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THE JACOBIAN OF A CYCLIC QUOTIENT OF

A FERMAT CURVE
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§ 0. Introduction

Fix a positive integer m. Let Fm denote the Fermat curve over Q

of degree m, given by the projective equation

Xm + Ym + Zm = 0.

Let μm c: Q be the group of ra-th roots of unity, Δ be the image of μm

in μz

m under the diagonal embedding, and let Gm = μzJΔ. Then Gm acts

on Fm\ as follows:

(ξu f2, f3) mod Δ: (X, Y, Z) > (ftX, f2 Y, ξzZ).

The group ring Z[Gm] acts on the Jacobian Jm of Fm. Let i ί = Q(/im).

Then JJK has CM by Z[GJ [4],

Let α, 6, c e Z, with α + b + c = 0, (α, 6, c, m) = 1, and none of α, 6, c

divisible by m. Let Γ™6jC be the following subgroup of Gm\

Then the quotient curve

•*• a,b,c •*• a,b,c\-*- m

is defined over Q, and has equation ym = (—l)cxα(l — x)b. Its Jacobian

Jl\hiC has CM by

Let g be a generator of the cyclic group Gm/Γ^,&,c, and let fm(x) denote

the m-th cyclotomic polynomial. Then the sum of the images of the maps

a,b,c > v a,b,c

induced from F%tbίC -> Fί,btC, (x, y) -> (x, ym/d), as d varies over the set of
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proper divisors of m, generates the abelian subvariety fm(g)J™,b,c of J™,b,c

We define (J™b>c)
new to be the quotient of J™b)C by fm(g)Ja,b>c.

In [8], Koblitz-Rohrlich determined the necessary and sufficient con-

ditions for (J™,b,c)
new to be non-simple and its decomposition into simple

factors up to isogeny in the case when (ra, 6) = 1. Aoki [1] has solved

this problem for all sufficiently large m. In § 2, we use the above men-

tioned results to determine the ring of rational endomorphisms of some

non-simple (J™δ,c)
new.

In the rest of this paper, we let p be an odd prime, fix a cyclic

quotient curve of Fv and denote its Jacobian by A. From the work of

Koblitz-Rohrlich [8] and Schmidt [12], we know that A is either absolutely

simple or isogeneous to a cube of an absolutely simple abelian variety

over the p-th cyclotomic field Q(μp). When A is simple, End (A) is iso-

morphic to the ring of integers in Q(μp). In §4, we shall completely

characterize the endomorphism ring of A whenever it is non-simple. We

then use this information to show in § 6 that A is in fact isomorphic

over Q(μp) to a cube of a simple abelian variety. A special case of this

result (p = 7) is that the Jacobian Jac (C) of the Klein curve

C: X3Y+ Y3Z + Z3X=0

is isomorphic to a cube of an elliptic curve [10] (in fact, the elliptic

modular curve c70(49)).

§ 1. Preliminaries

For the Fermat curve Fm, let x = XjZ and y = Y/Z. Now let r, s,

teZ, 0 < r, s, t < m and r + s + t = 0 (mod m). Then

w = sr-y-. dx
r ' S » ^ *^ . .m. - 1

is a differential form of the second kind on Fm. Gm is generated by

a — (ζ, 1, 1) and τ = (1, ζ, 1), where ζ is a fixed primitive m-th root of unity,

and the forms wr>s>t are eigenforms for the action of Gm: (σjτk)*wr>s>t —

ζrj + skwr!Sft. Since the characters on (Z/raZ)2 are mutually distinct,

Ω = {wrjS,t 10 < r, s, t<m, r + s + t = 0 (mod m)}

is a bas i s of t h e de R h a m c o h o m o l o g y i ϊ i , R (F T O ). Ωγ = {wr>Sft e Ω\r + s + t

= m} is a bas i s for H\Fm, Ω1) i n t h e H o d g e s p l i t t i n g of jyj>R(.Fm).
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The set of elements of Ω invariant under the action of Γ™bfC descends

to a basis of eigenforms for H\iΈL{J^h^ under the action of Z[GJΓ™biC].

(Ja,b,c)n(iW = Jn™ has CM (in the sense of Shimura-Taniyama) by the ring

of integers

of K = Q(μJ, with CM type

HlhtC = {he (Z/mZ)* I φa> + <Λ&> + (he) = m),

where (Jϊ) denotes the unique representative of h modulo m between 0

and m — 1.

Let $ denote the set of positive integers m which are different from

each of the following numbers:

2, 3, 4, 6, 8, 9, 10, 12, 14, 15, 18, 20, 21, 22, 24, 26, 28, 30,

36, 39, 40, 42, 48, 54, 60, 66, 72, 78, 84, 90, 120, 156, 180.

Then from the works of Koblitz-Rohrlich (for the cases where m is rela-

tively prime to 6) [81 and Aoki [1], for me#, J n e w is non-simple if and

only if

(1) (α, 6, c) is equivalent to (1, r, — (1 + r)), where 1 + r + r2 = 0

(mod m), or

(2) (α, 6, c) is equivalent to (1, s, — (1 + s)), where s2 = 1 (mod m)

and s =£ ± 1 (mod m), and s Φ m/2 + 1 if 23|m, or

(3) (α, b, c) is equivalent to (1, 1, —2), with 22|m, or

(4) (a, 6, c) is equivalent to (1, m/2 + 1, m/2 - 2), with 231 m.

In case (1), c/new is isogeneous to a cube of an absolutely simple abelian

variety. In cases (2) and (3), J"new is isogeneous to a square of a simple

abelian variety. Finally in case (4), J n c w is isogeneous to X4 for some

simple abelian variety X.

We shall denote Jnew by A and B in the first and second cases re-

spectively.

Let p be the automorphism of Fm given by

(X,Y,Z) >(Z,X,Y).

Let ΓA and JA denote the Γ™δ,c and J™b,c associated with A. Since

pΓΛp-χ^ΓA,

p induces an automorphism of GJΓA by conjugation. We note that fm(xι)
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is divisible by fm(x) if I and m are relatively prime. Hence, if g is a

generator of GJΓΛ, then

So p induces an automorphism p of A such that the following diagram

commutes:

i i
Let ^ e Aut (FTO) be given by

c: (X,Y,Z) >{Y,X9Z).

Then we have a similar commutative diagram to the one above with

(A, p) replaced by (B, c).

Since

where

V(α, 6, c) = {η e i ϊXF^ C) \g*η = ξtξϊξlη for all g = (ft, ft, ft) e Gm},

a basis of holomorphic differential forms for H°(J™'\ Ωι) is

{^<ftα>,<Λδ>,<Λc> I h ^ •" α!&,cj

The following lemma shows that the abelian varieties A and B are

isogeneous to

P/fe) and \~\BKK)

respectively, where gt and /î  denote σιpσ~ι and σ^σ~J respectively.

LEMMA 1.1. H\JA, Qx)<gι> is spanned by

gf{wr,,\wr,,eH'(JA,Ω
1)},

and H\JA1 Ω1) = ®U H\JA, Ωψι\ Similar statements hold for H%JB, β
1),

h0 and hu
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Proof. Let Vι and Wt denote (1 + gt + gl)*H%JA) Ω
1) and i / 0 ^ , β 1 ) ^

respectively. Then Vt g Wx and dim Vj = dim H\JA, Ωγ)β by definition.

We claim that Wj f] (Wk + Wt) = {0} when {j, k, 1} = {0,1, 2}. We

verify this for j = 0, £ = 1 and / = 2. The other cases are treated simi-

larly.

Let WQ = Wi + w2, where wι e Wt (I = 0, 1, 2). Then w1 = (σpσ~ι)*Wκ —

(σpσ~Tw2 = ((7-(r+2))*^o - O r + 2 )*^ 2 . Therefore, (σ~(r+2) - ί)*w0 = (1 - σ r + 2 )*^ 2

Applying (σ r + 2)* to both sides of the latter equation, we obtain (1 — σr+2)*

(Wo — (σr+2)*w2) = 0. In particular,

w0 - (σr+ψw2 e H\FAl(σ), β1) « F ° ( F , β 1 ) .

Hence, wQ = p*«;0 = ρ*(σr+2)*w2 = (σr + 2p)*w2 = (σ2)*(σ2pσ~2)*w2 = (σ2)*w2, and

((7r)*^2 = HV So, 1̂2 = 0, and M;0 — ̂ i e W0Γ) Wu which we can show to

be {0}, as before. •

Let At = AKgt) and Bι = BjQτ^. Then each At and Bt is simple,

and admits CM by the ring of integers in L = K<r> and M = K<s> respec-

tively. To be precise, the endomorphisms σ + σr + σr2 and σ + σs of A

and B descend to endomorphisms on AQ and Bo respectively. We identify

the products Π?=o^ and Πί=o^ί with (A0)
3 and (JB0)

2 respectively through

fixed isomorphisms Aι > Ao and Bt > Bo.

Let us fix some terminology. (1) If R is a ring, let Δn(R) be the

subspace of the ring of n X λi-matrices Mn(R) with entries in R consisting

of all the diagonal elements. If au - ,aneR, let J(au •• ,αrn) be the

matrix (aUj) in Δn(R) with aitj = δitjajt

(2) If X is an abelian variety, we associate to an endomorphism φ of

ΓΛ (PΛ
Xn, the matrix Uψ in Mn(End (Z)), if on points, φ: -> Uφ\ .

\pj \pJ
(3) Let φ: X -> Y be an isogeny of degree N. Let φ: Y -> X be such

that φφ is multiplication by N on X. Let F 0 : End°(Z) -> End°(Y) map α

in End(Z) to N~\φaφ) in End°(y).

§ 2. Rational endomorphisms

Let Σt be a basis for Ή\AU Ω1) consisting of forms of the type (1 +

gι + gϊ)*u)r,s Then Σ = U?=o Σt is a basis for H°(A, Ω1). The main result

in this section is
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PROPOSITION 2.1. Let mei. Then the following sequences are exact:

0 > (fM) > Qk p] • End°(A) • 0 ,

0 > (fn(σ)) • Q k i] • End°(β) > 0 .

Proof. We will prove that F: Q k p] -* End°(A*) = MS(L) is surjective.

Since fm(σ) e Ker (F), a dimension argument shows that the first sequence

is exact. We omit the proof of exactness of the second sequence.

The matrices for (1 + gt + gf)* on H°(A, Q1), with respect to the basis

Σ are:

/ 3 0 0\ /0 3 0\ /0 0 3 \
[Mo 0 0 , 0 Mx 0 , 0 0 M2\
\NQ 0 0/ \0 N, 0/ \0 0 Nj

for Z = 0, 1, 2 respectively.

Now wltreH\A9Ω
ί) and

a + #0 + ^2)*(i + gi + girw^ = (l + c 2 + i + c a + 2)(i + ô + gi)*wUr.

Let I e (Z/mZ)* - {1, (r2 + l)(r2 + 2)~\ (r2 + l)(r2 + 2)"1}. Since {ζa \ a e

(Z/mZ)*} is a Z-basis for 0*, ζr2+1, ζ^a+1)1, ζ<'a+2>, ζ^w are linearly inde-

pendent over Q. Thus ζr2+1 + ζ r2+2 is not in Q, and 1 + C2+1 + ζ r2+2 Φ 0.

This shows that the matrix Mo is not the null matrix. In a similar way,

we can prove that iV0, Mu Nu M2 and N2 are not zero. Then, in

= M8(0jr), the matrices for (1 + gt + gf) are:

3

βo

0
0
0

o\
0 ,
0/

P
o

\o

3

A

o\
o ,
0/

/o
0

\o

0
0
0

3
cc2

βΐ

for I = 0, 1, 2 respectively, where each α̂ , ^̂  are in ΘL.

Let X, Y, ZeQ[σ]. In the group ring Q k p\, we have the following:

(l + gι + gl)(X +PY+ P2Z) = (l + g ι + gf)(X + Yσι«-* + Zσ1*-*)

by using the relations pop'1 = σr and ρ~ισρ = σr* in Aut(A).
/I 1 1 \

The determinant of the matrix 1 σ1-'* σx~r is D = f(σ) e Q[σ],
\1 σ2-2'2 σ 2" 27

where

/(x) = *<*-'> - x<4"r2> + J ^ 1 - ^ - ^ - ^ + x<2-2r> - x<2-2r2> e Q[x] .

Since r2 + r + 1 = 0 (mod m), the exponents 4 — r, 4 — r2, 1 — r, 1 — r2,

2 — 2r, 2 — 2r2 are pairwise distinct (mod m) except possibly when m \ 32
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or m = 13. Hence, D Φ 0 (the exceptional case m = 13 is taken care of

by inspection). In particular, there are X, Y, Ze Z[σ] and a positive integer

N such that

X + Y + Z = ND, X+ Yσ1-'2 + Zσι-r = 0, X + Yσ2"2'2 + Zc72-2' = 0.

With the latter choice of X, Y and Z, let the matrix of (X + ^y + £2Z)

in MlΘj) be («<,,). From (1 + gx + g!)(X + pY + p2Z) = 0, we conclude

that a2tj = 0 for all j . On the other hand, aitj = 0 for all j , follows from

(1 + g2 + gξ)(X + pY + P2Z) = 0. Then the matrix of (X + pY + p2Z)(l +

go + gl) is

0 0\ fδ0 0 0\
0 0 = 0 0 0 ,
0 0/ \0 0 0/

where ^0 = 3 α M + a^aXtl + βQalti e ΘL.

CLAIM. ^O Φ 0.

Suppose, on the contrary, that <50 = 0. Then

N-\l + go + gl)(X +PY+ p2Z)(l + go + gl)

= (l + p + p*)D(l + gQ + gl) = 0.

We note that

D*(l + p + Pψwur = f(QWl,r + /(CO^r.m-r-l + /(Om-r-1,1

and if λm = m) + /(CO + ΛC2),

(1 + ô + ^2)*O*(1 + p + pψ = λjwur + wr,m.r^ + wn.r.1Λ).

We will show that λm Φ 0.

First, consider the prime case m = p. If λv = 0, then the polynomial

g(x) = f(χ) + fx(χ) + f2(x), where fj(x) is the polynomial obtained by re-

placing each exponent <α> in f(x) by <αrJ), has degree at most p — 1,

and ζ as a root. We note that 4 - r, 4 - r\ 1 - r, 1 - r\ 2 - 2r, 2 - 2r2

are distinct elements in (Z/pZ)*/{l, r, r2} for p Φ 7, 19, 31. Thus, with the

above exceptions, g(x) Φ 0 and therefore, g(x) = ±fp(x). This is a con-

tradiction, since g(ΐ) = 0 but /p(l) = p. Inspection shows that λp Φ 0 for

p = 7, 19, 31.

Now we treat the composite case.

Suppose that / is a prime divisor of m and r — 4. Then r2 + r + 1

= 0 (mod lk) and r = 4 (mod Zfc) imply that Z*|21. Thus (m, r2 - 4) 121.
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Similarly (m, r — 4) 121. However, 7 can divide at most one of the two

numbers (m, r — 4) and (m, r2 — 4) = (m, m — r — 5). Furthermore, it is

not difficult to verify that (1 — r, m) = (1 — r2, m) 13.

Case (1). First suppose that each of the integers 1 — r, 1 — r2, 2 — 2r,

2 — 2 r are relatively prime to m (this is the case when (m, 6) = 1).

Case (la). Both (m, r — 4) and (m, r2 — 4) are co-prime to 7.

For β e If = Q(μJ, let /31 + r + r 2 = β + βr + βr\ where {1, r, r2} c Gal (if/Q).

We note that if two of the integers 4 — r, 4 — r2, 1 — r, 1 — r2, 2 — 2r,

2 — 2r2 represent the same class in (Z/mZ)*/{l, r, r2}, then me S, where S

is a finite set of integers whose elements can be easily found using the

congruence relation r2 + r + 1 = 0 (mod m). If m e Sf] £, inspection shows

that λm Φ 0. If m is not in S, a Z-basis for ΘL is

and we conclude that λm is non-zero since it is a linear combination of

elements of a subset of a Z-basis for ΘL.

Case (lb). 7||(m, r2 - 4).

The elements of Gal (if/Q) which fix Q(ζ7) elementwise are the units

j e (Z/raZ)* such that j == 1 (mod m/7). We fix one such j = 1 + ^(/n/7) ^ 1

in (Z/τnZ)*. We make the following observation: if a and bj are equal

in (Z/τttZ)*/{l, r, r2}, then α = rιbj (mod m) implies a = rr6 (mod m/7), and

so α and 6 are equal in (Z/(m/7)Z)*/{l, r, r2}.

The calculations for case (la) show that 1 — r, 1 — r2, 2 — 2r, 2 — 2r2,

4 - r are distinct in (Z/mZ)*/{l, r, r2} (hence in (Z/(/n/7)Z)*/{l, r, r2}), except

possibly when m/7 e S. For these exceptional values of m, λm Φ 0 by

inspection. For the other values of m, the observation in the previous

paragraph shows that λm = λm- ζ^-^a+r+r^ i g s u c h t h a t ^ ^ ^^ g i n c e

{C^1+^^|ae(Z/mZ)*/{l,r,r2}} is a Z-basis for 0L. Thus λm z Q(ζ7), and Λm

Case (lc). 7||(m, r - 4).

This is case (lb), with the roles of r and r2 reversed.

Case (2). Suppose now that (1 — r,m) = 3. If m is odd, then we have

that

(1 - r, ro) = (1 - r2, m) = (2 - 2r, m) = (2 - 2r2, m) = 3

and 9|(4 - r, m) (4 - r\ m)|9.7.
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We apply the arguments in case (1) applied to (1 — r)/3, (1 — r2)/3, (2 —

2r)/3, (2 - 2r2)/3, (4 - r)/3, (4 - r2)/3 in (Z/(m/3)Z)*/{l, r, r2}.

If m is even, we look at (1 - r)/3, (1 - r2)/3, (2 - 2r)/6, (2 - 2r2)/6,

(4 — r)/3, (4 — r2)/3 instead. The calculations are similar to the ones

above.

This proves that λm Φ 0, and hence our claim that <50 φ 0. We have

shown that F((X + pY + p2Z)(l + g0 + g$) = A(δ0, 0, 0), with δ0 φ 0. Sim-

ilarly, we can show the existence of Xlf Yu ZL e Z[σ] such that (Xt + ρYt

+ ρ2Zt)(l + gι + g\) are mapped onto

0, δu 0) and J(0, 0, δ2) for Z = 1, 2 respectively.

In particular, since L -• End°(Ao) = M3(L) (in which ζ 1 + r + r 2 is mapped to

(σ + σr + σλ2)3) is the diagonal embedding by the theory of complex mul-

tiplication, we conclude that

We observe that

σ*(σ(l + p + p2)σ~Twa,b = (1 + p + p*)*σ*wa,b, and

σ*(σ2(l + p + p2)σ-ψwa,b = (σ(l + p + p*)σ-ψσ*wa,h.

la b c\
Thus the matrix for σ in M^Θj) is of the form: [d 0 01, for some α,

\0 e 0/
6, c, d and e in ^L with cde e (0L)* (this follows from det (σ)w = 1). Therefore

the image of F contains the following matrices:

/0 b c\ (bd ce 0 \ /0 6 c\2 / 0 ce 0 \
d 0 0 , 0 bd cd ) = [d 0 0 , 0 0 cd) .

\0 β 0/ \de 0 0 / \0 β 0/ \de 0 0 /

This completes the proof that F is surjective. •

§ 3. Homology groups

Let /: [0, 1] —> Fm(C) denote the one-simplex

I(t) = (t1'", (1 - ί)1/w, «), te [0, 1],

where a = — 1 if m is odd and a primitive 2zn-th root of unity if m is

even. Let g be the one-cycle:

g = (<7r)(w-1)/2(l - σ)(l - τ)I if m is odd, and

g = (1 — (/"^(l — T" 1 )^ if m is even.
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The homology group Ήγ{FJQ), Z) is generated by g [11]. Moreover by

the period calculations in [11], we have that ρ(g) = g and c(g) = — g [9].

PROPOSITION 3.1. iϊi(Fm(C), Z) is a cyclic Z[Gm]-module, with g as a

generator such that ρ(g) = g and c(g) = —g in homology.

For the rest of this paper, let p be a fixed prime congruent to 1

(mod 6), let r be a fixed cube root of unity modulo p, K = Q(μp), ζ be a

fixed p-th root of unity, and A be the Jacobian variety of the curve FA:

y* = x(l - x)r.

A has CM by Φκ\ we fix the embedding

Θκ • End^Λ), ζ >σ = (ζ, 1, 1).

Let ψA\ FP->FA denote the canonical projection, and let IA be the

one simplex ψAI on FA. Fix a base point e0 in FP(C), and let xQ be its

image in FA(C) under <pA. The cyclic covering ψA gives rise to a mono-

morphism

H - T Γ ^ C O , e0) > ̂ (FA(C), x0) = G

of fundamental groups. GjH is a cyclic group of order p since ψA has

degree p. So if contains the commutator subgroup of G, and the homo-

morphism

HX(FP) = fli(Fp(C), Z) > fliίF^C), Z) = HXFA)

factors as follows:

H/[H, H] > G/[G, G]

KH/[G,G]

Thus, the index of the image T of HX{FV) in H,{FA) is p. T, by definition,

is a cyclic Z[σ]-module with (σ — ί)(σr — ί)IA as a generator by Propo-

sition 3.1.

Let T be the Z[σ]-submodule of H^FJ generated by a = (σ — 1)7 .̂

Then T^T g ^ ( F ^ ) . We claim that T ^ T, from which it follows that

^ ) = Γ.

Identifying
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Hi(FA) (x) Q is a vector space over K. Hence the annihilator of HX{F^) ® Q

as a Q[σ]-module is (fp(σ)), and the annihilator of Hλ(FA), as a Z[σ]-

module is

Since H^FJ is torsion-free over Z, and [H,(FA): T]<oo, AnnZ [ σ ](f) =

Suppose, on the contrary, that T = T. Then a = a(σ)(σ — ϊ)a for

some α(:r) e Z[x]. Therefore, (a(σ)(σ — 1) — ΐ)a — 0 implies a(x)(x — 1) — 1

= b(x)fp(x) for some b(x)eZ[x]. Then — 1 = b(ί)p in Z, a contradiction.

Thus, HX(FA) = T.

Let I = pi and ί̂  = ^ 1 From p(g) = g in i?i(.Fp), we obtain

(σ - l)(σr - 1)IA = σ

x*r«**ι)m(σr - l)(σp-r~λ - 1)1 Λ

i n H,(FA).

Let υ e H,{FA) be such that (σr - ΐ)υ = 0. Passing to Θκ c End^(A),

we have (ζr - l)υ = 0. Then pu = ±iVξ(ζr - l)u = 0, and υ = 0. Thus,

we have proved

PROPOSITION 3.2. HΛ{FA) is a cyclic Θκ-module with gA = (1 — (j)J^ as

a generator. Moreover,

§ 4. Endomorphisms

In the present section, we prove the following theorem. Let π = ζ

- 1 e Z[ζ] c End (A) and W = p-^l + r^ + ry)(<j - l)p~3 e Q[σ, rf.

THEOREM 4.1. End(A) = Ίm(Z[σ, p, W]) has group index pz over

Proo/. By Proposition 2.1, F : Q[σ, p] -> End°(A) is surjective, and by

Proposition 3.2, HX(FA) is a cyclic Z[ζ]-module with a generator gA such

that pteJ = ηgΛ9 p\gA) = f^, where

w __ r? ((p-i)/2)-i (C 1) a n d ί = r r 2 + ( p + 1 ) / 2 ^ r ^

( ζ r 2 i ) ( ζ - D

We will use the following to determine End (A):

End (A) = {a e End
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Let X, Y,ZeK. Then a = X + Yp + Zp2 e End (A) if and only if a(ζaqA)

£ Ht(FA) for all α e Z , or equivalently, for all α e Z,

(4.1) Zζα + Yζarv + Zζ"α ( '+ 1 )? e Z[ζ].

Let X = X, Ϋ = Y57 and Z = Z?. Then (4.1) reads as

(4.2) Xζα + Ϋζar + Zζ-α ( r + 1 ) e Z[ζ].

Using X + ? + Z e Z[ζ] and (4.2) to eliminate X, we obtain for all a e

(Z/pZ)*,

(4.3) Ϋ(ζar - ζa) + Z(ζ-α ( r + 1 ) - ζa) e Z[ζ].

For such a, ζar - ζa and ζ-α^+1) - ζa are elements of the ideal (π) of Z[ζ].

Let Da>b be the determinant of the following matrix:

( ζar ζa ζ-α(r + l) ζa\

ζbr ζb r-b(r + ί) ζb)

Then

T\ __ f£ατ -δ(r + l) _ι_ f'δr + α ι ^δ-α(r + l)Ί ίζar + b _ι_ ί*α-δ(r + l) _ι_ £δr-α(r + l)Ί

and (4.3) implies that

(4.4) Da,bΫ, Da,bZe(π)

for all a, be (Z/pZ)*.

If we set (α, 6) = (r + 1,1) and (α, 6) = (1, — r) in (4.4), we obtain,

after simplification,

(C3r+3 + ζ3 + 1 - Xr+2)Ze (π) and (ζ3r+3 + ζ3r + 1 - Sζ2r+1)Ze (π)

respectively. By subtracting one from the other, we obtain

ζ 3 (C- 1 - l) 2 Ze(ττ) .

Since (p, r - 1) = 1, π2Z e Z[ζ]. By symmetry, πΎ e Z[ζ].

We write Yo = Ϋπ2 and Zo = Zττ2. Then Yo, Zo 6 Z[ζ], and (4.3) can be

rewritten as

(Γr f\h (r-<,r + \) r\h

where /Ϊ ranges over Ή — Gal (UL/Q), or equivalently,

(4.5) y0 + εh Z, 6 (π) for all h e H,
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where

Clearly, (4.5) may be rewritten as

(4.6) y0 = r % (mod π).

We have proved that a — X + Yp + Zp2 is in End (A) if and only if

(*) X+vY+ ξZeZ[ζ], and
(**) yo = r2Z0 (mod π), where Yo = π^Y and ZQ = π2ξZ.

We write

YQ = a0 + a{π (mod τr2), Zo = bQ + 6 ^ (mod π2),

where α0, α^ 60? &i £ Z. By (**), α0 = r2b0 (modp). Thus, we find that a is

congruent to

(4.7) bo\ {-(r2 + 1) + r y V + ΓVl + α o i ( - l + ψ'p)
π π

modulo Im(Z[σ, p]).

By inspection,

ϋ, = 1 (_ l + ,-v), u2 = - ( - 1 + ί-y)

satisfy (*) and (**). Hence, they are in End (A), and we conclude that

(4.8) End (A) - Im (Z[σ, p]) + Zv0 + Zvx + Zυ2.

From (4.8), the quotient group

Q = End (A)μ where J = Im(Z[σ, rf)

is an elementary p-abelian group. So Q is an Fp-vector space, and

dimFp(Q) < 3.

The theorem follows from the next few lemmas. •

LEMMA 4.2. Let

w - (1 + rp + rV)i- = — + — ~ p + - p2 e End°(A).
^ π2 π2 (ζr - 1YH (ζr2 - I ) 2 H

https://doi.org/10.1017/S0027763000003901 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000003901


86 CHONG HAI LIM

Then we End (A).

Proof. We verify (**) for w. We have Yo = (rπ2η)l(ζr — I)2 and Zo =

(rVf)/(ζr2 - I)2 in the notation of the proof of Theorem 4.1. Since

Yθ = Γ ζ r ( p - D / 2 - l K^— ) {^— ) _ r ( m Q ( J π)

and

o = r ζ ^ " — — =. r (mod π),

(ζr2 - 1) (ζr2 - 1)

we have Yo = r2Z0 (mod π). Likewise, (*) can be verified for w. This

completes the proof of the lemma. •

LEMMA 4.3. Let Σ = Im(Z[σ, p, W]). Then Σ c End (A), and the fol-

lowing are elements of Σ:

w, w0 = {1 + (r + ί)ρ]—, Wi = (rp — p2)—.
π π

Proof. Let we(Z[ζ])* be the endomorphism of A such that p — uπp~\

As an element of End°(A), W = ww1. Hence the image of w is in Σ,

and 21 c End (A).

From wσ = (σ + rσrp + rVy)l/τr2 and ^ = (σ + rcr̂ o + r2σp2)l/π2, we

have

σw — wσ = (r — l)ρ{l + (r + 1)/?}— (mod ̂ ί).

Since p does not divide r — 1 and p e Aut (A), there is a Λ e Z such that

1{1 + (r + l)|θ}— = λp\σw — wσ) (mod yί).

Hence, w0 € 2\ Since ^ = rpwQ (mod τl), we have wxeΣ also. •

LEMMA 4.4. The mapping f: (Z[ζ])3 -+Λ, (X, Y, Z)-> X + pY + p2Z is

a right Z[ζ]-module isomorphism.

Proof By definition, / is surjective. By Proposition 2.1, / ® 1: K3 =

(Q(μp)y —> t̂ (x) Q is an isomorphism. Hence / is injective. •

LEMMA 4.5. Let V be the subspace of Q spanned by w, wQ and wx.

Then dimFp(V) = 3.
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Proof. Le t λ, λ0, ^ e Z be s u c h t h a t

(4.9) λw + λowo + λ1w1 e A.

Multiplying by π on the right, λ(l + rp + r2p2) e πΛ. Using Lemma 4.4,

λ\π e Z[ζ]. Hence λ e (TΓ) Π Z = pZ. Since p/π2 e Z[ζ], we have

(4.10) ^o^o + λιwι e Λ.

Another application of Lemma 4.4 to (4.10) gives Λo,/^epZ. Therefore

{w, wQ, Wί} is an Fp-basis for V. Π

Combining Lemmas 4.3 and 4.5,

Since dimFp(Q) < 3, we have the desired equality: End (A) = Σ, and End (A)

has group index p 3 over A. This completes the proof of Theorem 4.1.

COROLLARY 4.6. A free Z-basis for E n d (A) is given by:

{pjπk \0<j < 2 , 0 < / e < p - 4}U {pπp~\ p2πp~\ pπp~2} U {w, w0, w,} .

Proof Let M be the Z-submodule of End (A) spanned by the above

elements. Inspection shows that A £ M. By Lemma 4.5, the corollary

follows. •

Remarks. Let k be a proper subfield of K, and let h be a generator

of Gal(Klk) c: (Z/pZ)*. Then the subring of endomorphisms of A defined

over k is

End (A) - Im ( z [ l X f t ' > P \ a e z ] ) >

where t is the order of h. Endfc(A) is commutative if and only if k is Q or

L = K<r>. In the latter cases, Endfc(A) are contained in ZχZ[( l + V ^

and Θκ X Θκ(v=3} respectively.

§ 5. Action of rho on some division points

Let Pu P2 and P3 be any 3 points on Fp where X = 0, Y — 0 and

Z=0 respectively. Recall that φA\ FP->FA is the canonical projection.

Set

oo2 = φΛ(Pi)9 oo3 = φA(P2), a n d ooj = ψA{Pz).

Then the group of A[π] of π-division points on A has order p, and con-
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tains all the divisor classes of degree zero supported on the set of cusps

{θθj, OO2, OO3} Of FA.

For each integer a > 1,

-V1 ζ _ 1

in End (A), so that p induces an automorphism of A[πa] by restriction.

LEMMA 5.1. p acts on A[π] as multiplication by r.

Proof. Recall that the equation of FA is υp = u(l — u)r. The divisor

of the rational function υ on FA is oo2 — (r + 1)00! + roo3. Hence, on A,

oo2 — (r + 1)00! + roo3 = 0 = 00! — (r + l)oo3 + roo2 (the latter equality is

obtained by applying p to the former). In particular,

p(oot — oo2) = oo2 — oo3 = (r + lXoo! — oo3) = r(ooι — 002). •

LEMMA 5.2. There is an element Qe A[π2] — A[π] such that p(Q) = Q.

Proof. Let us fix a Q in A[π2] - A[π]. Then A[π2] = {(a + bπ)Q\a, b

e Fp} is a vector space of dimension 2 over F p . Let f(x) be the minimal

polynomial of p restricted to A[π2]. Since p has order 3, we have

f(x)\(x — 1)(JC — r)(x — r2) in Fp[x]. Since ^ can have at most two distinct

eigenvalues, and f(x) splits completely, we have f(x) = x — Xx or f(x) =

(x — λi)(x — λ2), where Xl9 λ2 e {1, r, r2} and /Ij 9̂  2̂-

Suppose that f{x) = x — λx. Then λx(πQ) = /o(τrQ) = (ζr — l)τrQ =

λx{(ζr - l)/τr};rQ = λx{r + (r(r - ί)/2)π + }τrQ = Λr(ττQ), whence Λ - ^ r

and λx = 0, a contradiction. Hence, /(x) = (x — λx)(x — X2), and there is

an Fp-basis Qu Q2 of A[^2] such that the matrix of p with respect to

{Qu Q2} is (Λ1 , ). Since at least one of Ql9 Q2 is not in A[τr], we have

found a Q in A[π2] — A[π] and a Λ e {1, r, r2} such that ^(Q) = λQ. By

Lemma 5.1, r(^Q) = piβQ) = ^K^Q)? and ^ = 1. This completes the proof

of the lemma. •

Remarks. (1) In the same way as above, we can show that there

is a Qe A[ττ3] - A[ττ2] such that p(Q) = r2Q. We also remark that the

annihilator, in End (A), of A[π] is

Z[ζ]π + Z[ζ](p - r) + Z[ζ](p2 - r2) + Z(l + rp - (r + i y ) l
7Γ
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(2) If ~ denotes complex conjugation, then for Qe A[π2] — A[π], Q =

§ 6. The kernel of an isogeny

Let X] = FAl(σjρσj}, (j — 0, 1, 2), and we denote the canonical pro-

jection FA -> Xj by ψy Let φ be the isogeny

φ= Ufa)*: A >Π Jac(^).
J=0 7-0

LEMMA 6.1. Ker(^) c; A[π2].

Proof. The composition A Ά Jac (X3) ^> A is ζj(l + p + p%~j e

End (A), so that Kerfo)* c A[ζJ(l + p + p%~j]. Let iV be Πϊ=o A[ζJ(l +

p + ^ ζ " ^ ] . Then

Ker (φ) = Ker (̂ o)̂  Π Ker ί^)* Π Ker (φ2)* c JV.

We claim that iV g A[τr2]. Let D e N. Then we have

(6.1) (1 + p + p2)D = 0,

(6.2) (l + ζ 1"> + ^ 7 ) ^ = 0,

and

(6.3) (l + ζ2-2> + ζ 2 - 2 Ύ)β = 0,

using the relations pσp~ι = σr and p~xaρ = σrί in Aut(Fκ). From (6.1) and

(6.2), we obtain that

(6.4) {(ζ1"r2 - 1) + (ζ1" '•* - C" )p}D = 0.

From (6.2) and (6.3),

(6.5) {(C~rl - 1) + (?-'-" - ?-ir)p}D = 0.

From (6.4) and (6.5),

= 0.

Hence, κ\PD) = 0 and ^((ζr2 - l)/(ζ - 1))2^2D = 0. Since p and (ζr2 - l)/(ζ - 1)

are in Aut(A), we have π\D) = 0. •

THEOREM 6.2. Let N = Π ^ o ^ K ^ l + p + ^2)ζ- j]. Γ/ιeτι f̂ e Λαυe

Ker(φ) = N= A[π].
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Proof. Under the canonical projection φQ: FA->X0 = FJ(p}, ooj and

oo2 are mapped onto the same point. Thus, Ker(^0)* contains A[π].

Likewise, A[π] is contained in K e r ^ ) * . Thus

A[π] g K e r ( ^ ) Q N ^ A[π2].

Let D e N. Applying the endomorphism w = (1 + rp + r2p2)ljπ2 to π2D = 0,

we get

(1 + rp + r2p2)D = 0.

Since (1 + p + p2)D = 0 also, we obtain {(r - ϊ)p + (r2 - ί)p2}D = 0 or

(r — 1)^(1 + (r + ϊ)p}D = 0. Since D is a p-division point, (p, r — 1) = 1

and p e Aut (A), it follows that {1 + (r + 1>}D = 0 or (r - <o)D - r{l +

(r + 1>}Z> = 0. Hence,

A[π] c Ker (9) c ΛΓ c A[ττ2] Π A[p - r ] .

By Lemmas 5.1 and 5.2, there is a Qe A[ττ2] — A[π] such that p(Q) = Q

and ^(TΓQ) = KTΓQ)- Let D = (α + M Q e A [ / ι - r ] , with α,fee F p . Then

(α + 6ττ)Q = (ar + brπ)Q, whence a = ar and α = 0. Thus D e A[π] and

A[/r2] Π A[/o - r] = A H . Hence, Ker (99) = iV = A[ττ]. D

COROLLARY 6.3. The isogeny φ: A—> Π?=o Jac(-XΓj) factors as

where f: A -> f]2,^ J a x(X?) is απ isomorphism of abelίan varieties defined

over K.

Proof. We define an isomorphism /: A -> Π?=o J a c C^Q of abelian

varieties as follows. Given D e Pic°CFJ, let E be such that πE = D. E

exists since π is an isogeny. Then we define f(D) = φ(E). f is well-defined

and injective by definition. In particular, / is a birational isomorphism

of abelian varieties and hence an isomorphism of abelian varieties. •

Let C be the Klein quartic curve over C with projective equation

X*Y+ Y3Z+ Z3X=Q.

C has genus 3, Aut(C) ~ PSL(2, F7), and the morphism
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FU,< >C, (x,y) >((x-l)ly\ -(x - 1)//)

is a birational isomorphism. Let Jac(C) be the Jacobian of C. We will

denote by σ and p the following automorphisms of C:

σ: (x, y) > (ζ% Cy), p: (x, y) • (1/y, x/y),

where ζ is a primitive 7-th root of unity. Then by Proposition 2.1, we

have the epimorphism

Qkrf >End°(Jac(C)).

By Theorem 4.1 and Corollary 6.3, we have

COROLLARY 6.4. Let W = 7-\l + rp + r2p2)(σ - I)4 e Q[<τ, p], with r = 2.

Then End(Jac(C)) = Im(Z[σ, p, W]) and Jac(C) is ίsomorphίc to a cube

of an elliptic curve E.

Remarks. (1) From the Weierstrass equation for E computed in [10],

we see that E is Jo(49).

(2) As an application of Theorem 4.1, we give a second proof of the

following result due to Prapavessi [10]: Let ooj = (1,0,0), μ3 = ζ j + ζ~j

(j > 0) and let P = (μu μϊ\ 1). Then D = P + pP - 2OO! generates the

kernel of π3 over Z[ζ]. Prapavessi showed ([10], Lemma 2.1) that π\D) = 0.

It remains to show that π\D) Φ 0. Let cχ>2 = (0, 1, 0) and oo3 = (0, 0, 1).

Suppose, on the contrary, that π\Ώ) = 0. Applying the endomorphism

(1 — r2p)l/π of Jac(C) we obtain (1 — r2ρ)πD = 0, or

πD = A C - 1 )πpD = Ar + r ( r ~ l) π + λπpD = πpD.

Since the group of τr-division points on Jac(C) is generated by oô  — oô

(ί φ j)9 π(P — p2P) = 0 follows from π(D — pD) = 0. Hence there is a

non-constant rational function g on C whose divisor is π(P — p2P). In

particular, g: C-^ P1 is a double covering, and C is a hyperelliptic curve,

which is a contradiction. This completes the proof that π\D) Φ 0.

(3) Our knowledge of the endomorphism ring of A allows us to

deduce a result of Greenberg [5] for A = J"?,r,_(1 + r). We have noted that

w — (1 + rp + r2p2)llπ2 is an endomorphism of A which is defined over K.

Thus if D e A(K), then it follows that w(D) e A{K). Let Q e A[πz] - A[π2]

be such that p(Q) = r2Q. Setting P = πQ, we have w(P) = (I + rp +

r2p2)(Q) = SQ i s a n e l e m e n t o f A ( K ) . L e t λ, μ e Z b e s u c h t h a t Sμ + pλ
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= 1. Then Q = SμQ e A(K). Since A[πz] is a cyclic Z[ζ]-module with Q

as a generator, it follows that A[π*] c: A(if )• We also remark that the

p-part of A(K) is of the form A[πu] for some / > 1.
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