Extension of the Notion of Wave-surface to Space of n Dimensions.

By Professor P. H. Schoote.

1. The following two modes of generation of the wave-surface are pretty generally known.
(a) A given ellipsoid $\mathbf{E} \equiv x_{1}{ }^{2} / a_{1}{ }^{2}+x_{2}^{2} / a_{2}{ }^{2}+x_{3}{ }^{2} / a_{3}{ }^{2}-1=0$ (surface of elasticity) is cut by any central plane π along an ellipse of semiaxes λ_{1} and λ_{2}. If π varies, the two pairs of planes π^{\prime} parallel to π at distances $k^{2} / \lambda_{1}, k^{2} / \lambda_{2}(k=$ constant $)$ from it envelope the wave-surface W_{1} represented by the tangential equation

$$
\sum_{i=1}^{i=3} a_{i}^{2} u_{i}^{2} /\left(a_{i}^{2}-k^{4} \Sigma u_{i}^{2}\right)=0
$$

if the tangential coordinates u_{i} depend on $\Sigma u x+1=0$.
(b) A given ellipsoid $\mathrm{V} \equiv a_{1}{ }^{2} x_{1}^{2}+a_{2}^{2} x_{2}^{2}+a_{3}{ }^{2} x_{3}^{2}-k^{4}=0$ (surface of velocity) is cut by any central plane π along an ellipse of semi-axes μ_{1}, μ_{2}. If π varies, the locus of the two pairs of points P^{\prime}, situated in the normal to π through the centre O of V and at distances μ_{1}, μ_{2} from 0 , is the wave-surface \mathbf{W}_{2} represented by the equation

$$
\sum_{i=1}^{i=3} x_{i}^{2} /\left(k^{4}-a_{i}^{2} \Sigma x_{i}^{2}\right)=0
$$

The surfaces W_{1} and W_{2} coincide. This result found by Professor Mannheim, who gave a very elegant geometrical demonstration of it (Annuaire de l'association française, Congrès de Lille, 1874) is not easily verified by analysis.
2. In the Nieuw Archief (series 2, vol. 3, p. 239, 1897) I have extended the two modes of generation stated above to n-dimensional space S^{n}.

My results are as follows :-
(a) A given quadratic space of $n-1$ dimensions represented by $\mathrm{E}^{n-1} \equiv \sum_{i=1}^{i=n} x_{i}^{2} / a_{i}^{2}-1=0$ is cut by any central linear space of $n-1$ dimensions σ in a quadratic space E^{n-2} of semi-axes $\lambda_{1} \quad \lambda_{2} \ldots \lambda_{n-1}$.

If σ varies, the $n-1$ pairs of linear spaces σ^{\prime} parallel to σ at distances $k^{2} / \lambda_{1}, k^{2} / \lambda_{2}, \ldots k^{2} / \lambda_{n-1}$ from it envelope the wave-space $\mathrm{W}_{1}{ }^{n-1}$ represented by

$$
\sum_{i=1}^{i=n} a_{i}^{2} u_{i}^{2} /\left(a_{i}^{2}-k^{4} \sum u_{j}^{2}\right)=0 .
$$

(β) A given quadratic space represented by
is cut by any central linear space σ in a quadratic space V^{n-2} of semi-axes $\mu_{1} \mu_{2} \ldots \mu_{n-1}$. If σ varies, the locus of the $n-1$ pairs of points, situated in the normal to σ through the centre O of V^{n-1} at distances $\mu_{1} \mu_{2} \cdots \mu_{n-1}$ from O, is the wave-space $\mathrm{W}_{2}{ }^{n-1}$ represented by

$$
\sum_{i=1}^{i=n} x_{i}^{2} /\left(k^{4}-a_{i}^{2} \check{x_{i}}{ }^{2}\right)=0 .
$$

The spaces $W_{1}{ }^{n-1}$ and $W_{2}{ }^{n-1}$ coincide in the same quadratic space W^{n-1} of degree and class $2(n-1)$.
3. In various publications Professor Mannheim has introduced a third mode of generation of the wave-surface. The object of this paper is to give an analytical demonstration of this third mode of generation, and to solve the question whether it is capable of as simple an extension to n-dimensional space.

According to the mode of generation in view, the wave-surface is the locus of the point P that admits with respect to a given ellipsoid L an enveloping cone, one of the principal sections of which is a right angle.

If we put $L \cong x_{1}{ }^{2} / b_{1}{ }^{2}+x_{2}{ }^{2} / b_{2}{ }^{2}+x_{3}{ }^{2} / b_{3}{ }^{2}-1=0$, the enveloping cone with the vertex $\mathbf{P}\left(y_{1}, y_{2}, y_{3}\right)$ is represented by

$$
\Sigma\left(\frac{y_{2}{ }^{2}}{b_{2}{ }^{2}}+\frac{y_{3}{ }^{2}}{b_{3}{ }^{2}}-1\right) \frac{x_{1}{ }^{2}}{\overline{b_{1}{ }^{2}}}-2 \Sigma \frac{y_{2} y_{3}}{b_{2}{ }^{2} b_{3}{ }^{2}} x_{2} x_{3}=0
$$

referred to parallel axes through \mathbf{P}.
This corresponds to the symbolical form $\left(c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3}\right)^{2}=0$, if we put

$$
c_{11}=\frac{1}{b_{1}{ }^{2}}\left(\frac{y_{2}{ }^{2}}{b_{2}{ }^{2}}+\frac{y_{3}{ }^{2}}{b_{3}{ }^{2}}-1\right), \quad c_{23}=-y_{2} y_{3} / b_{2}{ }^{2} b_{3}{ }^{2}, \text { etc. }
$$

Now, according to the conditions of the problem the equation in S ,

$$
\mathrm{D} \equiv\left|\begin{array}{lll}
c_{11}-\mathrm{S} & c_{12} & c_{13} \\
c_{21} & c_{22}-\mathrm{S} & c_{23} \\
c_{31} & c_{32} & c_{33}-\mathrm{S}
\end{array}\right|=0
$$

must have two roots whose sum is zero.
If D_{0} is the value of D for $\mathrm{S}=0$, and $\mathrm{C}_{\mathrm{n}}, \mathrm{C}_{22}, \mathrm{C}_{33}$ be the minors of D_{0} with respect to $c_{11} c_{22} c_{33}$, the condition is

$$
\left(c_{11}+c_{22}+c_{33}\right)\left(\mathrm{C}_{11}+\mathrm{C}_{22}+\mathrm{C}_{33}\right)=\mathrm{D}_{0}
$$

In this way we find after some calculation

$$
\begin{aligned}
& \Sigma\left(b_{2}{ }^{2}+b_{3}{ }^{2}\right) y_{1}{ }^{2} \Sigma y_{1}{ }^{2}-\Sigma\left(b_{2}{ }^{2}+b_{3}^{2}\right)\left(2 b_{1}^{2}+b_{2}{ }^{2}+b_{3}{ }^{2}\right) y y_{1}^{2} \\
+ & \Sigma b_{1}^{2} \Sigma b_{2}^{2} b_{3}^{2}-b_{1}{ }^{2} b_{2}{ }^{2} b_{3}{ }^{2}=0,
\end{aligned}
$$

which reduces to

$$
\sum_{1}^{3} y_{i}^{2} /\left(k^{4}-a_{i}^{2} \searrow y_{i}^{2}\right)=0
$$

by the substitution

$$
b_{2}^{2}+b_{3}^{2}=k^{4} / a_{1}^{2}, \quad b_{3}^{2}+b_{1}^{2}=k^{4} / a_{2}^{2}, \quad b_{1}{ }^{2}+b_{2}^{2}=k^{4} / a_{3}^{2} .
$$

So we find that the new surface coincides with W_{1} and W_{2}, if L has the equation
$x_{1}^{2} /\left(\frac{1}{a_{2}^{2}}+\frac{1}{a_{3}^{2}}-\frac{1}{a_{1}^{2}}\right)+x_{2}^{2} /\left(\frac{1}{a_{3}^{2}}+\frac{1}{a_{1}^{2}}-\frac{1}{a_{2}^{2}}\right)+x_{3}^{2} /\left(\frac{1}{a_{1}^{2}}+\frac{1}{a_{2}^{2}}-\frac{1}{a_{3}^{2}}\right)-k^{4}=0$.
4. Let us proceed now to the space \mathbb{S}^{n} and seek the locus of the point P that admits with respect to a given quadratic space $L^{n-1} \equiv \sum_{i=1}^{n=1} \frac{x_{i}{ }^{2}}{b_{i}{ }^{2}}-1=0$ an enveloping cone, one of the principal sections of which is a right angle.

If we take parallel axes passing through $\mathbf{P}\left(y_{1}, y_{2} \ldots y_{n}\right)$, the equation of the enveloping cone of vertex P is

$$
\Sigma\left(\frac{y^{2}}{b_{2}^{2}}+\frac{y_{3}{ }^{2}}{b_{3}{ }^{2}}+\ldots+\frac{y_{n}{ }^{2}}{b_{n}^{2}}-1\right) \frac{x_{1}{ }^{2}}{b_{1}{ }^{2}}-2 \Sigma \frac{y_{i} y_{j}}{b_{i}{ }^{2} b_{j} x_{i}} x_{j}=0 .
$$

This appears in the symbolical form

$$
\left(c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{n} x_{n}\right)^{2}=0
$$

by the substitution

$$
c_{11}=\frac{1}{b_{1}{ }^{2}}\left(\frac{y_{2}{ }^{2}}{b_{2}{ }^{2}}+\frac{y_{3}{ }^{2}}{b_{3}{ }^{2}}+\ldots+\frac{y_{n}{ }^{2}}{b_{n}{ }^{2}}-1\right), \quad c_{i} c_{j}=-y_{i} y_{j} / b_{i}^{2} b_{j}{ }^{2}, \text { etc. }
$$

Now, according to the condition of the problem, the equation

$$
\mathrm{D} \equiv\left|\begin{array}{ll:l}
c_{11}-\mathrm{S} & c_{12} & c_{1 n} \\
c_{21} & c_{22}-\mathrm{S} & c_{2 n} \\
\hdashline \ldots \ldots
\end{array}\right|=0
$$

must have two roots in S whose sum is zero.
For if $S_{1}, S_{2} \ldots S_{n}$ be the roots, the equation of the enveloping cone with reference to its axes of symmetry is $\Sigma \mathrm{S}_{1} x_{i}^{2}=0$ and the principal plane section $S_{i} x_{i}^{2}+S_{j} x_{j}^{2}=0$ situated in the plane $X_{i} O X_{f}$ is a right angle $x_{i}^{2}-x_{j}^{2}=0$ provided $S_{i}+S_{j}=0$.

If we suppose the roots to be

$$
\mathrm{S}_{0}, \quad \mathrm{~S}_{0}, \quad \mathrm{~T}_{1}, \quad \mathrm{~T}_{2}, \ldots \mathrm{~T}_{n-2}
$$

and represent respectively by λ, s_{k}, t_{k} the square of S_{0} and the sum of the partial products k at a time of all the n roots, and of the $n-2$ roots T, we have

$$
\begin{aligned}
& s_{1}=t_{1} \\
& s_{2}=t_{2}-\lambda \\
& s_{3}=t_{3}-\lambda t_{1} \\
& s_{4}=t_{4}-\lambda t_{2} \\
& \cdot \cdot \cdot \cdot \\
& s_{n-2}=t_{n-2}-\lambda t_{n-4} \\
& s_{n-1}=-\lambda t_{n-3} \\
& s_{n}=-\lambda t_{n-2} .
\end{aligned}
$$

The elimination of $t_{1} t_{2} \ldots t_{n-2}$ gives the two equations

$$
\left.\begin{array}{l}
s_{n-1}+\lambda s_{n-3}+\lambda^{2} s_{n-5}+\ldots \ldots=0 \tag{1}\\
s_{n}+\lambda s_{n-2}+\lambda^{2} s_{n-4}+\ldots . .=0
\end{array}\right\}
$$

which can be treated by the dialytic method of Sylvester.

We may obtain the equations (1) in an easier manner. For, if the equation in S is written in the form

$$
S^{n} \quad-s_{1} S^{n-1}+s_{2} S^{n-2}-s_{3} S^{n-3}+\ldots . .=0,
$$

the conditions for the two solutions $+\mathrm{S}_{0}$, and $-\mathrm{S}_{0}$ are
or

$$
\left.\begin{array}{r}
S_{0}^{n} \pm s_{1} \mathrm{~S}_{0}^{n-1}+s_{2} \mathrm{~S}_{0}^{n-2} \pm \ldots=0 \\
\mathrm{~S}_{0}^{n}+s_{2} \mathrm{~S}_{0}^{n-2}+s_{4} \mathrm{~S}_{0}^{n-4}+\ldots .=0 \\
8_{1} \mathrm{~S}_{0}^{n-1}+s_{3} \mathrm{~S}_{0}^{n-3}+\ldots \ldots=0
\end{array}\right\}
$$

a system which is identical with (1) as is proved by the substitution $S_{0}{ }^{2}=\lambda$.

The general result being too complicated for practical use, we consider the particular case $n=4$. Then we have
and find

$$
\begin{gathered}
s_{3}+\lambda s_{1}=0 \quad s_{4}+\lambda s_{2}+\lambda^{2}=0 \\
s_{3}^{2}-s_{1} s_{2} s_{3}+s_{1}^{2} s_{4}=0 .
\end{gathered}
$$

Now the determinant

$$
\mathrm{D}_{0} \equiv\left|\begin{array}{llll}
c_{11} & c_{12} & c_{13} & c_{14} \\
c_{21} & c_{22} & c_{23} & c_{24} \\
c_{31} & c_{32} & c_{33} & c_{34} \\
c_{31} & c_{42} & c_{43} & c_{44}
\end{array}\right|
$$

leads to the notation

$$
\begin{gathered}
s_{1}=c_{11}+c_{22}+c_{23}+c_{44}, s_{2}=\Sigma\left|\begin{array}{ll}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{array}\right|, s_{3}=\mathbf{\Sigma}\left|\begin{array}{lll}
c_{11} & c_{12} & c_{13} \\
c_{21} & c_{22} & c_{23} \\
c_{31} & c_{32} & c_{33}
\end{array}\right|=\Sigma \mathrm{C}_{11}, \\
s_{4}=\mathrm{D}_{0},
\end{gathered}
$$

where the quantities and minors following the Σ 's belong to and have principal minors belonging to the principal diagonal of D_{0}.

Let P denote $y_{1}{ }^{2} / b_{1}{ }^{2}+y_{2}{ }^{2} / b_{2}{ }^{2}+y_{3}{ }^{2} / b_{3}{ }^{2}+y_{4}{ }^{2} / b_{4}{ }^{2}-1$, then the form of D_{0},

$$
\left|\begin{array}{cccc}
\frac{1}{b_{1}{ }^{2}}\left(\mathbf{P}-\frac{y_{1}{ }^{2}}{b_{1}{ }^{2}}\right), & -\frac{y_{1} y_{2}}{b_{1}{ }^{2} b_{2}{ }^{2}}, & -\frac{y_{1} y_{3}}{b_{1}{ }^{2} b_{3}{ }^{2}}, & -\frac{y_{1} y_{4}}{b_{1}{ }^{2} b_{4}{ }^{2}} \\
-\frac{y_{2} y_{1}}{b_{2}{ }^{2} b_{2}{ }^{2}}, & \frac{1}{b_{2}{ }^{2}}\left(\mathbf{P}-\frac{y_{2}{ }^{2}}{b_{2}{ }^{2}}\right), & -\frac{y_{2} y_{3}}{b_{2}{ }^{2} b_{3}{ }^{2}}, & -\frac{y_{2} y_{4}}{b_{2}{ }^{2} b_{4}{ }^{2}} \\
\cdots & \cdots & \cdots & \cdots
\end{array}\right|
$$

leads to the following values of s :

$$
\begin{array}{ll}
\mathrm{B} s_{1}=\Sigma b_{1}{ }^{2} b_{2}{ }^{2} y_{3}{ }^{2}-\Sigma b_{1}{ }^{2} b_{2}{ }^{2} b_{3}{ }^{2}, & \mathrm{~B} s_{2}=\mathrm{P}\left(\Sigma b_{1}{ }^{2} y_{2}{ }^{2}-\Sigma b_{1}{ }^{2} b_{2}{ }^{2}\right) \\
\mathrm{B} s_{3}= & \mathrm{P}^{2}\left(\Sigma y_{1}{ }^{2}-\Sigma b_{1}{ }^{9}\right),
\end{array} \mathrm{B} s_{4}=-\mathrm{P}^{3}, \text { where } \mathrm{B}=b_{1}{ }^{2} b_{2}{ }^{2} b_{3}{ }^{2} b_{4}{ }^{2} .
$$

Substitution of these values in the relation
gives

$$
s_{3}^{2}-s_{1} s_{2} s_{3}+s_{1}^{2} s_{4}=0
$$

$$
\begin{gathered}
\mathrm{W}_{3}^{3} \equiv\left(\Sigma b_{1}^{2} b_{2}^{2} b_{3}^{2} y_{4}{ }^{2}-b_{1}{ }^{2} b_{2}{ }^{2} b_{3}{ }^{2} b_{4}^{2}\right)\left(\Sigma y_{1}{ }^{2}-\Sigma b_{1}^{2}\right)^{2} \\
-\left(\Sigma b_{1}^{2} b_{2}^{2} y_{3}^{2}-\Sigma b_{1}{ }^{2} b_{2}^{2} b_{3}^{2}\right)\left(\Sigma b_{1}^{2} y_{2}^{2}-\Sigma b_{1}^{2} b_{2}^{2}\right)\left(\Sigma y_{1}^{2}-\Sigma b_{1}^{2}\right) \\
-\left(\Sigma b_{1}^{2} b_{2}^{2} y_{3}^{2}-\Sigma b_{1}^{2} b_{2}^{2} b_{3}^{2}\right)^{2}=0 .
\end{gathered}
$$

This equation represents a tridimensional space $W_{3}{ }^{3}$ of the sixth order, which contains only once the imaginary sphere at infinity common to all hyperspheres in S^{4}. Therefore it can not coincide with $W_{1}{ }^{3}=W_{2}{ }^{3}$ of which that sphere is a double surface.

Of the space $\mathrm{W}_{3}{ }^{3}$ the bidimensional surface $s_{1}=0, s_{3}=0$ is a double surface, in other words $W_{3}{ }^{3}$ passes two times through the intersection of the quadratic space $s_{1}=0$ and the hypersphere $s_{3}=0$; this double surface is not situated in a linear tridimensional space, as that of $W_{1}{ }^{3}=W_{2}{ }^{3}$.

So we have shown that the third method of generation of the wave-surface, found by Professor Mannheim, admits a generalisation to n-dimensional space, but that this extension is of a more complicated character than that of the two ordinary modes of generation.

