)(e2πi〈y,tk〉 − e2πi〈y,tm〉)dxdy
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Since |Φ(x)| ≤ C(1 + |x|)−n−δ, as in the proof of Proposition 3 of [Sa1] we

have

∫ ∞

0
|Φ̂(tk) − Φ̂(tm)|2t−1dt

= (π/2)

∫ ∫

�
n×

�
n

Φ(x)Φ(y){−i sgn〈k, x − y〉 + i sgn〈x,m〉 − 〈y, k〉)

+i sgn(〈x, k〉 − 〈y,m〉) − i sgn〈m,x − y〉}dxdy

+

∫ ∫

�
n×

�
n

Φ(x)Φ(y){− log |〈k, x − y〉| + log |〈x,m〉 − 〈y, k〉|

+ log |〈x, k〉 − 〈y,m〉| − log |〈m,x − y〉|}dxdy.

Since k 6= 0, the set {(x, y) : 〈k, x − y〉 = 0} has measure 0 in R
n × R

n.

Therefore, it is easy to see that the first integral on the right hand side

tends to 0 as N → ∞. The same is true for the second integral. To see

this, fix ξ and let

IN =

∫ ∫

�
n×

�
n

Φ(x)Φ(y){log |〈x, k〉 − 〈y,m〉| − log |〈m,x − y〉|}dxdy.

Then IN → 0 as N → ∞, and

lim
N→∞

∫ ∫

�
n×

�
n

Φ(x)Φ(y){log |〈x,m〉 − 〈y, k〉| − log |〈k, x − y〉|}dxdy = 0.

The proofs are similar. We prove limN→∞ IN = 0 only. This will proves

(5.7).

We assume n ≥ 2, since the 1-dimensional case can be treated in the

same way, and is easier. First, without loss of generality we may assume

k = e1 = (1, 0, . . . , 0). Then we have

IN =
∫∫

�
n×

�
n

Φ(x)Φ(y){log |x1−y1−〈y, ξ/N〉|−log |x1−y1 + 〈ξ/N, x − y〉|}dxdy.

Put y′ = (y2, . . . , yn). By changing variables we have

IN =

∫ ∫

�
n×

�
n

Φ(x){Φ(y)−Φ(y1+〈ξ/N, x〉, y′)} log |x1−y1−〈y, ξ/N〉|dxdy.

https://doi.org/10.1017/S0027763000008126 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000008126


165-02 : 2002/3/11(17:20)

38 C.-P. CHEN, D. FAN AND S. SATO

Put η = e1 + ξ/N , then |η| ∼= 1 if N is sufficiently large. Take a rotation

AN such that A−1
N η = |η|e1. Then, changing variable, we see that

IN =

∫ ∫

Φ(x){NΦ(y) − NΦ(y + 〈ξ/N, x〉A−l
N e1)} log |x1 − |η|y1|dxdy

=

∫ ∫

Φ(x){NΦ(y1 + x1, |η|y
′)−NΦ((y1+x1, |η|y

′)+|η|〈ξ/N, x〉A−1
N e1)}

log |y1|dxdy,

where NΦ(y) = Φ(ANy), NΦ(y) = |η|−1Φ(|η|−1ANy). Let

IIN (x) =
∫

�
n

|NΦ(y1+x1, |η|y
′)−NΦ((y1+x1, |η|y

′)+|η|〈ξ/N, x〉A−1
N e1)| | log |y1| |dy.

We prove

IIN (x) ≤ Cγ(1 + |x|γ),(5.8)

where 0 < γ < min{1, δ} and Cγ is independent of x and N (N is sufficiently

large). Since

| log |t| | ≤ Cχ(0,1](t)t
−γ + Cχ(0,∞)(t)t

γ ,(5.9)

(5.8) is an immediate consequence of the following estimates:
∫

�
n

|NΦ(y1 + x1, |η|y
′)| |y1|

γdy ≤ C(1 + |x|γ),(5.10)

∫

�
n

|NΦ((y1 + x1, |η|y
′) + |η|〈ξ/N, x〉A−1

N e1)| |y1|
γdy ≤ C(1 + |x|γ),(5.11)

∫

�
n

|NΦ(y1 + x1, |η|y
′)|χ(0,1](|y1|)|y1|

−γdy ≤ C,(5.12)

∫

�
n

|NΦ((y1 + x1, |η|y
′) + |η|〈ξ/N, x〉A−1

N e1)|χ(0,1](|y1|)|y1|
−γdy ≤ C.(5.13)

Put P (x) = (1 + |x|)−n−δ. Then |NΦ(x)| ≤ CP (x). So, the proofs of

(5.10) and (5.11) are easy. The proofs of (5.12) and (5.13) are similar. We

prove (5.13) only. Put A−1
N e1 = (a1, a

′) and P̃ (x′) = (1 + |x′|)−n−δ. Since

P (x) ≤ P̃ (x′), the integral in (5.13) is bounded by

C

∫

�
n

P̃ (|η|y′ + |η|〈ξ/N, x〉a′)χ(0,1](|y1|)|y1|
−γdy

= C|η|−(n−1)

∫

�
n

P̃ (y′)χ(0,1](|y1|)|y1|
−γdy.
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This proves (5.13).

Now we have

IN ≤

∫

|x|<M
|Φ(x)|IIN (x)dx +

∫

|x|≥M
|Φ(x)|IIN (x)dx =: IN,M + JN,M .

Given ε > 0, by (5.8) we can find M > 0 such that JN,M ≤ ε uni-

formly in N . Therefore, to prove limN→∞ IN = 0, it sufficies to show

that limN→∞ IN,M = 0 for each fixed M > 0. Put

IIIN (x, y) = |NΦ(y1 + x1, |η|y
′)− NΦ((y1 + x1, |η|y

′) + |η|〈ξ/N, x〉A−1
N e1)|.

We prove

lim
L→∞

∫

|y|≥L
IIIN (x, y)| log |y1| |dy = 0(5.14)

uniformly in N and x satisfying |x| ≤ M . By (5.9), it suffices to show the

following:

lim
L→∞

∫

|y|≥L
|NΦ(y1 + x1, |η|y

′)|y1|
γdy = 0,(5.15)

lim
L→∞

∫

|y|≥L
|NΦ((y1 + x1, |η|y

′ + |η|〈ξ/N, x〉A−1
N e1)|y1|

γdy = 0.(5.16)

lim
L→∞

∫

|y|≥L
|NΦ(y1 + x1, |η|y

′)|χ(0,1](|y1|)|y1|
−γdy = 0,(5.17)

lim
L→∞

∫

|y|≥L
|NΦ((y1 + x1, |η|y

′) + |η|〈ξ/N, x〉A−1
N e1|(5.18)

× χ(0,1](|y1|)|y1|
−γdy = 0,

where each convergence is uniform in N and x with |x| ≤ M .

The proofs of (5.15) and (5.17) are similar to those of (5.16) and (5.18),

respectively. We prove (5.16) and (5.18) only. Now, the integral in (5.16)

is bounded by

C

∫

|y|≥L
P ((y1 + x1, |η|y

′) + |η|〈ξ/N, x〉A−1
N e1)|y1|

γdy.

By changing variables we see that this is bounded by

C

∫

|y|>L/2
P (y)(|y1|

γ + |x|γ)dy,
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if |x| ≤ M and L is sufficiently large. This proves (5.16). To prove (5.18)

we use the same notation as that in the proof of (5.13). Then we easily see

that the integral in (5.18) is bounded by

C

∫

|y|≥L
P̃ (|η|y′ + |η|〈ξ/N, x〉a′)χ(0,1](|y1|)|y1|

−γdy

≤ C|η|−(n−1)

∫

|y′|≥L/2
P̃ (y′)dy′

∫ 1

−1
|y1|

−γdy1,

if |x| ≤ M and L is sufficiently large. This proves (5.18).

Finally we prove

lim
N→∞

∫

|y|<L
IIIN (x, y)| log |y1| |dy = 0(5.19)

for each x with |x| ≤ M , since

IIN (x) =

∫

|y|<L
IIIN (x, y)| log |y1| |dy +

∫

|y|≥L
IIIN (x, y)| log |y1| |dy.

By (5.14) and (5.19) along with the dominated convergence theorem, it fol-

lows that limN→∞ IN,M = 0, which will complete the proof of limN→∞ IN =

0.

To prove (5.19), we split the domain of integration:
∫

|y|<L
IIIN (x, y)| log |y1| |dy

=
{

∫

|y|<L,|y1|<ρ
+

∫

|y|<L,|y1|≥ρ

}

IIIN (x, y)| log |y1| |dy.

Since IIIN is bounded and log |y1| is locally integrable, given ε > 0 there

exists ρ > 0 such that the first integral on the right hand side is less than

ε. Thus it suffices to show that

lim
N→∞

∫

|y|<L,|y1|≥ρ
IIIN (x, y)| log |y1| |dy = 0

for each fixed ρ > 0. Since log |y1| is bounded on {y : |y| < L, |y1| ≥ ρ},

we have
∫

|y|<L,|y1|≥ρ
IIIN (x, y)| log |y1| |dy ≤ C

∫

�
n

IIIN (x, y)dy

= C

∫

�
n

|Φ(y) − Φ(y + 〈ξ/N, x〉e1)|dy.
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The last integral tends to 0 as N → ∞, since Φ ∈ L1. This shows (5.19),

which completes the proof of (5.7).

5.2. Proof of Theorem 5

Choose the function Ψ as in 5.1. Following the proof of (5.1) and the

assumption we obtain that

‖GΦ(f̃)‖p
Lp( � n) ≥ CN−n‖gΦ(Ψ1/N f̃)‖p

Lp(
�

n) − Ep
N − Ep

N(5.20)

≥ CN−n‖Ψ1/N f̃‖p
Hp(

�
n) − Ep

N − Ep
N .

Using exactly the same proof as in the proof of Theorem 4, we have that

EN and EN tend to zero as N goes to infinity. Thus to prove the theorem,

it suffices to prove

lim inf
N→∞

N−n‖Ψ1/N f̃‖p
Hp(

�
n) ≥ C‖f̃‖p

Hp( � n).

Take a φ ∈ S(Rn) such that
∫

�
n φ(x)dx 6= 0. Then by the definition of the

Hardy space,

N−n‖Ψ1/N f̃‖p
Hp(

�
n) = N−n

∫

�
n

sup
t>0

∣

∣

∣

∫

�
n

φt(x − y)Ψ(y/N)f̃(y)dy
∣

∣

∣

p
dx

≥ N−n

∫

[−N/2,N/2]n

∫

�
n

sup
0<t≤R

∣

∣

∣

∫

�
n

φt(x − y)Ψ(y/N)f̃(y)dy
∣

∣

∣

p
dx.

So by Lemma 1, for each fixed R > 0,

N−n‖Ψ1/N f̃‖p
Hp(

�
n)

= N−n

∫

[−N/2,N/2]n
|Ψ(x/N)|p sup

0<t≤R
|φ̃t ∗ f̃(x)|pdx − o(1)

= N−n

∫

[−N/2,N/2]n
sup

0<t≤R
|φ̃t ∗ f̃(x)|pdx − o(1)

=

∫

Q
sup

0<t≤R
|φ̃t ∗ f̃(x)|pdx − o(1), as N → ∞.

This shows

lim inf
N→∞

N−n‖Ψ1/N f̃‖p
Hp(

�
n) ≥ C

∫

Q
sup

0<t≤R
|φ̃t ∗ f̃(x)|pdx.

Letting R → ∞, we obtain (5.21). Now the theorem is proved.
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