
8

Domain walls as D-brane prototypes

D branes are extended objects in string theory on which strings can end [10].
Moreover, the gauge fields are the lowest excitations of open superstrings, with
the endpoints attached to D branes. SU(N) gauge theories are obtained as a
field-theoretic reduction of a string theory on the world volume of a stack of
N D branes.

Our task is to see how the above assertions are implemented in field theory. We
have already thoroughly discussed field-theoretic strings. Solitonic objects of the
domain wall type were also extensively studied in supersymmetric gauge theories in
1+3 dimensions. The original impetus was provided by the Dvali–Shifman observa-
tion [11] of the critical (BPS-saturated) domain walls in N = 1 gluodynamics, with
the tension scaling as N�3. The peculiar N dependence of the tension prompted
[12] a D-brane interpretation of such walls. Ideas as to how flux tubes can end on
the BPS walls were analyzed [213] at the qualitative level shortly thereafter. Later
on, BPS-saturated domain walls and their junctions with strings were discussed
[214, 215] in a more quantitative aspect in N = 2 sigma models. Some remarkable
parallels between field-theoretical critical solitons and the D-brane string theory
construction were discovered.

In this and subsequent chapters we will review the parallel found between the
field-theoretical BPS domain walls in gauge theories andD branes/strings. In other
words, we will discuss BPS domain walls with the emphasis on localization of the
gauge fields on their world volume. In this sense the BPS domain walls become
D-brane prototypes in field theory.

As was mentioned, research on field-theoretic mechanisms of gauge field local-
ization on the domain walls attracted much attention. The only viable mechanism
of gauge field localization was outlined in Ref. [11] where it was noted that if a
gauge field is confined in the bulk and is unconfined (or less confined) on the brane,
this naturally gives rise to a gauge field on the wall (for further developments see
Refs. [216, 217]). Although this idea seems easy to implement, in fact it requires
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8.1 N = 2 supersymmetric QED 197

a careful consideration of quantum effects (confinement is certainly such an effect)
which is hard to do at strong coupling.

Building on these initial proposals models with localization of gauge fields on
the world volume of domain walls at weak coupling in N = 2 supersymmetric
gauge theories were suggested in [142, 37, 218]. Using a dual language, the basic
idea can be expressed as follows: the gauge group is completely Higgsed in the bulk
while inside the wall the charged scalar fields almost vanish. In the bulk magnetic
flux tubes are formed while inside the wall the magnetic fields can propagate freely.
In Ref. [142] domain walls in the simplest N = 2 SQED theory were considered
while Refs. [218, 37, 219] deal with the domain walls in non-Abelian N = 2 gauge
theories (4.1.7), with the gauge group U(N). Below we will review some results
obtained in these papers.

The moduli space of the multiple domain walls in N = 2 supersymmetric gauge
theories and corresponding sigma models were studied in [220, 221, 222, 223, 224].
Note that the domain walls can intersect [84, 85, 88]. In particular, in [86, 87]
honeycomb webs of walls were obtained in Abelian and non-Abelian gauge
theories, respectively. We briefly discussed this phenomenon in Part I, Section 3.1.5.

We start our discussion of the BPS domain walls as D-brane prototypes in the
simplest Abelian theory – N = 2 SQED with 2 flavors [142]. It supports both
the BPS-saturated domain walls and the BPS-saturated ANO strings if the Fayet–
Iliopoulos term is added to the theory.

8.1 N = 2 supersymmetric QED

N = 1 SQED (four supercharges) was discussed in Section 3.2. Now we will
extend supersymmetry to N = 2 (eight supercharges). Some relevant features of
this model are summarized in Appendix C.

The field content of N = 2 SQED is as follows. In the gauge sector we have the
U(1) vector N = 2 multiplet. In the matter sector we have Nf matter hypermulti-
plets. In this section we will limit ourselves to Nf = 2. This is the simplest case
which admits domain wall interpolating between quark vacua. The bosonic part of
the action of this theory is

S =
∫
d4x

{
1

4g2
F 2
μν + 1

g2
|∂μa|2 + ∇̄μq̄A∇μqA + ∇̄μq̃A∇μ ¯̃qA

+ g2

8

(|qA|2 − |q̃A|2 − ξ
)2 + g2

2

∣∣q̃AqA∣∣2 + 1

2
(|qA|2 + |q̃A|2)∣∣a + √

2mA
∣∣2},

(8.1.1)
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198 Domain walls as D-brane prototypes

where

∇μ = ∂μ − i

2
Aμ, ∇̄μ = ∂μ + i

2
Aμ. (8.1.2)

With this convention the electric charges of the matter fields are ±1/2 (in the units
of g). Parameter ξ in Eq. (8.1.1) is the coefficient in front of the Fayet–Iliopoulos
term. It is introduced as in Eq. (4.1.5) with F3 = D and F1,2 = 0. In other words,
here we introduce the Fayet–Iliopoulos term as the D term. Furthermore, g is the
U(1) gauge coupling. The index A = 1, 2 is the flavor index.

The mass parameters m1,m2 are assumed to be real. In addition we will assume

�m ≡ m1 −m2 � g
√
ξ . (8.1.3)

Simultaneously, �m � (m1 + m2)/2. There are two vacua in this theory: in the
first vacuum

a = −√
2m1, q1 = √ξ , q2 = 0, (8.1.4)

and in the second one

a = −√
2m2, q1 = 0, q2 = √ξ . (8.1.5)

The vacuum expectation value of the field q̃ vanishes in both vacua. Hereafter in
the search for domain wall solutions we will stick to the ansatz q̃ = 0.

Now let us discuss the mass spectrum in both quark vacua. Consider for definite-
ness the first vacuum, Eq. (8.1.4). The spectrum can be obtained by diagonalizing
the quadratic form in (8.1.1). This is done in Ref. [35]; the result is as follows: one
real component of the field q1 is eaten up by the Higgs mechanism to become the
third component of the massive photon. Three components of the massive photon,
one remaining component of q1 and four real components of the fields q̃1 and a
form one long N = 2 multiplet (8 boson states + 8 fermion states), with mass

m2
γ = 1

2
g2 ξ . (8.1.6)

The second flavor q2, q̃2 (which does not condense in this vacuum) forms one
short N = 2 multiplet (4 boson states + 4 fermion states), with mass�m which is
heavier than the mass of the vector supermultiplet. The latter assertion applies to
the regime (8.1.3). In the second vacuum the mass spectrum is similar – the roles
of the first and the second flavors are interchanged.

If we consider the limit opposite to that in Eq. (8.1.3) and tend �m → 0, the
“photonic” supermultiplet becomes heavier than that of q2, the second flavor field.
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8.2 Domain walls in N = 2 SQED 199

Therefore, it can be integrated out, leaving us with the theory of massless moduli
from q2, q̃2, which interact through a nonlinear sigma model with the Kähler term
corresponding to the Eguchi–Hanson metric. The manifold parametrized by these
(nearly) massless fields is obviously four-dimensional. Both vacua discussed above
lie at the base of this manifold. Therefore, in considering the domain wall solutions
in the sigma model limit�m → 0 [220, 221, 215] one can limit oneself to the base
manifold, which is, in fact, a two-dimensional sphere. In other words, classically,
it is sufficient to consider the domain wall in the CP(1) model deformed by a
twisted mass term (related to a nonvanishing �m), see Fig. 3.11. This was first
done in [221]. A more general analysis of the domain walls on the Eguchi–Hanson
manifold can be found in [225]. An interesting N = 1 deformation of the model
(8.1.1) which was treated in the literature [226] in the quest for “confinement on
the wall” automatically requires construction of the wall on the Eguchi–Hanson
manifold, rather than the CP(1) wall, since in this case the two vacua of the model
between which the wall interpolates do not lie on the base.

8.2 Domain walls in N = 2 SQED

A BPS domain wall interpolating between the two vacua of the bulk theory (8.1.1)
was explicitly constructed in Ref. [142]. Assuming that all fields depend only on the
coordinate z = x3, it is possible to write the energy by performing the Bogomol’nyi
completion [5],

E =
∫
dx3

{∣∣∣∣∇3q
A ± 1√

2
qA(a + √

2mA)

∣∣∣∣
2

+
∣∣∣∣1g ∂3a ± g

2
√

2

(
|qA|2 − ξ

)∣∣∣∣
2

± 1√
2
ξ∂3a

}
. (8.2.1)

Requiring the first two terms above to vanish gives us the BPS equations for the
wall. Assuming that �m > 0 we choose the upper sign in (8.2.1) to get

∇zqA = − 1√
2
qA
(
a + √

2mA
)

,

∂za = − g2

2
√

2

(
|qA|2 − ξ

)
. (8.2.2)

These first-order equations should be supplemented by the following boundary
conditions:

q1(−∞) = √ξ , q2(−∞) = 0, a(−∞) = −√
2m1;

q1(∞) = 0, |q2(∞)| = √ξ , a(∞) = −√
2m2, (8.2.3)
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200 Domain walls as D-brane prototypes

which show that our wall interpolates between the two quark vacua. Here we use
a U(1) gauge rotation to make q1 in the left vacuum real.

The tension is given by the total derivative term (the last one in Eq. (8.2.1)) which
can be identified as the (1, 0) central charge of the supersymmetry algebra,

Tw = ξ �m. (8.2.4)

We can find the solution to the first-order equations (8.2.2) compatible with the
boundary conditions (8.1.3). The range of variation of the field a inside the wall is
of the order of�m (see Eq. (8.2.3)). Minimization of its kinetic energy implies that
this field slowly varies. Therefore, we may safely assume that the wall is thick; its
size R � 1/g

√
ξ . This fact will be confirmed shortly.

We arrive at the following picture of the domain wall at hand. The wall solution
has a three-layer structure [142], see Fig. 8.1. In the two outer layers – let us call
them edges, they have thicknessO((g

√
ξ)−1) which means that they are thin – the

squark fields drop to zero exponentially; in the inner layer the field a interpolates
between its two vacuum values.

Then to the leading order we can put the quark fields to zero in (8.2.2) inside the
inner layer. The second equation in (8.2.2) tells us that a is a linear function of z.
The solution for a takes the form

a = −√
2

(
m−�m

z− z0

R

)
, (8.2.5)

x −1/2 x −1/2

field profile

R

z

q1 q2

a

E1 M E2

z0

Figure 8.1. Internal structure of the domain wall: two edges (domains E1,2) of
the width ∼ (g

√
ξ)−1 are separated by a broad middle band (domain M) of the

width R, see Eq. (8.2.7).
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8.2 Domain walls in N = 2 SQED 201

where the collective coordinate z0 is the position of the wall center (and �m is
assumed positive). The solution is valid in a wide domain of z

|z− z0| < R

2
, (8.2.6)

except narrow areas of size ∼ 1/g
√
ξ near the edges of the wall at z− z0 = ±R/2.

Substituting the solution (8.2.5) in the second equation in (8.2.2) we get

R = 4�m

g2ξ
= 2�m

m2
γ

. (8.2.7)

Since �m/g
√
ξ � 1, see Eq. (8.1.3), this result shows that R � 1/g

√
ξ , which

justifies our approximation. This approximation will be referred to as the thin-edge
approximation.

Furthermore, we can now use the first relation in Eq. (8.2.2) to determine tails of
the quark fields inside the wall.As was mentioned above, we fix the gauge imposing
the condition that q1 is real at z → −∞, see a more detailed discussion in [142].

Consider first the left edge (domainE1 in Fig. 8.1) at z−z0 = −R/2. Substituting
the above solution for a in the equation for q1 we get

q1 = √ξ e−m2
γ

4

(
z−z0+R

2

)2

, (8.2.8)

wheremγ is given by (8.1.6). This behavior is valid in the domainM , at (z− z0 +
R/2) � 1/g

√
ξ , and shows that the field of the first quark flavor tends to zero

exponentially inside the wall, as was expected.
By the same token, we can consider the behavior of the second quark flavor near

the right edge of the wall at z − z0 = R/2. The first equation in (8.2.2) for A = 2
implies

q2 = √ξ e−m2
γ

4

(
z−z0−R

2

)2−iσ , (8.2.9)

which is valid in the domainM provided that (R/2 − z+ z0) � 1/g
√
ξ . Here σ is

an arbitrary phase which cannot be gauged away. Inside the wall the second quark
flavor tends to zero exponentially too.

It is not difficult to check that the main contribution to the wall tension comes
from the middle layer while the edge domains produce contributions of the order
of ξ3/2 which makes them negligibly small.

Now let us comment on the phase factor in (8.2.9). Its origin is as follows [142].
The bulk theory at �m �= 0 has the U(1)×U(1) flavor symmetry corresponding
to two independent rotations of two quark flavors. In both vacua only one quark
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develops a VEV. Therefore, in both vacua only one of these two U(1)’s is broken.
The corresponding phase is eaten by the Higgs mechanism. However, on the wall
both quarks have nonvanishing values, breaking both U(1) groups. Only one of the
corresponding two phases is eaten by the Higgs mechanism. The other one becomes
a Goldstone mode living on the wall.

Thus, we have two collective coordinates characterizing our wall solution, the
position of the center z0 and the phase σ . In the effective low-energy theory on
the wall they become scalar fields of the world volume (2+1)-dimensional theory,
z0(t , x, y) and σ(t , x, y), respectively. The target space of the second field is S1.

This wall is a 1/2 BPS solution of the Bogomol’nyi equations. In other words,
four out of eight supersymmetry generators of the N = 2 bulk theory are broken.
As was shown in [142], the four supercharges selected by the conditions

ε̄2
2̇

= −iε21, ε̄1
2̇

= −iε22,

ε̄1
1̇

= iε12, ε̄2
1̇

= iε11, (8.2.10)

act trivially on the wall solution. They become the four supersymmetries acting in
the (2+1)-dimensional effective world volume theory on the wall. Here εαf and
ε̄
f
α̇ are eight supertransformation parameters.

8.3 Effective field theory on the wall

In this section we will review the (2+1)-dimensional effective low-energy theory
of the moduli on the wall [142]. To this end we will make the wall collective
coordinates z0 and σ (together with their fermionic superpartners) slowly varying
fields depending on xn (n = 0, 1, 2), For simplicity let us consider the bosonic fields
z0(xn) and σ(xn); the residual supersymmetry will allow us to readily reconstruct
the fermion part of the effective action.

Because z0(xn) and σ(xn) correspond to zero modes of the wall, they have no
potential terms in the world sheet theory. Therefore, in fact our task is to derive their
kinetic terms, much in the same way as it was done for strings, see Section 4.4. For
z0(xn) this procedure is very simple. Substituting the wall solution (8.2.5), (8.2.8),
and (8.2.9) in the action (8.1.1) and taking into account the xn dependence of this
modulus we immediately get

Tw

2

∫
d3x(∂nz0)

2. (8.3.1)
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As far as the kinetic term for σ(xn) is concerned more effort is needed. We start
from Eqs. (8.2.8) and (8.2.9) for the quark fields. Then we will have to modify our
ansatz introducing nonvanishing components of the gauge field,

An = χ(z) ∂nσ (xn). (8.3.2)

These components of the gauge field are needed to make the world volume action
well-defined. They are introduced in order to cancel the x dependence of the quark
fields far away from the wall (in the quark vacua at z → ∞) emerging through the
x dependence of σ(xn), see Eq. (8.2.9).

Thus, we introduce a new profile function χ(z). It has no role in the construction
of the static wall solution per se. It is unavoidable, however, in constructing the
kinetic part of the world sheet theory of the moduli. This new profile function is
described by its own action, which will be subject to minimization procedure. This
is quite similar to derivation of the world sheet effective theory for non-Abelian
strings, see Section 4.4.

The gauge potential in Eq. (8.3.2) is pure gauge far away from the wall and is
not pure gauge inside the wall. It does lead to a nonvanishing field strength.

To ensure proper vacua at z → ±∞ we impose the following boundary
conditions on the function χ(z)

χ(z) → 0, z → −∞ ,

χ(z) → −2, z → +∞ . (8.3.3)

Remember, the electric charge of the quark fields is ±1/2.
Next, substituting Eqs. (8.2.8), (8.2.9) and (8.3.2) in the action (8.1.1) we arrive at

Sσ2+1 =
[∫

d3x
1

2
(∂nσ )

2
]

×
∫
dz

{
1

g2
(∂zχ)

2 + χ2|q1|2 + (2 + χ)2|q2|2
}

. (8.3.4)

The expression in the second line must be considered as an “action” for theχ profile
function.

Our next task is to explicitly find the function χ . To this end we have to minimize
(8.3.4) with respect to χ . This gives the following equation:

−∂2
z χ + g2χ |q1|2 + g2(2 + χ)|q2|2 = 0. (8.3.5)

The equation for χ is of the second order. This is because the domain wall is
no longer BPS state once we switch on the dependence of the moduli on the
“longitudinal” variables xn.
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To the leading order in g
√
ξ/�m the solution of Eq. (8.3.5) can be obtained in

the same manner as it was done previously for other profile functions. Let us first
discuss what happens outside the inner part of the wall. Say, at z − z0 � R/2 the
profile |q1| vanishes while |q2| is exponentially close to

√
ξ and, hence,

χ → −2 + const e−mγ (z−z0). (8.3.6)

At z0 −z � R/2 the profile function χ falls off exponentially to zero. Thus, outside
the inner part of the wall, at |z−z0| � R/2, the function χ approaches its boundary
values with the exponential rate of approach.

Of most interest, however, is the inside part, the middle domainM (see Fig. 8.1).
Here both quark profile functions vanish, and Eq. (8.3.5) degenerates into ∂2

z χ = 0.
As a result, the solution takes the form

χ = −1 − 2
z− z0

R
. (8.3.7)

In the narrow edge domainsE1,2 the exact χ profile smoothly interpolates between
the boundary values, see Eq. (8.3.6), and the linear behavior (8.3.7) inside the wall.
These edge domains give small corrections to the leading term in the action.

Substituting the solution (8.3.7) in the χ action, the second line in Eq. (8.3.4),
we finally arrive at

Sσ2+1 = ξ

�m

∫
d3x

1

2
(∂nσ )

2. (8.3.8)

As well-known [227], the compact scalar field σ(t , x, y) can be reinterpreted
to be dual to the (2+1)-dimensional Abelian gauge field living on the wall. The
emergence of the gauge field on the wall is easy to understand. The quark fields
almost vanish inside the wall. Therefore the U(1) gauge group is restored inside the
wall while it is Higgsed in the bulk. The dual U(1) is in the confinement regime in
the bulk. Hence, the dual U(1) gauge field is localized on the wall, in full accordance
with the general argument of Ref. [11]. The compact scalar field σ(xn) living on
the wall is a manifestation of this magnetic localization.

The action in Eq. (8.3.8) implies that the coupling constant of our effective U(1)
theory on the wall is given by

e2 = 4π2 ξ

�m
. (8.3.9)

In particular, the definition of the (2+1)-dimensional gauge field takes the form

F (2+1)
nm = e2

2π
εnmk ∂

kσ . (8.3.10)
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This finally leads us to the following effective low-energy theory of the moduli
fields on the wall:

S2+1 =
∫
d3x

{
Tw

2

(
∂nz0

)2 + 1

4 e2

(
F (2+1)
nm

)2 + fermion terms

}
. (8.3.11)

The fermion content of the world volume theory is given by two three-dimensional
Majorana spinors, as is required by N = 2 in three dimensions (four supercharges,
see (8.2.10)). The full world volume theory is a U(1) gauge theory in (2+1) dimen-
sions, with four supercharges. The Lagrangian and the corresponding superalgebra
can be obtained by reducing four-dimensional N = 1 SQED (with no matter) to
three dimensions.

The field z0 in (8.3.11) is the N = 2 superpartner of the gauge fieldAn. To make
it more transparent we make a rescaling, introducing a new field

a2+1 = 2πξ z0. (8.3.12)

In terms of a2+1 the action (8.3.11) takes the form

S2+1 =
∫
d3x

{
1

2e2

(
∂na2+1

)2 + 1

4e2

(
F (2+1)
mn

)2 + fermions

}
. (8.3.13)

The gauge coupling constant e2 has dimension of mass in three dimensions. A char-
acteristic scale of massive excitations on the world volume theory is of the order of
the inverse thickness of the wall 1/R, see (8.2.7). Thus, the dimensionless parameter
that characterizes the coupling strength in the world volume theory is e2R,

e2R = 16π2

g2
. (8.3.14)

This can be interpreted as a feature of the bulk–wall duality: the weak coupling
regime in the bulk theory corresponds to strong coupling on the wall and vice
versa [142, 228]. Of course, finding explicit domain wall solutions and deriving
the effective theory on the wall assumes weak coupling in the bulk, g2 � 1. In this
limit the world volume theory is in the strong coupling regime and is not very useful.

The fact that each domain wall has two bosonic collective coordinates – its center
and the phase – in the sigma model limit was noted in [214, 221].

To summarize, we showed that the world volume theory on the domain wall is
the U(1) gauge theory (8.3.13) with extended supersymmetry, N = 2. Thus, the
domain wall in the theory (8.1.1) presents an example of a field-theoreticD brane: it
localizes a gauge field on its world volume. In string theory gauge fields are localized
on D branes because fundamental open strings can end on D branes. It turns out
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that this is also true for field-theoretic “D branes.” In fact, various junctions of field-
theoretic strings (flux tubes) with domain walls were found explicitly [215, 142, 37].
We will review 1/4-BPS junctions in Chapter 9. Meanwhile, in Section 8.4 we will
consider non-Abelian generalizations of the localization effect for the gauge fields.

8.4 Domain walls in the U(N ) gauge theories

In this section we will review the domain walls in N = 2 SQCD (see Eq. (4.1.7))
with the U(N) gauge group. We assume that the number of the quark flavors in
this theory Nf > N , so the theory has many vacua of the type (4.1.11), (4.1.14)
depending on which N quarks out of Nf develop VEVs. We can denote different
vacua as (A1,A2, . . . ,AN) specifying which quark flavors develop VEVs. Mostly,
we will consider a general case assuming all quark masses to be different.

Let us arrange the quark masses as follows:

m1 > m2 > · · · > mNf . (8.4.1)

In this case the theory (4.1.7) has

Nf !
N !(Nf −N)! (8.4.2)

isolated vacua.
Domain walls interpolating between these vacua were classified in [218]. Below

we will briefly review this classification.
The Bogomol’nyi representation of the action (4.1.7) leads to the first-order

equations for the wall configurations [229], see also [37],

∂zϕ
A = − 1√

2

(
aaτ

a + a + √
2mA

)
ϕA,

∂za
a = − g2

2

2
√

2

(
ϕ̄Aτ

aϕA
)

,

∂za = − g2
1

2
√

2

(
|ϕA|2 − 2ξ

)
, (8.4.3)

where we used the ansatz (4.2.1) and introduced a single quark field ϕkA instead of
two fields qkA and q̃Ak . These walls are 1/2 BPS saturated. The wall tensions are
given by the surface term

Tw = √
2ξ
∫
dz ∂za . (8.4.4)
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They can be written as [218]

Tw = ξ �g �m, (8.4.5)

where we use Eq. (4.1.11) and define �m = (m1, . . . ,mNf ), while

�g =
Nf−1∑
i=1

ki �αi . (8.4.6)

Here ki are integers while αi are simple roots of the U(Nf ) algebra,1

�α1 = (1, −1, 0, . . . , 0),

�α2 = (0, 1, −1, . . . , 0),

... ,

�αNf−1 = (0, . . . , 0, 1, −1). (8.4.7)

Elementary walls arise if one of the ki’s reduces to unity while all other integers in
the set vanish. The tensions of the elementary walls are

T iw = ξ (mi −mi+1). (8.4.8)

The ith elementary wall interpolates between the vacua (..., i, ...) and (..., i+ 1, ...).
All other walls can be considered as composite states of elementary walls.

As an example let us consider the theory (4.1.7) with the gauge group U(2) and
Nf = 4. Explicit solutions for the elementary walls in the limit

(mi −mi+1) � g
√
ξ (8.4.9)

were obtained in [37]. They have the same three-layer structure as in the Abelian
case, see Section 8.2. Say, the elementary wall interpolating between the vacua
(1, 2) and (1, 3) has the following structure. At the left edge the quark ϕ2 varies
from its VEV

√
ξ to zero exponentially, while at the right edge the quark ϕ3 evolves

from zero to its VEV
√
ξ . In the broad middle domain the fields a and a3 linearly

interpolate between their VEVs in two vacua. A novel feature of the domain wall
solution as compared to the Abelian case (see Section 8.2) is that the quark field ϕ1

does not vanish both outside and inside the wall.

1 Each �α in Eq. (8.4.7) is an Nf -component vector, rather than (Nf − 1)-component vector of SU(Nf ). The
Cartan generators Hi (i = 1, 2, . . . ,Nf ) are Nf × Nf diagonal matrices, (Hi)kl = δkiδli , while the relevant
non-Cartan generators E�αi are defined as (E�αi )i,i+1 = 1, with all other entries vanishing.
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The solution for the elementary wall has two real moduli much in the same way
as in the Abelian case: the wall center z0 and a compact phase. The phase can be
rewritten as a U(1) gauge field. Therefore, the effective theory on the elementary
wall is of the type (8.3.13), as in the Abelian case. The physical reason behind the
localization of the U(1) gauge field on the wall world volume is easy to understand.
Since the quark ϕ1 does not vanish inside the wall only an appropriately chosen
U(1) field, namely (Aμ − A3

μ), which does not interact with this quark field can
propagate freely inside the wall.

In the case of generic quark masses the effective world volume theory for compos-
ite domain walls contains U(1) gauge fields associated with each elementary wall.
However, the metric on the moduli space can be more complicated. For example
the metric for the �α1 + �α2 composite wall was shown [221, 230] to have a cigar-like
geometry.

We conclude this section noting that the case of the degenerate quark masses
was considered in [37, 219]. In particular, in [37] the N = 2 case was studied
and it was argued that the composite wall made of two elementary walls localizes
a non-Abelian U(2) gauge field. In [219] non-localized zero modes which were
called “non-Abelian clouds” were found on the composite wall.
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