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Abstract 

Test items using open-ended response formats can increase an instrument’s construct validity. 

However, traditionally, their application in educational testing requires human coders to score 

the responses. Manual scoring not only increases operational costs but also prohibits the use 

of evidence from open-ended items to inform routing decisions in adaptive designs. Using 

machine learning and natural language processing, automatic scoring provides classifiers that 

can instantly assign scores to text responses. Although optimized for agreement with manual 

scores, automatic scoring is not perfectly accurate and introduces an additional source of error 

into the response process, leading to a misspecification of the measurement model used with 

the manual score. We propose two joint models for manual and automatic scores of 

automatically scored open-ended items. Our models extend a given model from Item 

Response Theory for the manual scores by a component for the automatic scores, accounting 

for classification errors. The models were evaluated using data from the Programme for 

International Student Assessment (2012) and simulated data, demonstrating their capacity to 

mitigate the impact of classification errors on ability estimation compared to a baseline that 

disregards classification errors. 

Keywords: item response modeling, automatic scoring, large-scale assessment 
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Joint Item Response Models for Manual and Automatic Scores on Open-Ended 

Test Items 

Open-ended response formats (i.e., constructed-response items) can increase an 

instrument’s construct validity (Ihme et al., 2017; Lim, 2019); however, traditional 

applications in educational testing require the provision of human coders to manually score 

responses, which is time-consuming and entails substantial costs. 

Moreover, manual scores are not available during the testing. Hence, the evidence enclosed 

in responses to open-ended items is not available for the immediate scoring and feedback of 

linear tests, and it also does not contribute to interim ability estimation and routing 

decisions in adaptive designs, such as computerized adaptive testing (CAT; Weiss 1982) or 

multi-stage adaptive testing (MSAT; Yan et al., 2014). 

The automatic scoring of text responses significantly reduces the workload required 

for manual scoring. For scoring, categories (i.e., codes or scores) are algorithmically assigned 

to textual response content (Bauer and Zapata-Rivera, 2020), and in automatic scoring, also 

referred to as automatic short answer grading (e.g., Burrows et al., 2015), this is done by 

computers. The idea of programming computers to evaluate the quality of students’ textual 

work products (Foltz et al., 2020) can be traced back to the 1960s in the context of automatic 

essay scoring (Page, 1966). The growing demand for open-ended response formats in large-

scale assessments in the 1990s (Bennett 1993) led to a new focus on automatically scoring 

short responses (Bejar, 1991; Kaplan, 1991).  

Coupled with advances in the underlying methodology (see Burrows et al., 2015, for a 

historical outline), tremendous progress has been made since the inception of the field, 

particularly with the introduction of pretrained large language models with transformer 

architectures, such as bidirectional encoder representations from transformers (BERT; 

Devlin et al., 2019). Predominantly, supervised learning methods are used, in which manual 

scores serve to label the training data and hence define the ground truth that the classifier is 

optimized to reproduce. However, a variety of automatic scoring paradigms have emerged 
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over time. The initial development of the scoring model is a fundamental characteristic of 

these methods. This model comprises rules that map features to scores, and for evaluation 

and production, it is subsequently applied to score new responses (Williamson et al., 2012).  

Building on Zesch et al. (2023), roughly four paradigms can be distinguished: 1) 

models hand-crafted by assessment or domain experts using, for example, regular 

expressions (Cai et al., 2019); 2) models trained by semi-supervised machine learning, which 

teams up human and machine (Andersen et al. 2023; Wolska et al. 2014); 3) models trained 

by supervised learning with traditional machine learning (Sakaguchi et al. 2015), and 4) pre-

trained deep learning models with transformer architecture that can be fine-tuned (i.e., 

optimized) to the scoring task at hand (e.g., Bonthu et al., 2021; Camus and Filighera, 2020; 

Haller et al., 2022). Common feature sets that form the input or central representations of 

models are n-grams (Higgins et al., 2014) or, more commonly, embeddings that represent 

semantics (Zehner et al., 2016). The underlying methodologies further differ in other 

characteristics, such as the explainability (i.e., transparency) of the resulting classifications. 

Improved explainability is usually associated with more traditional learning algorithms, such 

as rule-based learning or clustering; however, new approaches have recently emerged to 

create a certain degree of post-hoc explainability for deep neural nets (Chefer et al., 2021; 

Gombert et al., 2023; Lottridge et al., 2023).  

Regardless of the underlying paradigm or feature set employed, all methods follow 

the basic concept of text classification, which may result in false-positive or false-negative 

classifications. The integration of these false classifications into an appropriate measurement 

model constitutes the core of this study. Johnson et al. (2022) posited that automatic scoring 

models should be optimized for the true value, represented by the mean of multiple human 

ratings, rather than the observed human ratings, as this would be more optimal. However, 

because of operational constraints, international large-scale assessments only apply double 

coding to a limited set of responses to monitor interrater reliability, limiting the practical 

applicability of this approach. 
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Despite the methodological advances, the automatic scoring of open-ended test items 

remains challenging, and automatic scores are generally not perfectly accurate. This implies 

that automatic scoring introduces an additional source of error, and hence uncertainty, into 

the process that generates the observable response. As the measurement model for manual 

scores disregards potential errors arising from automatic scoring, it cannot be applied 

directly to automatic scores. Therefore, the application of automatic scoring in adaptive test 

formats faces a dilemma: while a model for manual scoring is available during online testing, 

the actual scores are not. Simultaneously, automatic scores can be obtained; however, 

without a corresponding measurement model, they are not immediately available for 

measurement. 

In computer-based assessment practices, this dilemma has been addressed by 

avoiding reliance on open-ended items for online scoring and adaptivity. In the MSAT 

framework, this is made feasible by combining open-ended and closed item formats in each 

module. The provisional ability estimates used for routing decisions rely solely on closed-

format items that can be scored immediately, whereas manual scores for open-ended items 

contribute to the final ability estimate used for reporting when they become available. This 

approach featured prominently in the 2018 Programme for International Student 

Assessment (PISA), as detailed by Yamamoto et al. (2018). Despite reconciling the use of 

open-ended items with, to some extent, the increased measurement efficiency afforded by 

adaptive testing, this approach has obvious drawbacks. First, the required balancing of open-

ended and closed item formats imposes additional requirements and constraints on item 

development and test assembly. Second, routing decisions are made without taking 

advantage of information in response to open-ended items. Third, the approach transfers 

neither to item-level adaptivity in CAT nor to the automatic scoring of linear tests. Finally, 

human coders are required during operational testing. 

Motivated by these issues, we investigate joint models for manual and automatic 

scores. Our modeling approach aligns with the role of the manual score as the ground-truth 
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label during supervised learning. In other words, we regard the manual score as the gold 

standard, which is reproduced, albeit imperfectly, by an automatic scoring algorithm. 

Consequently, the discrepancies between the manual and automatic scores, which we regard 

as classification errors, are a primary focus of our investigation. 

In this study, we propose and empirically test two structurally different joint models 

for manual and automatic scores. We assume that manual scores follow a given IRT model. 

The model for the manual scores is then extended by a component that captures the 

classification error and posits a generative process for the automatic scores. 

By marginalizing out the manual score, we derive measurement models that allow for 

inference of the latent trait using only the automatic score while accounting for classification 

errors. We show that these marginal models are closely related to the well-known four-

parameter family of IRT models (Barton & Lord, 1981) and their generalizations. The use of 

our marginal models enables automatic scoring when immediate updates of provisional 

ability estimates are required, as in computer-based adaptive tests. 

The remainder of this paper is organized as follows. We first formulate the proposed 

models, discuss the estimation of model parameters, and derive marginal models for 

automatic scores. Subsequently, we report the results of a simulation study that assesses 

parameter recovery. The simulations also investigate how ability estimates are affected if 

classification errors are ignored; that is, the model for the manual score is used to analyze 

automatic scores affected by different levels of classification error. We then present an 

empirical example using data from eight open-ended items from the PISA (2012) reading 

domain and two different classifiers for each item to provide automatic scoring, in which we 

apply marginal models for ability estimation based on automatic scores and evaluate 

reliability relative to ability estimation based on manual scores. Finally, we discuss the 

results and their implications and indicate directions for further research. 
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Joint Item Response Models for Manual and Automatic Scores 

Our core modeling assumption is that the automatic score is related to the manual score 

through an error-prone process that can be described by modeling the classification error 

probabilities conditional on the manual score. The first two subsections introduce notation 

and present the formulation of the proposed models. The third subsection discusses 

parameter estimation, whereas the fourth derives a marginal measurement model that 

depends only on automatic scores. Finally, we discuss the special case of dichotomous items 

relevant to this empirical study. 

Notation 

Throughout the paper, we index a set of individuals by 𝑖 = 1, … , 𝑁 and a set of open-

ended test items by 𝑗 = 1, … , 𝐾. Let 𝑟𝑖𝑗 ∈ 𝑅 denote raw text responses to the test items where 

𝑅 denotes the universe of possible text responses. Let 𝑘𝑗 denote the number of response 

categories of item 𝑗 and let 𝑢𝑖𝑗 ∈ {0, … , 𝑘𝑗 − 1} denote the manual score, that is, an ordinal 

score assigned to each rij by a human coder. We assume that the latent trait (i.e., ability) that 

the instrument is designed to measure, and the manual scores are related by a one-

dimensional IRT model. More specifically, we assume that the manual scores are realizations 

of a random variable 𝑋𝑖𝑗 such that the probability of observing a manual score in category u 

is given by 

 𝑝𝑗𝑢(𝜃𝑖): = 𝑃(𝑋𝑖𝑗 = 𝑢 |𝜃𝑖, 𝜉𝑗). (1) 

 

Here, 𝜃𝑖 denotes individual 𝑖’s ability and 𝜉𝑗 denotes the vector of item parameters of item 𝑗, 

which controls the shape of the item characteristic curve (ICC) and, after sufficiently 

accurate calibration, is assumed to be known for each item. 

Automatic scoring for some item 𝑗 is a mapping 

ℎ𝑗: 𝑅 → {0, … , 𝑘𝑗−1} 
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which assigns an automatic score to any text response in 𝑅; that is, 𝑣𝑖𝑗 = ℎ𝑗(𝑟𝑖𝑗). We assume 

a supervised learning approach that optimizes ℎ𝑗  to maximize agreement with the manual 

score by training the classifier for item 𝑗 on data {(𝑟𝑖𝑗, 𝑢𝑖𝑗): 𝑖 = 1, … , 𝑁}. We write the 

automatic scores 𝑣𝑖𝑗  as realizations of random variables 𝑌𝑖𝑗, whose conditional distributions 

are parametrized in terms of classifier parameters 𝜁𝑗. Finally, it will be convenient to use the 

vector and matrix quantities 𝑋 = (𝑋𝑖𝑗), 𝑌 = (𝑌𝑖𝑗), 𝛯 = (𝜉𝑗), 𝑍 = (𝜁𝑗), 𝛩 = (𝜃𝑖), 𝑈 = (𝑢𝑖𝑗), 

and 𝑉 = (𝑣𝑖𝑗). 

Model Formulation 

Let 

 𝑝𝑗𝑢𝑣(𝜃𝑖): = 𝑃(𝑋𝑖𝑗 = 𝑢, 𝑌𝑖𝑗 = 𝑣|𝜃𝑖, 𝜉𝑗 , 𝜁𝑗) (2) 

 

denote the joint probability of observing a manual score 𝑢 and an automatic score 𝑣 to item 𝑗 

for individual 𝑖, given the individual’s ability 𝜃𝑖, item parameters 𝜉𝑗, and classifier 

parameters 𝜁𝑗. 

By the definition of conditional probability, we may write 

  

𝑝𝑗𝑢𝑣(𝜃𝑖) = 𝑃(𝑌𝑖𝑗 = 𝑣|𝑋𝑖𝑗 = 𝑢, 𝜃𝑖 , 𝜉𝑗 , 𝜁𝑗)𝑃(𝑋𝑖𝑗 = 𝑢|𝜃𝑖 , 𝜉𝑗 , 𝜁𝑗). 

 

 

(3) 

We assume that the manual score to item 𝑗 is conditionally independent of classifier 

parameters 𝜁𝑗 given item parameters 𝜉𝑗  and ability 𝜃𝑖, and hence, its factor in Equation 3 

takes the form 

 𝑃(𝑋𝑖𝑗 = 𝑢|𝜃𝑖,  𝜁𝑗, 𝜉𝑗) = 𝑃(𝑋𝑖𝑗 = 𝑢|𝜃𝑖, 𝜉𝑗) (4) 

   

                       = 𝑝𝑗𝑢(𝜃𝑖) (5) 

of the IRT model for the manual score in Equation 1. Similarly, we assume that the automatic 
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score is conditionally independent of item parameters 𝜉𝑗, given ability 𝜃𝑖 and classifier 

parameters 𝜁𝑗, allowing us to write its factor in Equation 3 as 

 𝑃 (𝑌𝑖𝑗  =  𝑣|𝑋𝑖𝑗  =  𝑢, 𝜃𝑖, 𝜉𝑗,  𝜁𝑗)  =  𝑃 (𝑌𝑖𝑗  =  𝑣|𝑋 𝑖𝑗 =  𝑢, 𝜃𝑖,  𝜁𝑗) (6) 

   

                       = : 𝑒𝑗𝑢𝑣(𝜃𝑖), (7) 

 

arriving at 

 𝑝𝑗𝑢𝑣(𝜃𝑖) = 𝑒𝑗𝑢𝑣(𝜃𝑖)𝑝𝑗𝑢(𝜃𝑖). (8) 

 

As the conditional probability distribution 𝑃(𝑌𝑖𝑗|𝑋𝑖𝑗, 𝜃𝑖, 𝜁𝑗) is determined by the error 

probabilities 𝑒𝑗𝑢𝑣(𝜃), 𝑢 ≠ 𝑣, the factor for the classifier can essentially be regarded as a model 

of classifier error rates. As by our assumptions, the classifier error rates 𝑒𝑗𝑢𝑣 can vary with 

the ability level, we call the resulting joint model for the manual and automatic scores in 

Equation 8 the variable error rate (VER) model. A simpler special case of the VER model 

results if we make the additional assumption that the automatic score is conditionally 

independent of ability, that is 

 ∀𝑖, 𝑗: 𝑌𝑖𝑗 ⫫ 𝜃𝑖|𝑋𝑖𝑗, 𝜁𝑗 . (9) 

 

Then, the conditional probabilities 𝑒𝑗𝑢𝑣 governing the classifier model in the VER model do 

not depend on 𝜃𝑖 and hence, it holds that 

 ∀𝑗, 𝑢, 𝑣: 𝑒𝑗𝑢𝑣(𝜃𝑖) ≡ const (10) 

 

and we may drop the dependency on 𝜃𝑖 in the error rates model. The resulting joint model  

 𝑝𝑗𝑢𝑣(𝜃𝑖) = 𝑒𝑗𝑢𝑣𝑝𝑗𝑢(𝜃𝑖) (11) 
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for the manual and automatic scores then includes only constant classifier error rates; hence, 

it is referred to as the constant error rate (CER) model. 

Parameter Estimation 

We consider the problem of estimating the classifier parameters Z when given the 

observed data U for manual scores and V for automatic scores. 

In the following, we first address the CER Model. We have that 

 𝑃(𝑋𝑖𝑗, 𝑌𝑖𝑗|𝜃𝑖, 𝜉𝑗, 𝜁𝑗) = 𝑃(𝑋𝑖𝑗|𝜃𝑖, 𝜉𝑗)𝑃(𝑌𝑖𝑗|𝑋𝑖𝑗, 𝜁𝑗). (12) 

 

Hence, under standard assumptions, the log-likelihood function is given by  

log𝐿(𝛩, 𝛯, 𝑍|𝑋 = 𝑈, 𝑌 = 𝑉) = ∑ ∑ log

𝑁

𝑖=1

𝐾

𝑗=1

𝑃(𝑋𝑖𝑗 = 𝑢𝑖𝑗|𝜃𝑖, 𝜉𝑗) + ∑ ∑ log

𝑁

𝑖=1

𝐾

𝑗=1

𝑃(𝑌𝑖𝑗 = 𝑣𝑖𝑗|𝑋𝑖𝑗 = 𝑢𝑖𝑗, 𝜁𝑗). 
 

(13) 

  

The double sum on the left is the log-likelihood of the IRT model for the manual score, 

whereas the double sum on the right pertains to the classifier error model. The terms relating 

to the classifier error model do not include a dependency on person and item parameters; 

therefore, the sums in Equation 13 can be maximized independently to obtain the maximum 

likelihood estimates of the parameters of the joint model. 

The right-hand double sum in Equation 13 decomposes further into terms depending 

only on one 𝜁𝑗 each, and, hence, can be maximized for each item separately. With the model 

for 𝑃(𝑌𝑖𝑗|𝑋𝑖𝑗 , 𝜁𝑗) being categorical, the classifier parameters are formed by fixed probabilities 

of each error type for each item. That is, 

 

 

𝜁𝑗 = (𝑒𝑗𝑢𝑣)
𝑢∈{0,…,𝑘𝑗−1},𝑣∈{0,…,𝑘𝑗−1} 

  

and the maximum likelihood estimates are given (Koller and Friedman, 2010, p. 726) by  

 
 �̂�𝑗𝑢𝑣 =  

∑ 𝟙(𝑢𝑖𝑗 = 𝑢, 𝑣𝑖𝑗 = 𝑣)𝑖

∑ 𝟙(𝑢𝑖𝑗𝑖 = 𝑢)
 

(14) 

In particular, if item 𝑗 is dichotomous, then the maximum likelihood estimates are 
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determined by �̂�𝑗10 and �̂�𝑗01. In the context of binary classification, �̂�𝑗10 is the false-negative 

rate of the classifier, defined as the number of training instances (responses to item 𝑗) falsely 

classified as incorrect divided by the total number of correct responses. Analogously, �̂�𝑗01 is 

the false-positive rate of the classifier, defined as the number of training instances falsely 

classified as correct divided by the total number of incorrect responses. Again, the manual 

scores serve as the ground truth. The complementary probabilities 1 − �̂�𝑗10 and 1 − �̂�𝑗01 are 

the classifier sensitivity and specificity, respectively.  

The decomposition and separate estimability of the CER model parameters make it 

possible to calculate maximum likelihood parameter estimates by combining maximum 

likelihood estimates of person and item parameters, Θ̂ and �̂�, obtained from the calibration 

of the model for the manual scores, with maximum likelihood estimates of the classifier 

parameters, �̂�, which can be independently estimated per item. This also implies that the 

person parameters obtained by calibrating the CER model are necessarily on the same scale 

as those obtained by calibrating the IRT model for the manual score. 

In the case of the VER model, the direct dependency of the automatic score on ability 

results in a possible divergence of the scales when simultaneously estimating the person, 

item, and classifier parameters from scores 𝑈 and 𝑉. Hence, the scales need to be linked. We 

propose linking using a fixed-parameter approach. That is, when calibrating the VER model, 

we regard the classifier parameters 𝑍 as the parameters of interest, while person and item 

parameters are nuisance parameters that are fixed to point estimates Θ̂ = (𝜃𝑖) and �̂� = (𝜉𝑗), 

obtained from the calibration of the IRT model for the manual scores. This approach also 

simplifies fitting classifier models that capture the 𝜃-dependency of the error rates. Thus, the 

log-likelihood function becomes: 

 

log𝐿(𝑍|𝑋 = 𝑈, 𝑌 = 𝑉, 𝛩 = Θ̂, 𝛯 = �̂�) =  
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∑ ∑ log

𝑁

𝑖=1

𝐾

𝑗=1

𝑃(𝑋𝑖𝑗 = 𝑢𝑖𝑗|𝜃𝑖 = �̂�𝑖, 𝜉𝑗 = �̂�𝑗) + ∑ ∑ log

𝑁

𝑖=1

𝐾

𝑗=1

𝑃(𝑌𝑖𝑗 = 𝑣𝑖𝑗|𝑋𝑖𝑗 = 𝑢𝑖𝑗 , 𝜃𝑖 = �̂�𝑖, 𝜁𝑗). 
 

(15) 

 

Because the first sum is constant, only the second sum is maximized. The second sum is 

decoupled into separate terms for each item. It is maximized by finding the maximizing 𝜁𝑗 for 

each item 𝑗. The actual estimation of each classifier parameter 𝜁𝑗 then depends on the 

parametric form chosen for the probability model for the classifier error rates. In the case of 

dichotomous items discussed in greater detail below, we assume logit models for the VER 

error probabilities, which, using point estimates for ability, become manifest logistic 

regressions. To evaluate the viability of our approach for fitting VER classifier parameters, 

we conducted a simulation study, as described below.

Measuring the Latent Trait Using Automatic Scores 

In this section, we consider the measurement of an individual’s abilities during 

testing. To simplify the notation, we drop the subject index 𝑖. We may assume item and 

classifier parameters 𝛯 and 𝑍 as given, as well as a vector of automatically-coded responses 

(𝑢𝑗), while the manual scores are not observed. To facilitate inference on 𝜃 in this scenario, 

we derive an expression for 𝑃(𝑌𝑗 = 𝑣|𝜃), the probability of observing the automatic score in 

terms of the latent trait, using the law of total probability as follows. 

 �̃�𝑗𝑣(𝜃): = 𝑃(𝑌𝑗 = 𝑣|𝜃, 𝜉𝑗 , 𝜁𝑗) (16) 

 

              = ∑ 𝑃

𝑘𝑗−1

𝑢=0

(𝑌𝑗 = 𝑣|𝑋𝑗 = 𝑢, 𝜃, 𝜁𝑗)𝑃(𝑋𝑗 = 𝑢|𝜃, 𝜉𝑗) 

(17) 

 

               = ∑ 𝑒𝑗𝑢𝑣

𝑘𝑗−1

𝑢=0

(𝜃)𝑝𝑗𝑢(𝜃) 

(18) 

 

As the manual score 𝑢 is marginalized out in the expression for �̃�𝑗𝑣, its observation is not a 

prerequisite for inference on 𝜃 based on Equation 18. Hence, Equation 18 provides a 
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measurement model for 𝜃 based only on the automatic score 𝑣. Note that the above 

derivation generalizes the decomposition of the three- and four-parameter IRT models, 

respectively, used by Béguin and Glas (2001) and Culpepper (2016) in the context of MCMC 

estimation for the normal ogive variant of these models. In the cited works, 𝑋𝑗 is an auxiliary 

augmented variable whose role is entirely technical. In our case, 𝑋𝑗 has a substantive 

interpretation and is, in principle, empirically observable as a manual score. 

The actual form of the measurement model in Equations 16–18 depends on the 

following two factors: The first is the question of whether constant or varying classifier error 

rates are used, and if applicable, how the dependency on ability is modeled. The second 

factor is the parametric form of the IRT model for 𝑋𝑗, which has not yet been specified. We 

address the former aspect in the context of our empirical study and turn to the latter in the 

next section, discussing the case of a dichotomous response model of the 4PL family. 

Application to Dichotomous Items 

Although our modeling framework encompasses polytomous items, we limit the 

discussion to dichotomous items in the remainder of the manuscript, which is of special 

interest for our empirical study. In this section, we complete the specification of the 

measurement model in Equation 18 assuming that the model underlying the manual score is 

the 4PL model. The assumption of dichotomy allows us to simplify the notation as we only 

need to specify the probability of a response scored as correct (coded as 1) and may drop the 

index for the response category. We define the ICC of the 2PL as 

 
𝑤𝑗(𝜃): = 𝑃(𝑋𝑗 = 1|𝜃) =

1

1 + 𝑒−𝑎𝑗(𝜃−𝑏𝑗)
, 

(19) 

and may then write the ICC of the 4PL (Barton & Lord, 1981) as 

 𝑝𝑗(𝜃) = 𝑐𝑗 + (𝛿𝑗 − 𝑐𝑗)𝑤𝑗(𝜃). (20) 

Parameters 𝑎𝑗 and 𝑏𝑗 of the 2PL model are referred to as the discrimination and difficulty 

parameters of item 𝑗. The additional parameters 𝑐𝑗 and 𝛿𝑗 introduced in the 4PL are 

asymptotic parameters; 𝑐𝑗 is referred to as the guessing parameter, and 1 − 𝛿𝑗 as the slipping 
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parameter. 

The conditional probabilities of inaccurate response classification can be represented 

by 

 𝑝𝑗
FP(𝜃): = 𝑒𝑗01(𝜃) = 𝑃(𝑌𝑗 = 1|𝑋𝑗 = 0, 𝜃), (21) 

the conditional probability of false positive classification, and 

 𝑝𝑗
FN(𝜃): = 𝑒𝑗10(𝜃) = 𝑃(𝑌𝑗 = 0|𝑋𝑗 = 1, 𝜃), (22) 

the conditional probability of false negative classification. 

By writing the expression for �̃�𝑗1 from Equation 18 in terms of 𝑝𝑗
FP(𝜃) and 𝑝𝑗

FN(𝜃) and 

simplifying, we get 

 𝑝̃𝑗1(𝜃) = (1 − 𝑐𝑗)𝑝𝑗
FP(𝜃) +𝑐𝑗 (1 − 𝑝𝑗

FN(𝜃))  

(23) 
                                                     + (1 − 𝑝𝑗

FN(𝜃) − 𝑝𝑗
FP(𝜃)) (𝛿𝑗 − 𝑐𝑗)𝑤𝑗(𝜃). 

Letting 

 𝑙𝑗(𝜃) = (1 − 𝑐𝑗)𝑝𝑗
FP(𝜃) + 𝑐𝑗 (1 − 𝑝𝑗

FN(𝜃)) (24) 

 

and 

 𝑚𝑗(𝜃) = (1 − 𝑐𝑗)𝑝𝑗
FP(𝜃) +𝑐𝑗 (1 − 𝑝𝑗

FN(𝜃))  

(25) 
                                                   +(1 − 𝑝𝑗

FP(𝜃) − 𝑝𝑗
FN(𝜃))(𝛿𝑗 − 𝑐𝑗) 

 

Equation 23 can be written in close similarity to the 4PL model as 

 𝑝̃𝑗(𝜃) = 𝑙𝑗(𝜃) + (𝑚𝑗(𝜃) − 𝑙𝑗(𝜃)) 𝑤𝑗(𝜃), (26) 

where 𝑙𝑗 takes a technically similar role as the third parameter of the 4PL model, and 𝑚𝑗 

plays a similar role to the fourth parameter. Here, 𝑙𝑗 and 𝑚𝑗 are functions of 𝜃. Hence, the 

model in Equation 26 generalizes the 4PL model and is referred to as the generalized 4PL 

(G4PL) model. From the G4PL, the usual 4PL model is recovered if conditional 
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independence, as per Equation 10, holds, and 𝑝𝑗
FP and 𝑝𝑗

FN are constant. A nested special case 

arises if the model for the manual score is a 2PL model (i.e., 𝑐𝑗 = 0 and 𝛿𝑗 = 1). Then, the 

marginal model for the automatic score is a 4PL model, where the third parameter is given 

by 𝑙𝑗 = 𝑝𝑗
FP and the fourth parameter is given by 𝑚𝑗 = 1 − 𝑝𝑗

FN, that is,  

 𝑝̃𝑗(𝜃) = 𝑝𝑗
FP + (1 − 𝑝𝑗

FN − 𝑝𝑗
FP)𝑤𝑗(𝜃). (27) 

As a practical consequence of the considerations above, statistical routines for the 4PL IRT 

model, which are implemented in common software packages, such as SIRT (Robitzsch, 

2013) and PP (Reif & Steinfeld, 2021), can be applied to estimate person parameters from 

automatic scores under the CER model. 

As a parametric form of the probabilities in Equations 21 and 22 in the VER model, 

we use the logit models 

 
𝑝𝑗

FP(𝜃) =
1

1 + exp(𝜁0𝑗
FP + 𝜁1𝑗

FP𝜃)
 

(28) 

and 

 
𝑝𝑗

FN(𝜃) =
1

1 + exp(𝜁0𝑗
FN + 𝜁1𝑗

FN𝜃)
. 

(29) 

When fitting the VER model using point estimates for ability as proposed (Equation 15), the 

models in Equations 28 and 29 become manifest logistic regression models that are fitted for 

each item and each error type. The maximum likelihood estimates of the fixed error 

probabilities in the CER model are given in Equation 14. The CER model can also be 

regarded as a special case of Equations 28 and 29, where only the intercept is fitted, resulting 

in an equivalent parameterization of the classifier parameters of the CER model on the logit 

scale. 

Simulation Study 

A simulation study was conducted to investigate the parameter recovery of the CER 

and VER models. In the simulation, we also studied the effect of ignoring classification 

errors. To this end, we estimated person parameters from automatic scores using the 2PL 
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model that generated the manual scores, while the model generating the automatic scores 

was either the CER or VER model. All R scripts required to reproduce the simulation results 

are available at OSF1.  

Data Generation 

For each of the two models (CER and VER), we generated 100 datasets for 4 × 4 × 3 

conditions: four different numbers of items (𝐾 = 10,50,100,200) crossed with four different 

sample sizes (𝑁 = 500, 1000, 2000, 4000) crossed with three conditions for the classifier error 

rates, which varied the balance between the two error types. Person parameters and item 

difficulties were drawn from 𝑁(0,1), and item discriminations were drawn from 

Lognormal(0, 0.1). For the CER model, doubled classification error rates were drawn from 

Beta(𝛼, 𝛽)distributions, limiting the range of classification error rates to [0,0.5]. In the 

balanced error rates condition, we set 𝛼 = 4.829 and 𝛽 = 12.68, such that the 2.5 and 97.5 

percentiles of error rates were at 0.05 and 0.25, respectively. We defined two conditions with 

imbalanced error rates by increasing either the false-positive or false-negative rates of the 

balanced error rate condition. The increased error rates were defined by setting 𝛼 = 𝛽 =

4.537, such that the 2.5 and 97.5 percentiles of error rates were at 0.1 and 0.4, respectively. 

For the VER model, the slopes of the error rates were drawn as 𝑁(0, .3). Manual scores were 

then sampled from a 2PL model and automatic scores were generated from the manual 

scores by introducing classification errors according to the CER or VER model assumptions. 

Parameter Estimation 

We focused on the recovery of abilities and classifier parameters and used the true 

(data generating) item difficulties and discriminations in the simulation. We estimated 

persons’ abilities using manual scores and the 2PL model. The CER classifier model 

parameters (constant false positive and false negative rates) were estimated from manual 

 
 

1 https://doi.org/10.17605/OSF.IO/M5EZS 
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and automatic scores and reported on a logit scale as error rate intercepts to allow 

comparison with the VER classifier parameters. The VER classifier parameters (intercepts 

and slopes of the logistic regression error rate models) were estimated using manual scores, 

automatic scores, and the 2PL ability estimate derived from manual scores as a point 

estimate for ability. We then computed the ability estimates for the marginal 4PL and G4PL 

models using the recovered classifier model parameters, automatic scores, and true item 

parameters. As a baseline, we estimated abilities using the 2PL model for manual scores but 

with automatic scores, effectively ignoring the possibility of classification error. All the ability 

estimates were calculated as expected a posteriori (EAP) estimates, with a prior distribution 

of 𝑁(0,3). 

Performance Measures 

For each dataset and parameter group, we computed the bias, root mean square error 

(RMSE), and Pearson correlation coefficient between the true parameters and their 

estimates. For a more compact presentation, we did not distinguish between the two error 

types of the classifier model parameters. The performance measures were averaged across 

repetitions for each condition. 
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Figure 1 

Average performance measures for the CER model (a) and VER model (b) in the balanced 

error condition.  

  

(a) CER Model 

(b) VER Model 

Note. Error bars: 95% confidence intervals. 
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Figure 2 

Average performance measures for the CER model (a) and VER model (b) in the 

unbalanced error condition with increased false positive rate. 

(a) CER Model 

(b) VER Model  
Note. Error bars: 95% confidence intervals 
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Results and Discussion 

The average performance measures for the balanced error condition and the 

unbalanced error condition with increased rates of false positive errors are presented in 

Figures 1 and 2, along with 95% confidence intervals. The results for the unbalanced error 

condition with increased false-negative error rates are presented in Figure A1 (Electronic 

Supplemental Material 1). 

Recovery of ability 

In terms of RMSE (Figures 1 and 2, bottom rows, first three panels from the left), the 

ability parameters were recovered most efficiently from the manual scores when the analysis 

model matched the model generating the data, namely, the 2PL. This is not surprising, given 

that these estimates were unaffected by both estimation errors in the model parameter 

estimates and classification errors or model misspecification. Contrary to our expectations, 

the RMSE of the ability estimates recovered from the automatic scores using the 2PL model 

were lower than those of the CER and VER models when the number of items was low (CER: 

𝐾 ≤ 50; VER: 𝐾 ≤  10). As the number of items increased, the RMSE of the ability estimates 

of the CER and VER models fell below that of the 2PL model (automatic scores) and 

approached that of the 2PL model (manual scores). Correlations (Figures 1 and 2, middle 

rows, first three panels from the left) between the true and estimated abilities were the 

highest for the 2PL model (manual scores), whereas those for the VER and CER models 

slightly exceeded those of the 2PL model (automatic scores). In the balanced-error 

conditions, the ability estimates appeared practically unbiased (Figure 1, top rows, first two 

panels from the left). However, in the unbalanced error condition with an increased false-

positive rate, a considerable positive bias (approximately .3 logits) in ability estimates was 

observed for the 2PL model (automatic scores). Notably, the CER and VER models did not 

suffer from this marked overestimation of ability but showed a tendency to slightly 

underestimate ability that diminished when the number of items increased (Figure 2, top 

rows, first two panels from the left). A complementary pattern emerged for the unbalanced 
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error condition, with increased false-negative rates (Figure A1). 

Classifier model parameters 

The estimation of the error-rate intercepts in the CER model proved unproblematic 

(Figures 1a and 2a, rightmost columns). A very slight underestimation of the error rates 

could be observed that vanished when the sample sizes were increased. 

A similar pattern was observed for the VER model (Figures 1b and 2b, two rightmost 

columns). Relative to the CER model, the estimation of the variable error rates imposed 

considerably higher requirements on the sample size. Regarding the estimation of error rate 

intercepts, for the smallest sample size of 500 persons, all performance measures degraded 

when the number of items increased but improved to an acceptable level when the sample 

size increased (Figures 1b and 2b, second column from the right). In contrast to the findings 

for the CER model, the sign of the mean bias in the error rate intercept estimates was not 

consistent for the VER model but seemed to depend on the sample size when the number of 

items was low (Figures 1b and 2b, top row, second panel from the right). Estimates of error 

rate slopes appeared virtually unbiased on average; however, relatively large sample sizes 

were required to achieve high correlations with the true parameters (Figures 1b and 2b, 

middle row, rightmost panel). 

These findings suggest that, under conditions analogous to those of our simulation, a 

sample size of at least 1,000, and preferably more, is necessary to obtain reliable estimates of 

the VER classifier parameters. 

Overall evaluation 

Overall, parameter recovery for both models was satisfactory when the sample size 

was sufficiently large. As a general pattern, the classifier parameter estimation improved 

when the number of persons increased, and the person parameter estimates improved when 

the number of items increased. As an exception, for the two smallest sample sizes used, the 

estimation of the classifier model parameters of the VER model did not improve or even 

degraded when the number of items was increased, indicating that the sample size 
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requirements of the VER model were considerably higher than those of the CER model. The 

simulations also highlighted the risk of obtaining biased ability estimates when error-prone 

automatic scores are used with the manual score model. Here, the bias can be attributed to 

the presence of a greater proportion of false-negative or false-positive automatic scores 

which led to an underestimation or overestimation of ability, respectively. This strong and 

systematic bias did not affect the ability parameters recovered using the CER and VER 

models, which remained unbiased, except for a slight tendency towards overcompensation 

when the number of items was low. 

Empirical Example: Automatically Scored Open-Ended Items in the PISA (2012) 

Reading Assessment 

In this section, we report on the application of the proposed models to a set of eight 

items from the PISA (2012) reading assessment. Two automatic scoring algorithms were 

used for each item. We tested the assumption of conditional independence of classifier errors 

and ability and fitted the proposed CER and VER models. We discuss the impact of 

classification errors on item characteristic curves and item information curves under the 

respective marginal models for automatic scores and report the reliability of ability estimates 

obtained from the automatic scores using the marginal models relative to ability estimates 

obtained using the manual scores. 

Dataset 

We used data from the German PISA (2012) sample (see Prenzel et al., 2013, for a 

detailed sample description), focusing on eight dichotomous items from the reading 

assessment. The dataset comprised responses from 𝑁 = 9433 persons. Owing to the 

incomplete design, the number of responses for each item varied between 4152 and 4234. 

Based on the distinction between methodological paradigms, two automatic coding methods 

were chosen to obtain classifiers for the raw text responses. The first classification method 

(C1) can be considered a more traditional baseline method that uses supervised learning with 

higher explainability, because it is based on clustering representations of responses in a 
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semantic space constructed by latent semantic analysis (Deerwester et al., 1990). The scores 

for this method were obtained from Zehner et al. (2016). The second classification method 

(C2) stems from the family of modern transformer models. It was implemented by the 

present authors using a pre-trained deep learning model called German Uncased ELECTRA 

(Reissel & May, 2020) as the basis for fine-tuning a neural network classifier. The resulting 

dataset thus comprised manual scores for eight items along with one set of automatic scores 

for each of the two classifiers, C1 and C2, yielding 16 automatically scored items. We labelled 

the automatically scored items by concatenating the item and classifier labels, separated by a 

slash, such that, for example, R455Q03/C1 references item R455Q03, scored with C1. 

Both classification methods exhibited good to excellent performance with respect to 

agreement with human raters in terms of Cohen’s κ (Table A1, Electronic Supplemental 

Material 1). The κ coefficients varied considerably between 0.59 for (R437Q07/C1, 

R456Q02/C1) and 0.97 (R455Q03/C1, R455Q03/C2). Within-item differences were minor, 

except for items R453Q04 and R456Q02, where C2 outperformed C1 substantially. Similarly, 

the error rates ranged from false-positive rates of up to 49.0% (R456Q02/C1) and false-

negative rates of up to 43.0% (R437Q07/C1) to false-positive rates as low as 1.7% 

(R437Q07/C2) and false-negative rates as low as 0.1% (R455Q03/C2). 

Method  

Ability estimation 

We computed an EAP ability estimate based on the manual scores of the eight items 

and the 2PL item parameters from PISA scaling. This reference ability estimate (EAP 

reliability = .584) was used to test whether the classifier error rates included a dependency 

on ability and as a point estimate for ability when fitting the VER model, as described in the 

next section.  

The automatically coded items were arranged in two forms according to the classifier 

used. For each of the forms, EAP ability estimates were computed using the 4PL and G4PL 

models with the automatically coded responses. For the 2PL and 4PL models, the PP 
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package (Reif & Steinfeld, 2021) was used, while for the G4PL model, a rectangle-rule 

quadrature of the posterior distributions was employed, using 100 nodes equally spaced in 

the interval [−4,4].  

To evaluate the merits of our models that consider classification errors, we used two 

baselines: the reference ability estimate as described above and an EAP estimate based on 

automatic scores and the 2PL model for the manual score. The latter corresponds to an 

approach that ignores deviations between manual and automatic scores, using the model for 

the manual scores but with automatic scores.  

A relatively non-informative normal prior with 𝜇 = 0 and 𝜎 = 3 was used for all 

ability estimates to avoid excessive inward bias. 

Conditional independence of classification outcome and 𝜽 

We tested the conditional independence assumption (Equation 9) using the 

characterization by constant classifier error rates, as defined in Equation 10. We denote 

𝑆𝑢𝑣
𝑗

= (𝜃𝑖: 𝑢𝑖𝑗 = 𝑢, 𝑣𝑖𝑗 = 𝑣) as the subsample of proficiencies of test takers whose response to 

item 𝑗 was scored as 𝑢 by the human rater and as 𝑣 by automatic scoring. If the probability of 

false-negative classification does not vary with the ability level, then, according to Equation 

10, the split of test takers whose manual score indicated a correct answer into 𝑆10
𝑗

 and 𝑆11
𝑗

 is 

purely random. Analogous deliberations hold for 𝑆01
𝑗

 and 𝑆00
𝑗

 assuming a constant probability 

of false-positive classifications. Based on this rationale, a two-sample Kolmogorov-Smirnov 

test was used to test the null hypothesis that 𝑆10
𝑗

 and 𝑆11
𝑗

, – as well as 𝑆01
𝑗

 and 𝑆00
𝑗

 – are 

samples from the same distributions. We tested each combination of items and classifiers for 

varying error rates for both error types, resulting in two tests per item. A significance level of 

𝑝 = 2.5% was used, applying a Bonferroni correction of the cumulative 𝛼-error of 5% at the 

item level, that is, the probability of rejecting at least one true null hypothesis out of the two 

tested per item. 
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Fitting the classifier error model 

We fitted the CER model to all items. Using Equations 14 and 27, the maximum 

likelihood estimates for the classifier parameters, and hence, the third and fourth parameters 

of the marginal 4PL were derived from the false positive and false negative rates of the 

classifier, respectively, which are given in Table A1. 

The VER model was used for automatically coded items for which the Kolmogorov-

Smirnov test indicated non-constant error rates. Each of the two error types, false positive 

and false negative, was modeled separately according to the outcome of the test. Specifically, 

we modeled the log odds of misclassification of the error type in question using a logistic 

regression model (Equations 28 and 29) that employed the reference ability estimate as a 

predictor, yielding a regression model for each modeled error type. 

Results  

Conditional independence and classifier error models 

Table A2 (Electronic Supplemental Material 1) summarizes the results of the 

proposed Kolmogorov-Smirnov tests, in which, as stated above, the null hypothesis 

corresponds to the case of constant error rates. For false-positive classifications, the null 

hypothesis was rejected for all but one item, R437Q07 (both classifiers). For false-negative 

classification, the null hypothesis was rejected for four automatically scored items 

(R432Q05/C2, R456Q02/C2, R456Q06/C1, and R456Q06/C2). This suggests that for all but 

one item, the classification error rates varied with the level of the latent trait; hence, the 

assumptions of our rationale for applying the CER and 4PL models for these items were, to 

some extent, violated. The assumption of constant error rates for both error types was 

maintained for only one item: R437Q07 (C1 and C2). 

Figure 3 shows the logistic regression curves fitted to model the conditional 

probabilities of false positives (a) and false negatives (b). As evident in Figure 3, the data was 

sparse in the upper and lower 𝜃 range for false positives and false negatives, respectively. 

This is due to the background rates of correct and incorrect responses, which also depend on 
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item difficulty. 

Functioning of automatically coded items 

We discuss the model-implied effects of automatic response coding on item 

characteristic curves and item information curves under the 4PL and G4PL models for four 

of the items. The four exemplary items were selected to cover different characteristics of the 

automatic scoring regarding the extent of misclassification and the use of constant or 

variable error rates in accordance with the results of the conditional independence tests. 

For item R455Q03/C1, automatic scoring worked excellently (Table A1). Under the 

4PL model, the false positive rate of 2.3% introduced a lower asymptote at 0.023, and the 

false positive rate of 0.5% introduced an upper asymptote at 0.995 in the item characteristic 

curve of the automatically scored item. As depicted in Figure 4 (top left), the low error rates 

of automatic scoring led to an item characteristic curve of the automatically scored item that 

was only slightly different from that of manual scoring. The rising rate of false positives with 

increasing 𝜃 (Figure 3a, top left) modeled in the G4PL was too slight to make a significant 

difference to the uniform error rates in the 4PL. However, a decrease in item information 

was still discernible for the 4PL model (Figure 5, top left) versus the 2PL model of manual 

scoring.  

The classification accuracy for item R437Q07/C2 was characterized by a low rate of 

false positives but a substantial rate of false negatives. The resulting upper asymptote at 

0.581 dominated the effect of automatic scoring modeled by the 4PL model (Figure 4, top-

right). Consequently, a loss of information relative to manual scoring was observed (Figure 5, 

top-right). In accordance with the results of the independence testing, the G4PL was not 
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applied to this item.

Figure 3 

Fitted classifier error models of four exemplary items 

(a) 

(b) 

Note. (a): conditional probability of false positive classification, (b): conditional 

probability of false negative classification. Blue solid line: G4PL, red dashed line: 4PL. 

Error models for both models coincide where constant error rates were used with the 

G4PL in accordance with results from independence testing. Jittered data points are 

overlaid (a: ordinate 1 – false positives, ordinate 0 – true negatives, b: ordinate 1 – false 

negatives, ordinate 0 – true positives. Amount of jitter is ±.3 for both directions.
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For item R432Q05/C2, the classifier exhibited misclassification rates of 6.3% (FP) and 15.1% 

(FN). Hence, the impact of both asymptotes on the item characteristic curves is noticeable 

(4PL; Figure 4, bottom left). The variable error rates used with the G4PL model predicted 

that, as ability increases, the probability of false negative classification decreases and the 

probability of false positive classification increases. Consequently, the variable false positive 

error rate fell below the constant (mean) error rate in the low ability range and the variable 

false negative error rate remained under the constant (mean) error rate in the high ability 

range (Figures 3 a and b, bottom left panels). Hence, for the G4PL model, the lower 

asymptote was higher and the upper asymptote was lower than for the 4PL model. The ICC 

of the G4PL followed that of the 2PL model more closely than that of the 4PL (Figure 4, 

bottom left) and the model-implied loss of information incurred by automatic scoring was 

Figure 4 

Item characteristic curves of four exemplary items 

Note. Item characteristic curves of four exemplary items, giving the probability of 

observing a response scored as correct by manual scoring (2PL model, solid line), and 

respectively, automatic scoring (4PL model, dotted line, G4PL model, where fitted: 

dashed line) 
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smaller for the G4PL than it was for 4PL model (Figure 5, bottom left panel).  

Finally, item R456Q02/C1 showed a high false-positive rate (49%) and a low false-negative 

rate (1.5%). Here, for the 4PL model, the lower asymptote dominated, and item information 

was attenuated accordingly (Figures 4 and 5, bottom right). Item R456Q06 shows that the 

change in item information between the 2PL model and G4PL models does not necessarily 

reduce across all ability levels. This is plausible because the dependence of error rates on the 

ability trait implies that discrepancies between scoring methods can carry information about 

ability. For item R456Q06/C1, this is expressed in the values of item information of the 

G4PL model, which were slightly higher than those of the 2PL model in the lower ability 

range. Error models, item characteristic curves, and information curves for the remaining 

items are included in Supplemental Material 1 (Figures A2 to A5). 

The overall reduction in information incurred by automatic scoring also led to an 

increase in the standard error of measurement at the test level. This reflects the uncertainty 

introduced by automatic scoring. Figure 6 shows an overall increase in the standard error 

owing to automatic scoring for both test forms constructed from the set of eight items per 

classifier. 

Reliability of ability estimates obtained from automatic scores 

We now consider the extent to which trait measurements obtained from human-

coded responses can be reproduced by replacing them with automatically coded responses. 

This is a matter of reproducibility of scores by different assessments, and hence, a question 

of reliability. We assessed the relative reliability of the ability estimates based on their 

association, measured using Pearson’s correlations. In our framework, the human-coded 

responses are regarded as the gold standard; therefore, a high degree of association with 

measurements obtained from human-coded responses is desirable for any measurement 

obtained from automatically coded responses. 

Hence, ability estimates based on manual scores and 2PL item parameters form the 

reference frame. To avoid data leakage, we randomly split the dataset into a training set 
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comprising 90% of the data for each item (between 3736 and 3826 persons per item) and a 

test set comprising the remaining 10% (between 408 and 436 persons per item). The ability 

estimates reported in this section were computed for the test set using the parameters of the 

models fitted to the training set. Table 1 shows the correlations between the ability estimates 

obtained using the different models and scoring variants. For classifier C1, the ability 

estimates obtained using automatic scores correlated at approximately .81 to .82 with those 

obtained from manual scores. For classifier C2 at approximately .85, the correlations were 

slightly higher, consistent with the higher average agreement between C2’s scoring and the 

manual scoring. For both classifiers, the association between the ability estimates obtained 

from the automatic scores, at .96 and above, was nearly perfect, with minor differences 

between the models. 

From these numbers, we may assume that in the complete sample, first, the degree of 

relative reliability of the measurements obtained from the automatic scores is quite good, 

Figure 5 

Item information curves of four exemplary items  

Note. Item information curves of four exemplary items under manual scoring (2PL 

model, solid line), and respectively, automatic scoring (4PL model: dotted line, G4PL 

model, where fitted: dashed line). 
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and second, the correlation coefficients being very close to each other, there seems to be no 

clear advantage of the proposed models for automatic scores over the baseline that ignored 

misclassification. However, in our dataset, the majority of the test-takers (71.9% and 76.0% 

for C1 and C2, respectively) did not experience any classifier errors (Table A3, Electronic 

Supplemental Material 1). 

For this substantial fraction of cases in which the manual and automatic scores were in 

perfect agreement, the assumption of error-free classification essentially made when using 

the 2PL model with automatic responses holds true, leading to an advantage of this 

approach. 

Note. Standard Error of Measurement (SEM) for manual scoring (2PL) and automatic scoring 

(4PL model: dotted line, G4PL model: dashed line) for both classifiers and test forms 

comprising of eight PISA items. 

Figure 6 

Standard Error of Measurement (SEM) 
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For this error-free subset of the test set (C1: N=660, C2: N=713), at above .97, the 4PL and 

G4PL estimates were highly correlated with the reference ability estimate (Table A4, 

Electronic Supplemental Material 1). Table 2 shows the correlations between the ability 

estimates for the remaining portion of the sample, namely the subsample of persons in the 

test set who experienced at least one misclassified response (C1: N=283, C2: N=230). The 

same pattern is observed for both classifiers. The correlations between the reference ability 

Table 2 

Correlations of Ability Estimates (Test-Takers with One or More Classification Errors) 

 

Model 

 Manual  Automatic  

 2PL  2PL 4PL G4PL  

Manual  – 2PL  —  .295 .385 .365  

Automatic  – 2PL  .235  — .953 .962  

– 4PL  .421  .940 — .992  

– G4PL  .377  .955 .992 —  

Note. Correlations for classifiers C1 and C2 are presented above and below the diagonal, 

respectively. 

Table 1 

Correlations of Ability Estimates (All Test-Takers) 

 

Model 

 Manual  Automatic   

 2PL  2PL 4PL G4PL   

Manual  – 2PL  —  .820 .806 .808   

Automatic  – 2PL  .848  — .963 .974   

– 4PL  .852  .960 — .993   

– G4PL  .849  .967 .993 —   

Note. The correlation coefficients for classifiers C1 and C2 are presented above and below the 

diagonal, respectively. 
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estimate and those obtained using the 2PL with the automatic score were markedly lower 

than those in the complete test set, reflecting the effect of errors in automatic scoring. The 

estimates obtained using the proposed 4PL and G4PL models exhibited higher correlations 

with the reference ability estimates. The more flexible G4PL model did not perform better in 

terms of relative reliability. As in the complete test set, the associations between the 

estimates obtained from the automatic scores were nearly perfect (.94 and above). These 

results indicate that, in the presence of classification errors, by using either one of the 4PL or 

G4PL models, relative reliability was increased over the 2PL model. 

Bias in ability estimates 

For classifier C1, the ability estimates obtained from the automatic scores and the 

2PL model exhibited a bias relative to the reference ability estimate of .183 (95% CI: [.113, 

.254]). For classifier C2, the bias was -.013 (95% CI: [-.078, .052]). This finding of positive 

bias for C1 is consistent with the results from our simulation study, as C1 leaned towards 

higher false-positive rates (mean FPR: 20.4%, mean FNR: 9.7%), whereas for C2, false-

positive and false-negative rates were nearly balanced (mean FPR: 11.5%, mean FNR: 

10.4%). For the 4PL model, bias of -.116 (95% CI: [-.191, -.041]) was reversed in sign to and 

slightly decreased in magnitude relative to the 2PL for C1, while for C2, at -.015 (95% CI: [-

.081, .050]), as for the 2PL, bias was not statistically significant. Again, these findings are 

consistent with our simulations. For the G4PL model, however, for both C1 and C2, the bias 

was negative and of greater magnitude than that for the 2PL model (C1: -.276, 95% CI: [-

.347, -.205], C2: -.198, 95% CI: [-.263, -.133]). This last result is unexpected: In our 

simulations, the magnitude of bias in ability estimates obtained from automatic scores using 

the G4PL was substantially smaller than when using the 2PL, when the error rates were 

unbalanced and bias was statistically insignificant when error rates were balanced.  

Overall, the results on bias in our empirical example are consistent with our simulations, 

except for the G4PL model, which exhibited a greater magnitude of bias than we expected 

based on the simulation results. 
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Discussion 

This article addresses an essential challenge in the application of automatic scoring 

for open-ended test items in educational assessments based on IRT models, namely ability 

estimation, which accounts for the additional uncertainty of automatic scoring. 

The approach proposed here posits that the manual score and the accompanying IRT model 

fitted to them define the frame of reference. In this framework, automatic scores are the 

output of an error-prone process and their deviation from manual scores is modeled. Our 

approach enables access to the information in open-ended items for immediate scoring, 

which is useful for providing instant reporting or feedback, or for enhancing adaptivity 

during testing. In applications such as PISA assessments, approaches to reduce 

measurement error by increasing adaptivity, such as MSAT or the highly adaptive testing 

(HAT; Frey et al. 2023), can be complemented and enhanced by using information in open-

ended items. In these contexts, our models can be used flexibly; for instance, automatic 

scores can be used during online testing to inform routing decisions in an adaptive design, 

whereas manual scores can be supplemented to maximize the reliability of reported ability 

estimates. Another important feature of our approach is that it allows quantification of the 

loss of measurement precision due to imperfect automatic scoring in terms of item 

information and, by extension, the standard error of measurement. This feature has the 

potential to guide decisions on which classifiers to select for a particular test and population 

and, on an individual basis, which items should be submitted to manual scoring to reduce 

measurement errors cost-efficiently. 

Within our framework, we proposed two models that differ in the underlying 

assumption of how classifier error rates relate to latent ability. The assumption of a 

classification error conditionally independent of ability led to a simple CER model and a 

marginal 4PL model for automatic scores. If the error rates were allowed to depend on 

ability, the VER model resulted in a marginal G4PL model for automatic scoring. The results 

of a simulation study demonstrated successful parameter recovery for both the CER and VER 
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models, whereas the sample size requirements of the VER model were considerably higher.  

Simulation results indicate that ability estimates computed from automatic scores 

using the model for manual scores can be affected by considerable bias when misclassified 

responses of one of the error types dominate. In the simulations, the estimates obtained 

using the 4PL and G4PL models remained unbiased.  

In our empirical example, based on data from PISA (2012), we found that the assumption of 

constant error rates was at least partially violated. Most of the automatically scored items 

exhibited a dependency of the classifier error rates on the ability level. By analyzing the 

ability estimates obtained from automatic scores, we found that in the presence of 

classification error, both the 4PL and G4PL models improved the relative reliability over a 

baseline that ignored the possibility of classification error. Consistent with our simulations, 

ability estimates from automatic scores exhibited a positive bias when the model for the 

manual score was used, and the classifier’s error rates leaned towards a higher rate of false 

positives. The estimates obtained from the 4PL led to a decrease in the magnitude of the 

bias; however, for the G4PL, contrary to expectations, the bias increased. Overall, the CER 

model performed better than the VER model in our empirical data, although its underlying 

assumptions were partially violated. This may be explained by the sensitivity of the logistic 

error rate models to influential observations, particularly in extreme ability ranges where the 

data were sparse. This issue can be addressed by imposing regularization; for example, using 

appropriate priors in a Bayesian framework. The weaker performance of the G4PL may also 

be due to undercomplex error models, which could be addressed in future studies by 

including additional predictors. 

The present study has several limitations. A fundamental problem arises from the 

modeling approach itself. The decision to center around the manual scores as the reference 

causes the differences between the human and automatic scores to appear solely as classifier 

errors. This carries the risk of masking errors in manual scores, which can never be 

completely ruled out, for instance, due to biased raters or ambiguous scoring rubrics. It also 
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disregards the machine’s potential capacity to avoid certain types of errors that humans 

invariably make, for example, because of fatigue. This limitation is inherent in our 

framework but could be overcome by more symmetric models that treat manual and 

automatic scores as equal sources of evidence. Accurate manual scoring is a prerequisite for 

reliable and valid inferences. In the context of automatic scoring, improving the accuracy of 

human scoring offers additional benefits by providing higher-quality training data for 

automatic scoring. To this end, a qualitative assessment of the responses with discrepancies 

between human and automatic scores may provide valuable insights. 

The appeal of the simple 4PL model brings into focus the question of whether 

classifiers that exhibit error rates independent of ability level can be specifically designed. It 

may be possible to approach this problem by incorporating fairness constraints with respect 

to ability when training the classifiers (e.g., Zafar et al., 2019). However, the assumption of 

the VER model that error rates depend on ability implies that the automatic score contains 

information that complements the manual score. Because our focus was mainly on ability 

estimation using marginal models, this aspect remains unexplored. 

Further limitations include the low number of automatically scored items in our 

empirical example, resulting in low reliability of the reference estimates, which were used in 

the estimation of VER classifier model parameters and as a reference against which 

estimates from the proposed models are evaluated. Generalizability is further limited by the 

restriction of one content domain and language and the choice of the two classifiers. In 

addition, the question of whether automatic scoring can work uniformly across many 

languages remains unanswered. Applications in international large-scale assessments, such 

as PISA, may lead to a large number of unique item parameters arising from differences in 

the performance of language-specific classifiers. Finally, classifier error rates may exhibit 

dependencies on person variables other than ability, or the dependency on ability may be 

explained by including other predictors such as gender or grade level in the model. From a 

technical perspective, such predictors can be easily included in the model.  
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