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On the Entire Coloring Conjecture
Daniel P. Sanders and Yue Zhao

Abstract. The Four Color Theorem says that the faces (or vertices) of a plane graph may be colored with four
colors. Vizing’s Theorem says that the edges of a graph with maximum degree∆ may be colored with ∆ + 1
colors. In 1972, Kronk and Mitchem conjectured that the vertices, edges, and faces of a plane graph may be
simultaneously colored with ∆ + 4 colors. In this article, we give a simple proof that the conjecture is true if
∆ ≥ 6.

1 Introduction

The original graph coloring problem was that of coloring the faces (equivalently the ver-
tices) of a plane graph. This was known as the four color problem, and was solved by Appel
and Haken in 1976 (see [1] or [13] for a simplified proof). Vizing [17] proved that if ∆ is
the maximum degree of a vertex of a graph (we will always use∆ for this purpose), then its
edges may be colored with∆ + 1 colors, which is easily seen to be best possible.

The problem of simultaneously coloring sets of elements of a graph began in the mid-
1960s with Ringel [12], who conjectured that the vertices and faces of a plane graph may be
colored with six colors (solved by Borodin [2]), and with Vizing [17], who conjectured that
the vertices and edges of any graph may be colored with∆ + 2 colors (best known general
result: [11]). There was also an edge-face coloring conjecture of Melnikov [10] which was
recently solved by the authors [14] (see also [19]). For a complete history of problems of
this type, see [6].

The most complicated problem of this type for plane graphs is that of coloring all its ele-
ments simultaneously, that is its vertices, edges, and faces. In 1972, Kronk and Mitchem [8]
called this type of coloring an entire coloring, and conjectured that any plane graph of
maximum degree∆ is entirely (∆+ 4)-colorable and proved this conjecture for∆ = 3 [9].
Entire colorings of special classes of graphs had previously been studied in [5] and [7]. The
graph K4 shows that an entire (∆+3)-coloring theorem is impossible. In 1989, Borodin [3]
proved the conjecture for ∆ ≥ 12, and recently improved this to ∆ ≥ 7 [4]. This article
gives a simple proof of the entire coloring conjecture for ∆ ≥ 6, using the discharging
method.

To formalize, some terminology is necessary. All graphs in this paper are simple and
finite. Let G be a plane graph. We denote the vertex, edge, and face sets of G by V (G),
E(G), and F(G), respectively. For convenience, in this article, we use adjacent instead of
the conventional incident. An entire coloring of G is a function assigning values (colors)
to elements of V (G) ∪ E(G) ∪ F(G) in such a way that any two distinct adjacent elements
receive distinct colors. A plane graph G is entirely k-colorable if there is an entire coloring
of G with colors {1, . . . , k}. The main theorem may then be stated as:
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Theorem 1.1 Every plane graph with maximum degree∆ ≥ 6 is entirely (∆+ 4)-colorable.

As the proof presented here is so simple, the authors have hope that the discharging
method may be used to complete a proof of Kronk and Mitchem’s conjecture (that is the
remaining cases of ∆ ∈ {4, 5}). Already, it has succeeded where others did not expect
success.

2 The Structure of a Minimal Counterexample

Suppose that Theorem 1.1 is false. Then we define a minimal graph to be a counterexample
to Theorem 1.1 with the fewest number of edges. This section will demonstrate some very
simple lemmas, which give some insight into the structure of a minimal graph. Each lemma
describes small configurations of vertices and faces of low degree, and then proves that a
minimal graph cannot have such configurations.

But first, a standard, simple connectivity reduction is useful. A graph is connected if
there is a path of edges between each pair of its vertices. Further, a graph is non-separable if
it remains connected after the deletion of any one of its vertices.

Lemma 2.1 A minimal graph is non-separable.

Proof Let G be a minimal graph. Either the lemma is true, or there are subgraphs G1 and
G2 of G such that G1 ∪ G2 = G, and |V (G1) ∩ V (G2)| ≤ 1. Since G is minimal, each of
G1, G2 has an entire (∆ + 4)-coloring. These entire colorings are easily combined to give
an entire (∆ + 4)-coloring of G by permuting the colors to match on the shared face and
vertex, and to differ on the edges adjacent to the shared vertex (should it exist). This is a
contradiction.

To describe the small configurations, some notation is useful. Let G be a plane graph.
A k-vertex, an (≥ k)-vertex, and an (≤ k)-vertex are vertices of degree k, at least k, and at
most k in G, respectively. Let k-face, (≥ k)-face, and (≤ k)-face be defined similarly. Let
an (n1, . . . , nk)-face be a k-face f such that there is an ordering v1, . . . , vk of the vertices
adjacent to f , which is a cyclic order according to the plane embedding of G, such that for
i ∈ {1, . . . , k}, deg(vi) ≤ ni . Given a face f of non-separable G, and an edge uv which is
adjacent to f , let fuv be the face not equal to f which is adjacent to uv. Given an edge uv,
let the weight of uv be deg(u) + deg(v).

Now we are prepared to give the first six configurations. The first simply says that in a
minimal graph, no (≤ 3)-vertex is adjacent to a 3-face. For the proof, it is useful to speak
of a partial entire coloring, that is, where some elements may not have a color, but distinct
adjacent colored elements have distinct colors. Given a plane graph G, it is important to
notice that an entire coloring of a subgraph of G is not necessarily a partial entire coloring
of G.

Lemma 2.2 No minimal graph has a (3,∆,∆)-face, a (2,∆,∆,∆)-face, a (3, 3, 3, 3,∆)-
face, a (3,∆− 1,∆,∆)-face, a (2,∆, 3,∆,∆)-face, or a (2,∆, 2,∆, 3,∆)-face.

Proof Let G be a minimal graph with a face f which satisfies one of the six conditions in
the statement of the lemma. Let e be an edge adjacent to f with minimum weight. Let v be
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an (≤ 3)-vertex adjacent to e. Since G is minimal, G−e has an entire (∆+4)-coloring. This
entire coloring induces a partial entire (∆ + 4)-coloring of G with v, e, and f uncolored.
Remove the colors from each (≤ 3)-vertex adjacent to f . Also, remove the color from any
edge adjacent to f which is also adjacent to an (≤ 3)-vertex.

Now the uncolored elements will easily be colored. If deg( f ) ≥ 4, then color it first with
a color from {1, . . . ,∆+4}which none of its adjacent elements is colored; this may be done
as f is currently adjacent to at most nine colored elements, and∆ ≥ 6. Next, if deg( f ) = 5,
and there is an uncolored edge e ′ of weight ∆ + 3 which is not adjacent to an uncolored
edge of weight at most ∆ + 2, color e ′ differently than its colored adjacent elements, of
which there are at most∆ + 3. Next, color, in a decreasing order of weight, the remaining
uncolored edges adjacent to f ; each is adjacent to at most∆+ 3 colored elements when it is
colored. Finally, color each (≤ 3)-vertex adjacent to f , as well as f itself if deg( f ) = 3; each
is adjacent to at most nine elements. Thus G is entirely (∆ + 4)-colorable, a contradiction.

The proof of the next lemma is different only in the manner in which a smaller graph is
found. It is not useful to simply delete an edge for this lemma, as no face of small degree is
nearby.

Lemma 2.3 No minimal graph has a 2-vertex u adjacent to an (≤ 3)-vertex v.

Proof Let G be a minimal graph with u and v as in the statement. Let w be the neighbor of
u distinct from v. Let H = G− u + vw, with the edge vw embedded in the plane where the
path wuv was. Note that v is not adjacent to w in G, by Lemmas 2.1 and 2.2, and thus, H is
simple. Since G is minimal, H has an entire (∆ + 4)-coloring. This induces a partial entire
(∆ + 4)-coloring of G with only uw, uv, and u uncolored. These elements may be colored
in that order to give an entire (∆ + 4)-coloring of G, a contradiction.

The proofs of the remaining lemmas follow the same vein, but some elements may need
recoloring in a little less straightforward manner.

Lemma 2.4 No minimal graph has a (4, j, k)-face with j ≤ k, and j + k ≤ 2∆− 2.

Proof Assume that there is a minimal graph G with a face f adjacent to a 4-vertex u, a
j-vertex v, and a k-vertex w such that j + k ≤ 2∆ − 2. Let u1, u2 be the ends of the edges
incident with u and not f . Let v1, . . . , v j−2 and w1, . . . ,wk−2 be defined similarly. Since G
is minimal, G − uv has an entire (∆ + 4)-coloring. Removing the colors from u and uw
induces a partial entire coloring of G such that only u, uv, uw, f are not colored. Color u
differently than its at most nine colored neighbors.

Either uw may be immediately colored, or k = ∆, and without loss of generality,
ww1, . . . ,ww∆−2, vw,w, fuw, u, uu1, uu2 are respectively colored 1, . . . ,∆ + 4. Either u
may be recolored, so that uw may be colored ∆ + 2, or ∆ = 6, and v is colored one of
1, . . . ,∆− 2. In this case, vw may be recolored (one of∆ + 1, . . . ,∆ + 4), and uw may be
colored∆− 1.

Either uv may be immediately colored, or j = k = ∆−1, and without loss of generality,
vv1, . . . , vv∆−3, v, fuv, vw, u, uu1, uu2, uw are respectively colored 1, . . . ,∆ + 4. Either uw
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may be recolored, so that uv may be colored∆+ 4, or the colors of fuw,w,ww1, . . . ,ww∆−3

are 1, . . . ,∆− 1. In this case, vw may be recolored (one of∆ + 1, . . . ,∆ + 3), and uv may
be colored∆.

Since f may be immediately colored, this contradicts the minimality of G.

Lemma 2.5 No minimal graph has two adjacent 3-faces f = uvw and g = uvx such that
deg(u) ≤ 5, and there is a y ∈ {u,w} such that deg(y) = 4.

Proof Let G be a minimal graph with f , g, u, v, w, x, y as in the statement. Since G is
minimal, G− vy has an entire (∆ + 4)-coloring. This induces a partial entire coloring χ of
G with only y, vy, and f uncolored. Remove the color from g, and if w = y, from uv and
uw as well. Color y differently than its at most nine colored adjacent elements. If w = y,
color vw differently than its at most∆ + 3 colored adjacent elements.

Either uv may be immediately colored, or it has ∆ + 4 colored adjacent elements, all of
which have distinct colors. Clearly, one of {1, . . . ,∆+ 4}\{χ(ux), χ(vx)} does not appear
among the colors of x, its adjacent edges, or gux, gvx. Thus, there is an e ∈ {ux, vx} such
that e may be recolored so that uv may be colored χ(e). Color as indicated to give a partial
entire (∆ + 4)-coloring ψ.

If w = y, then either uw may be immediately colored, or∆ = 6, and uw has ten colored
adjacent elements, all of which have distinct colors. At this point, one of {1, . . . , 10} \
{ψ(uv), ψ(vw)} does not appear among the colors of w, its adjacent edges, of fvw. Thus,
there is an e ∈ {uv, vw} to recolor so that uw may be colored ψ(e).

As f and g may be immediately colored, this gives an entire (∆ + 4)-coloring of G, a
contradiction.

The proof for the final configuration is the most complicated, and yet still quite simple.

Lemma 2.6 No minimal graph has a 5-vertex adjacent to more than three 3-faces.

Proof Assume there is a minimal graph G with a 5-vertex u adjacent to 3-faces f = uvw,
g = uwx, h = uxy, and i = uyz. Since G is minimal, G−ux has an entire (∆+4)-coloring,
which induces a partial entire coloring χ of G with u, ux, and g uncolored. Also, remove
the colors from f , h, i, and uw. Color u differently from its at most nine colored adjacent
elements.

Either uw may be colored immediately, or its ∆ + 4 adjacent elements are all colored
differently. In this case, there is an e ∈ {uv, vw} to recolor so that uw may be colored χ(e).
This yields a partial entire (∆ + 4)-coloring ψ with only ux, f , g, h, and i uncolored.

Either ux may be colored immediately, or all ∆ + 4 colors appear among the colors of
its at most∆ + 5 adjacent elements. Suppose ψ(uy) = ψ(wx). In this case, either uw may
be recolored so that ux may be colored ψ(uw), or wx may be recolored differently from
uy. Thus, without loss of generality, ψ(uy) �= ψ(wx), and ψ(uw) �= ψ(xy). It follows that
there is a t ∈ {w, y} such that each of ψ(tu) and ψ(tx) appears only once among the colors
of the adjacent elements of ux. Thus, there is an e ∈ {tu, tx} to recolor so that ux may be
colored ψ(e).

As f , g, h, and i may be immediately colored, this gives an entire (∆ + 4)-coloring of G,
a contradiction.
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3 Discharging

This section uses the discharging method, together with the lemmas of Section 2, to prove
that there is no minimal graph. The basis of the discharging method is the following simple
lemma, which follows from Euler’s formula for connected graphs, that |V (G)| − |E(G)| +
|F(G)| = 2, and the simple fact that for each S ∈ {V (G), F(G)},

∑
x∈S deg(x) = 2|E(G)|.

Lemma 3.1 For any connected plane graph,

∑

x∈V (G)∪F(G)

(
4− deg(x)

)
= 8.

For x ∈ V (G) ∪ F(G), let ch(x) = 4 − deg(x), and let ch ′(x) be defined by modifying
the charge function ch according to the following discharging rules:

R1. For each 3-face x, send 1/3 from x to each (≥ 5)-vertex adjacent to it.
R2. For each 3-face x, if it is adjacent to a (≥ 4)-face y, then for each (≥ 6)-vertex v

adjacent to both x and y, send 1/6 from x to y, and then from y to v (so that this rule
does not affect y).

R3. For each 2-vertex x, send 1 from x to each (≥ 5)-face adjacent to it.
R4. For each 3-vertex x, send 1/3 from x to each (≥ 5)-face adjacent to it.
R5. For each 3-vertex x, if it is adjacent to a 4-face f , then for each (≥ 6)-vertex v adjacent

to both x and f , send 1/6 from x to f , and then from f to v (so that this rule does not
affect f ).

Now we are ready to prove Theorem 1.1.

Proof Suppose the theorem is false, so that there is a minimal graph G. By Lemma 2.1, G
is connected. Let x ∈ V (G) ∪ F(G) be given. In order to contradict Lemma 3.1, we will
prove that, no matter what x is, ch ′(x) ≤ 0.

By Lemma 2.1, x is not an (≤ 1)-vertex.
Assume x is a 2-vertex (ch(x) = 2). By Lemma 2.2, x is not adjacent to an (≤ 4)-face,

and so x sends out 1 to each face adjacent to it, no rule sends charge into x, and ch ′(x) = 0.
Assume x is a 3-vertex. By Lemma 2.2, x is not adjacent to a 3-face, and if it is adjacent

to a 4-face f , there are two (≥ 6)-vertices adjacent to both x and f . Thus, x sends 1/3 to
each face adjacent to it either by R4 or R5, and ch ′(x) = 0.

Assume x is a 4-vertex. As the rules do not affect x, ch ′(x) = ch(x) = 0.
Assume x is a 5-vertex. By Lemma 2.6, x is adjacent to at most three 3-faces. The only

charge sent into x is then at most 1 from R1, and ch ′(x) ≤ 0.
Assume x is a k-vertex, for k ≥ 6. The charge sent into x is at most 1/3 from each

adjacent face, by either R1 or a combination of R2 and/or R5. Thus, ch ′(x) ≤ ch(x)+k/3 =
(12− 2k)/3 ≤ 0.

Assume x is a 3-face. By Lemma 2.2, x is adjacent to three (≥ 4)-vertices. If x is adjacent
to three (≥ 5)-vertices, then x sends out 1 by R1. Otherwise, by Lemma 2.4, x is adjacent
to two (≥ 5)-vertices, one of which is an (≥ 6)-vertex. In this case, by Lemma 2.5, x is not
adjacent to a 3-face. It follows that x sends out 2/3 by R1 and 1/3 by R2. In either case,
ch ′(x) ≤ 0.
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Assume x is a 4-face. As the rules do not affect x, ch ′(x) = ch(x) = 0.
Assume x is a 5-face. If x is adjacent to a 2-vertex, then it receives 1 from it by R3, but

by Lemmas 2.2 and 2.3, x is adjacent to no other (≤ 3)-vertex, and thus receives no more
charge. If x is not adjacent to a 2-vertex, then by Lemma 2.2, x is adjacent to at most three
3-vertices, each of which sends 1/3 by R4. In either case, ch ′(x) ≤ 0.

Assume x is a 6-face. If x is adjacent to two 2-vertices, then it receives 2 from them by
R3, but by Lemmas 2.2 and 2.3, x is adjacent to no other (≤ 3)-vertices. If x is adjacent
to exactly one 2-vertex, then it is adjacent to at most three 3-vertices by Lemma 2.3, and
x receives 1 by R3 and at most 1 by R4. If x is adjacent to no 2-vertices, then it receives at
most 1/3 from each of its adjacent 3-vertices by R4, and no more. In any case, ch ′(x) ≤ 0.

Assume x is a k-face, for k ≥ 7. For i ∈ {2, 3}, let vi be the number of i-vertices adjacent
to x. By R3 and R4, ch ′(x) = 4 − k + v2 + (v3/3). If v3 = 0, then by Lemma 2.3 (and
since k ≥ 7), v2 ≤ k − 4, and ch ′(x) ≤ 0 in this case. If v3 > 0, then Lemma 2.3 gives
2v2 +1+v3 ≤ k, or (v3/3) ≤ (k−2v2−1)/3. Substituting above, ch ′(x) ≤ (11−2k+v2)/3.
Consider 2v2 + 1 + v3 ≤ k again; solving for v2 and using v3 ≥ 1 gives v2 ≤

k
2 − 1, and

substituting that above gives ch ′(x) ≤ (20− 3k)/6. Since k ≥ 7, ch ′(x) ≤ 0.
Since x was arbitrary, this gives

∑

x∈V (G)∪F(G)

ch ′(x) ≤ 0.

As the charge was only moved around, and the sum of it never changed, this contradicts
Lemma 3.1.

The class of planar graphs of maximum degree six is an important class of graphs, and
it is important to study their structure. Vizing’s total coloring conjecture [17] for planar
graphs is open only for ∆ = 6 [15]. Also, Vizing’s planar graph conjecture [18] is open
only for ∆ = 6 [16]. Hopefully, the results in this paper may provide a starting place for
research on at least these two conjectures.
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