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THE JACOBIAN OF A CYCLIC QUOTIENT OF
A FERMAT CURVE
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§0. Introduction
Fix a positive integer m. Let F, denote the Fermat curve over Q
of degree m, given by the projective equation
X"+ YY"+ Z"=0.
Let g, S Q be the group of m-th roots of unity, 4 be the image of p,

in 48, under the diagonal embedding, and let G, = p/4d. Then G, acts
on F,.as follows:

(SD 521 53) mOd A: (X: Yy Z) —> (SIX, ‘§2Y’ EI}Z) .

The group ring Z[G,] acts on the Jacobian J, of F,. Let K = Q(g,).
Then J,/K has CM by Z[G,] [4].

Let a,b,ceZ, witha+ b+ c¢=0, (a,b,¢,m) =1, and none of a, b, ¢
divisible by m. Let I'", . be the following subgroup of G,:

{(&, &, &) € 14, | £16285 = 1}/4.
Then the quotient curve
thb,c = Fgl,b,c\Fm
is defined over Q, and has equation y" = (—1)x%(1 — x)°*. Its Jacobian
J»,. has CM by
Z[G,.IT,,) -

Let g be a generator of the cyclic group G, /I'%,.., and let f,.(x) denote
the m-th cyclotomic polynomial. Then the sum of the images of the maps

d 3
J(z,b,c ng,b,c

induced from F7, — F¢, . (x,y) — (x,y™*%), as d varies over the set of
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proper divisors of m, generates the abelian subvariety f,.(g)J7, . of J7,. ..
We define (J7, )" to be the quotient of J, , by f.(8)J%,...

In [8], Koblitz-Rohrlich determined the necessary and sufficient con-
ditions for (J7%,.)"" to be non-simple and its decomposition into simple
factors up to isogeny in the case when (m,6) = 1. Aoki [1] has solved
this problem for all sufficiently large m. In §2, we use the above men-
tioned results to determine the ring of rational endomorphisms of some
non-simple (J7, )",

In the rest of this paper, we let p be an odd prime, fix a cyclic
quotient curve of F, and denote its Jacobian by A. From the work of
Koblitz-Rohrlich [8] and Schmidt [12], we know that A is either absolutely
simple or isogeneous to a cube of an absolutely simple abelian variety
over the p-th cyclotomic field Q(y,). When A is simple, End(4) is iso-
morphic to the ring of integers in Q(y,). In §4, we shall completely
characterize the endomorphism ring of A whenever it is non-simple. We
then use this information to show in §6 that A is in fact isomorphic
over Q(u,) to a cube of a simple abelian variety. A special case of this
result (p = 7) is that the Jacobian Jac (C) of the Klein curve

C: XY+ YZ+Z2PX=0

is isomorphic to a cube of an elliptic curve [10] (in fact, the elliptic
modular curve J,(49)).

§1. Preliminaries

For the Fermat curve F,, let x = X/Z and y = Y/Z. Now let r, s,
teZ, 0<r,s,t<mand r+ s+ t¢t=0 (modm). Then

so1 dx

m-1

_1
Wyse = XY

is a differential form of the second kind on F,. G, is generated by
d=(1,1) and = = (1, {, 1), where ¢ is a fixed primitive m-~th root of unity,
and the forms w, ,, are eigenforms for the action of G,: (¢’z"*w, ,,, =
grit*kyw, ... Since the characters on (Z/mZ)* are mutually distinct,

Q={w,, |0<rst<mr+ s+ t=0(modm)}

is a basis of the de Rham cohomology Hy(F,). 2, = {w,,,€2|r+ s+t
= m} is a basis for H'(F,, 2') in the Hodge splitting of H}p(F,,).
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The set of elements of £ invariant under the action of I'}, . descends
to a basis of eigenforms for Hig(J7,,.) under the action of Z[G,/I'%,.].
7, )Y = J™ has CM (in the sense of Shimura-Taniyama) by the ring
of integers

Z[Gm/ram,b,c]/(fm(g)) = @K
of K = Q(p,), with CM type
HyY . = {h e (ZImZ)y* | (hay + (b)Y + (he) = m},

where (h) denotes the unique representative of 2 modulo m between 0
and m — 1.

Let & denote the set of positive integers m which are different from
each of the following numbers:

2, 3, 4, 6, 8, 9, 10, 12, 14, 15, 18, 20, 21, 22, 24, 26, 28, 30,
36, 39, 40, 42, 48, 54, 60, 66, 72, 78, 84, 90, 120, 156, 180.

Then from the works of Koblitz-Rohrlich (for the cases where m is rela-
tively prime to 6) [8] and Aoki [1], for me &, J ¥ is non-simple if and
only if

(1) (a,b,c) is equivalent to (I,r, —(1 +r)), where 1+ r+r'=0
(mod m), or

(2 (a,b,c) is equivalent to (1,s, —(1 + s)), where s*= 1 (mod m)
and s = +1 (mod m), and s = m/2 4+ 1 if 2°|m, or

(3) (a, b, c) is equivalent to (1,1, —2), with 2}|m, or

4) (a, b, c) is equivalent to (1, m/2 + 1, m/2 — 2), with 2}|m.
In case (1), J" is isogeneous to a cube of an absolutely simple abelian
variety. In cases (2) and (8), J™" is isogeneous to a square of a simple
abelian variety. Finally in case (4), J™" is isogeneous to X* for some
simple abelian variety X.

We shall denote J™" by A and B in the first and second cases re-
spectively.

Let p be the automorphism of F, given by

XY Z)—(Z,X,Y).
Let I', and J, denote the '}, . and J, . associated with A. Since
PFAP;I g 17/1 ’

p induces an automorphism of G,/I", by conjugation. We note that f,(x")
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is divisible by f.(x) if I and m are relatively prime. Hence, if g is a
generator of G,/[",, then

0f (&) s = [n080™ N4 & frn(&)Js-

So p induces an automorphism p of A such that the following diagram
commutes:

J,—L >,

LT

I

Let ¢ € Aut(F,) be given by

l

& )

ES

|

(XY, 2)— (Y, X, Z).

Then we have a similar commutative diagram to the one above with
(A, p) replaced by (B, ).
Since

H"(J"", C) = @reun,, Vhay, (hb), <he)),
where
V(a, b,0) = fne H'(F,, O)|g*y = &ele for all g = (5, & &) € Ga},
a basis of holomorphic differential forms for H(J"v, Q') is

{Wenay aoyner | € HEy o}

The following lemma shows that the abelian varieties A and B are
isogeneous to

[] Ag> and [] Bl

-1 -1

respectively, where g, and A, denote ¢‘po~' and ¢'to~" respectively.
Lemma 1.1. HYJ,, 2')¢? is spanned by
gl*{wr,s l wr,s e HO(JA’ ‘Ql)} b

and HYJ,, 2") = @i, H(J,, '), Similar statements hold for HYJ,, 2Y),
hy and h,.
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Proof. Let V, and W, denote (1 + g, + g)*H"(J,, Q') and H(J,, 2')&¥
respectively. Then V, C W, and dim V, = dim H*(J,, 2')/3 by definition.

We claim that W,N (W, + W,) = {0} when {j,k I} ={0,1,2}. We
verify this for j =0, k=1 and [ = 2. The other cases are treated simi-
larly.

Let w, = w, + w,, where w, e W, (I = 0,1,2). Then w, = (eps~"Y*w, —
(cpo~ Y w, = (6" ?)*w, — (6"*)*w,. Therefore, (¢~ "*? — *w, = (1 — " )*w,.
Applying (¢7*%)* to both sides of the latter equation, we obtain (1 — ¢"*)*
(wy, — (6"")*w,) = 0. In particular,

wy — (6" w, € H(F,[{a), 2) = H'(P', 2') .

Hence, w, = p*w, = p*(c"*)*w, = (" *p)*w, = (¢")*(d’00 ) *w, = (¢*)*w,, and
(¢"*w, = w,. So, w, =0, and w, = w, € W,N W,, which we can show to
be {0}, as before. O

Let A, = A/{g;) and B, = B/{(h;>. Then each A, and B, is simple,
and admits CM by the ring of integers in L = K¢ and M = K respec-
tively. To be precise, the endomorphisms ¢ + ¢" + ¢™ and ¢ + ¢* of A
and B descend to endomorphisms on A, and B, respectively. We identify

the products [];-s A, and [[;-, B, with (4,)° and (B,)* respectively through
z)A0 and B, :>BO.

Let us fix some terminology. (1) If R is a ring, let 4,(R) be the

fixed isomorphisms A,

subspace of the ring of nXn-matrices M, (R) with entries in R consisting
of all the diagonal elements. If «, - -,a,€R, let 4(a;, -+, @, be the
matrix («;,;) in 4,(R) with e, ; = §,,a;.

(2) If X is an abelian variety, we associate to an endomorphism ¢ of

P, P,
X", the matrix U, in M, (End (X)), if on points, ¢: ( )——> U¢'( )
P’Il Pn
(3) Let ¢: X— Y be an isogeny of degree N. Let ¢: Y — X be such
that ¢¢ is multiplication by N on X. Let F,;: End"(X) — End’(Y) map «
in End (X) to N-Y(ga@) in End(Y).

§2. Rational endomorphisms

Let X, be a basis for H%(A,, Q') consisting of forms of the type (1 +
g + g)*w,,. Then X = (i, 2, is a basis for H%(A, 2'). The main result
in this section is
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ProrosITION 2.1. Let me &. Then the following sequences are exact:

0 —> (ful0)) —> Qlo, p] —> End’(4) —> 0,
0 > (fulo)) > Qlo, (] —> End%(B) —> 0.

Proof. We will prove that F: Qo, p] — End*(A}) = My(L) is surjective.
Since f,(¢) € Ker (F), a dimension argument shows that the first sequence
is exact. We omit the proof of exactness of the second sequence.

The matrices for (1 + g, + g)* on H%A, £'), with respect to the basis

2 are:
3 00 0 3 0 0 0 3
M, 0 0], [0 M, 0Of, (0 O M,
N, 0 O 0 N O 0 0 N,

for I = 0, 1, 2 respectively.
Now w, ., e H(A, Q") and

QI+ g+ &)+ a+&)w, =0+ +HA + g + g)*w,, .

Let le(Z/mZy* — {1, (r* + D)+ 2)", (r* + 1)(r* 4+ 2)"}. Since {{“lac
(Z/mZ)*} is a Z-basis for O, ™+, (01 g+ g0+l gye linearly inde-
pendent over Q. Thus ™' 4+ {"** is not in Q, and 1+ ' 4+ {7 £ 0.
This shows that the matrix M, is not the null matrix. In a similar way,
we can prove that N,, M,, N;,, M, and N, are not zero. Then, in End (A4})
= My(0,), the matrices for (1 + g, + g?) are:

3 00 0 3 O 0 0 3
Ay 0 O ’ O [24] 0 ) (O O a2
B 0 0/ \o 5 0o Voo g

for I = 0, 1, 2 respectively, where each «;, 8, are in ¢,.
Let X, Y, ZeQlo]. In the group ring Qls, p], we have the following:

(L+ &+ @)X + pY + ¢2) = (L + g + )X + Yo' + Zg'0-")

by using the relations pop~' = ¢" and p~'op = ¢"" in Aut(A).
1 1 1
The determinant of the matrix <1 g o“’) is D = f(o) € Qlo],

1 0.2— 2r2 0.2—27‘

where
f(x) — x(4—7> — x(4-r2) + x(l—r) — x(1—7‘2> + x(Z—ZT) — x(2—21‘2> e Q[x] .

Since r*+ r 4+ 1= 0 (mod m), the exponents 4 —r, 4 —r*, 1 —r, 1 —1r%
2 — 2r, 2 — 2r* are pairwise distinct (mod m) except possibly when m|3?

https://doi.org/10.1017/50027763000003901 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000003901

JACOBIAN OF FERMAT CURVE 79

or m = 13. Hence, D + 0 (the exceptional case m = 13 is taken care of
by inspection). In particular, there are X, Y, Z € Z[¢] and a positive integer
N such that

X4+ Y+ Z=ND, X+ Yo"+ Zs" =0, X+ Yo" + Zg"¥ = 0,

With the latter choice of X, Y and Z, let the matrix of (X + pY + p*Z)
in My(0,) be («;;). From (14 g + g)(X + pY + p°Z) = 0, we conclude
that «,; = 0 for all j. On the other hand, «,; = 0 for all j, follows from
A+ g+ 8)X + pY + p°Z) = 0. Then the matrix of (X + pY + 0°Z)(1 +

& + &) is
Ay @y Q3 3 00 g5 0 O
0 0 0 |{ay O O)]=1{0 0O O]},
0 0 0 B 0 0 0 0 0

where §, = 3o, + @y, + foy s € 0.

CramM. 4, # 0.
Suppose, on the contrary, that §, = 0. Then

N1+ g+ g)(X + pY + 0°Z)A + g + &)
=0+ p+ DA + g + g) = 0.

We note that
D*(1 + p + o)*wi,, = fQuw,,, + fCIW, 1 + [CIWn 11
and if 2, = f({") + f(&) + (&),
I+ &+ g*D*A + p+ 0)* = 2u(Wis + Wempor + Wnr1)

We will show that 1, # 0.

First, consider the prime case m = p. If 1, = 0, then the polynomial
g(x) = f(x) + fi(x) + fi(x), where f,(x) is the polynomial obtained by re-
placing each exponent <{a) in f(x) by <ar’), has degree at most p — 1,
and £ as a root. Wenotethat4 —r,4 —r3, 1 —r, 1 —1r, 2 — 2r, 2 — 2r*
are distinct elements in (Z/pZ)*/{1, r, r*} for p + 7, 19, 31. Thus, with the
above exceptions, g(x) # 0 and therefore, g(x) = +f,(x). This is a con-
tradiction, since g(1) = 0 but f,(1) = p. Inspection shows that 2, = 0 for
p =119, 31.

Now we treat the composite case.

Suppose that [ is a prime divisor of m and r — 4. Then r*4+ r+1
=0 (mod /*) and r = 4 (mod /) imply that [*|21. Thus (m, r* — 4)|21.
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Similarly (m,r — 4)|21. However, 7 can divide at most one of the two
numbers (m,r — 4) and (m,r* — 4) = (m, m — r — 5). Furthermore, it is
not difficult to verify that (1 — r,m) = (1 — r%, m)|3.

Case (1). First suppose that each of the integers 1 — r, 1 — r%, 2 — 2r,
2 — 2r' are relatively prime to m (this is the case when (m, 6) = 1).

Case (1a). Both (m,r — 4) and (m, r* — 4) are co-prime to 7.

For pe K = Q(p,), let g7+ = B + 8" + B, where {1, r, r’} € Gal(K/Q).
We note that if two of the integers 4 —r, 4 — 7, 1 —r, 1 —r% 2 — 2r,
2 — 2r* represent the same class in (Z/mZ)*/{1, r, r¥}, then me S, where S
is a finite set of integers whose elements can be easily found using the
congruence relation r* + r + 1 = 0 (mod m). If me SN &, inspection shows
that 4, = 0. If m is not in S, a Z-basis for @, is

e a e ZImZy*[{1, r, r'}},

and we conclude that 1, is non-zero since it is a linear combination of
elements of a subset of a Z-basis for 0,.

Case (1b). T7||(m, r* — 4).

The elements of Gal(K/Q) which fix Q({') elementwise are the units
j € (Z/mZ)* such that j = 1 (mod m/7). We fix one such j =1 + k(m/7) # 1
in (Z/mZ)*. We make the following observation: if a and bj are equal
in (Z/mZ)*){1, r, r*}, then a = r‘bj (mod m) implies a = r'b (mod m/7), and
so ¢ and b are equal in (Z/(m/TYZ)*/{1, r, r}.

The calculations for case (1a) show that 1 —r, 1 —r% 2 — 2r, 2 — 2r%,
4 — r are distinct in (Z/mZ)*/{1, r, r’} (hence in (Z/(m/T)Z)*/{1, r, r}}), except
possibly when m/7€S. For these exceptional values of m, 1, #0 by
inspection. For the other values of m, the observation in the previous
paragraph shows that 1, = 2, — "7+ jg guch that 1 # 1., since
{getrm™ g e (Z/mZ)* /{1, r, r*}} is a Z-basis for @,. Thus 1, ¢ Q("), and 1,

=+ 0.

Case (1c). T|(m, r — 4).

This is case (1b), with the roles of r and r* reversed.

Case (2). Suppose now that (1 — r,m) = 3. If m is odd, then we have
that

A-rm=Q—-rm=Q2—-2rrm)=02—2r m) =3
and 9|4 —r,m)-(4 — r, m)|9.7.
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We apply the arguments in case (1) applied to (1 — r)/3, (1 — r%)/3, (2 —
2r)/3, (2 — 2r%)[3, (4 — r)[3, (4 — r)/3 in (Z/(m[3)Z)*/{1, r, r}.

If m is even, we look at (1 — r)/3, (1 — r®)/3, (2 — 2r)/6, (2 — 2r)/6,
(4 —1r)/3, (4 — r’)/3 instead. The calculations are similar to the ones
above.

This proves that 2,, # 0, and hence our claim that 6, 0. We have
shown that F((X + pY + 0*2)(1 + g, + &3)) = 4(5,, 0, 0), with §, = 0. Sim-
ilarly, we can show the existence of X, Y,, Z, € Z[o] such that (X, + pY,
+ 0°'Z)(1 + g, + g)) are mapped onto

4(0,6,,0) and 4(0, 0, 6,) for [ = 1, 2 respectively.

In particular, since L — End(A}) = My(L) (in which {'*"*"* is mapped to
(6 + 0" 4 ¢")°) is the diagonal embedding by the theory of complex mul-
tiplication, we conclude that
44(L) < Im(F) € M(L).
We observe that
d*(o(1 + p + Vo7 Wa,, = (1 + p + p)*0*w,,, and
a*(a* (1 + o + p)o )W, = (6(1 + p + oo ) 0% w,,, .

a b ¢
Thus the matrix for ¢ in M,(@,) is of the form: (d 0 0), for some q,
0 e O

b,c,d and e in 0, with cde € (¢0,)* (this follows from det (¢)™ = 1). Therefore
the image of F contains the following matrices:

0 b ¢ bd ce 0 0 b c\* 0 ce O
d 0 0}, 0 bd edj=1|d 0 0], 0 0 cdl.
0 ¢ O de 0 O 0 ¢ O de 0 O

This completes the proof that F is surjective. |

§3. Homology groups
Let I: [0,1] — F,(C) denote the one-simplex
I(t) = (tl/m’ (1 - t)l/m’ 6() ) te [O’ 1]7

where « = —1 if m 1s odd and a primitive 2m-th root of unity if m 1is
even. Let g be the one-cycle:

g = (o)™ V(1 — ¢)(1 — )] if m is odd, and
g=00—-—0H10 - NI if m is even.
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The homology group H,(F,(C),Z) is generated by g [11]. Moreover by
the period calculations in [11], we have that p(g) = g and ¢«(g) = —g [9].

ProposrTiON 3.1. H(F,(C),Z) is a cyclic Z|G,]-module, with g as a
generator such that p(g) = g and «(g) = —g in homology.

For the rest of this paper, let p be a fixed prime congruent to 1
(mod 6), let r be a fixed cube root of unity modulo p, K = Q(x,), { be a
fixed p-th root of unity, and A be the Jacobian variety of the curve F,:

y? = x(1 — x)".
A has CM by 0: we fix the embedding
0 —> End(A), {—>0e=1(,1,1).

Let ¢,: F,— F, denote the canonical projection, and let I, be the
one simplex ¢,I on F,. Fix a base point e, in F,(C), and let x, be its
image in F,(C) under ¢,. The cyclic covering ¢, gives rise to a mono-
morphism

H = 1(F)(C), &) —> m(F4(C), x) = G

of fundamental groups. G/H is a cyclic group of order p since ¢, has
degree p. So H contains the commutator subgroup of G, and the homo-
morphism

H(F,) = H(FC), Z) —> H(F,(C), Z) = H(F,)

factors as follows:

H|[H, Hl ——— G/[G, G]
\H/[G, Gl /

Thus, the index of the image T of H\(F,) in H,(F,) is p. T, by definition,
is a cyclic Z[g]-module with (¢ — 1)(¢” — 1)I, as a generator by Propo-

sition 3.1.

Let T be the Z[¢]-submodule of H,(F,) generated by a = (¢ — 1)I,.
Then T < T < H(F,). We claim that T # T, from which it follows that
HF)=T.

Identifying

Qlol/(f (o) — K, ¢ —>C,
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H,(F,)® Q is a vector space over K. Hence the annihilator of H(F,) ® Q
as a Q[o]-module is (f,(s)), and the annihilator of H\(F,), as a Z[s]-
module is

(f(0)Qle] N Zls] = (£,(0))Zlo] .

Since H,(F,) is torsion-free over Z, and [H,(F,): T1< oo, Annzm(T) =
(f(o)Z[o].

Suppose, on the contrary, that T =T. Then « = a(e¢)(¢ — 1)a for
some a(x) ¢ Z[x]. Therefore, (a(¢)(c — 1) — 1) = 0 implies a(x)(x — 1) — 1
= b(x)f,(x) for some b(x) e Z[x]. Then —1 = b(1)p in Z, a contradiction.
Thus, H(F,) = T.

Let I = pI and I, = ¢,I. From p(g) = g in H,(F,), we obtain

(6 — (" — DI, = ¢" 7 @07 — 1)(g? "' — 1)I,

in H(F),).

Let ve H(F,) be such that (6" — 1)v = 0. Passing to 0, € End.(A),
we have (" — v =0. Then pv = +N§E — Dv =0, and v =0. Thus,
we have proved

ProposiTION 3.2. H,(F,) is a cyclic Or-module with g, = (1 — ¢)I, as
a generator. Moreover,

o(gs) = C“‘”””{%%)g,;.

§4. Endomorphisms
In the present section, we prove the following theorem. Let 7 = ¢
—1eZ[(] S End(A) and W =p~'(1 + rp + r*p))(c — 1)** € Qo, pl.
THEOREM 4.1. End(A) = Im(Z[s, o, W]) has group index p*® over
Im (Z[a, p]).

Proof. By Proposition 2.1, F: Q[a, o] — End(A) is surjective, and by
Proposition 3.2, H,(F,) is a cyclic Z[{]-module with a generator g, such
that P(gA) = 784, PZ(gA) = £g,4, Where

77 — Cy ((p-1/2)-1 (CT - 1) and E — Cr2+(p+1)/2 (CT - 1)

€ =1 c—-1n
We will use the following to determine End (A):
End (4) = {« € End(A)|a(H\(F,)) S H(F )} .
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Let X, Y,Ze K. Then a = X + Yp + Zp* € End (A) if and only if «(*g,)
< H(F,) for all acZ, or equivalently, for all aeZ,

(4.1) Xg* 4 Y{ory + ZEew g e Z[E] .
Let X = X, Y = Y» and 7= Z&. Then (4.1) reads as

4.2) Xee + Yeor + Zeeo e 2]

Using X4+ Y+Ze Z[¢] and (4.2) to eliminate X', we obtain for all ae
(Z[pZ)*,

(4.3) Yo — ) + ZEeo — g e 2l

For such a, £ — {* and &*“*" — {* are elements of the ideal () of Z[Z].
Let D, , be the determinant of the following matrix:

(Car _— gu. C—a(rn) . Ca)
A I SLICED I :
Then

Da » = {Car-b(rd-l) + Cbr+a + Cb—a(r+1)} — {Car+b + Ca—b(r+l) _l_ Cbr—a(7+l)} s
and (4.3) implies that
(4.9) D,,Y, D,,Ze(x)

for all a, b e (Z/pZ)*.
If we set (a,0)=(r +1,1) and (a,b) = (1, —r) in (4.4), we obtain,
after simplification,
@+ C+1-30"Ze(x) and (7 + 7+ 1 — 37*YZe(n)
respectively. By subtracting one from the other, we obtain
O — D Ze(@.

Since (p,r — 1) =1, ©*Ze Z[Z]. By symmetry, Y e Z[Z].
We write Y, = Yz and Z, = Zz*. Then Y, Z, € Z[{], and (4.3) can be

rewritten as

C—Or (e — o
Y, Z, VA4
=1 Aoy oM

where h ranges over H = Gal(K/Q), or equivalently,

(4.5) Yo+ e Zye(n) for all he H,
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where
_ (cﬁ _ C)h _ r Pty 23 Z «
o= o = (Bee)e@ar.
Clearly, (4.5) may be rewritten as
(4.6) Y, = r’Z, (mod =).

We have proved that « = X 4+ Yp + Zp* is in End (A4) if and only if
(x) X+ Y+ eZeZ[{], and

(xx) Y, = r’Z, (mod n), where Y, = n*yY and Z, = n*¢Z.

We write

Y, = a, + a,7 (mod 7%, Zy = by, + b7 (mod 7°),

where a,, a;, by, b€ Z. By (xx), a, = r*b, (mod p). Thus, we find that « is
congruent to

(4.7) bo;rla {4+ D+ r'po+ &% + ao%(—l +77'0)
+ bl—}t—(—l + £7'0%)

modulo Im (Z[e, p]).
By inspection,

U = %{—(rz + D+ ripTe + 877,

b= L(=1477), v=-i(—14&)
T T

satisfy (x) and (x%%). Hence, they are in End (A), and we conclude that
(4.8) End (A) = Im(Z[s, o]) + Zv, + Zv, + Zv,.
From (4.8), the quotient group
Q@ = End (A)/4 where 4 = Im (Z[o, o])

is an elementary p-abelian group. So @ is an F,-vector space, and
dimt‘p(Q) < 3.
The theorem follows from the next few lemmas. O

LEMMA 4.2. Let

1 1 r r
—(1=+r red) = = — 4+ __ *e End’(4).
w= @0+ ro+ 0)71_2 7r2+ @ 1)2P+ @ 1)2P nd’(4)
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Then w € End (A).

Proof. We verify (xx) for w. We have Y, = (re*)/(" — 1)* and Z, =
(r*z*8)/({* — 1)! in the notation of the proof of Theorem 4.1. Since

Yo = rCf(p—l)/Z—l (C —_ 1) (c - 1) =
(S VI (S V)

r (mod r)

and

Z0 = r2Cr2+(p+1)/2 (C - 1) (CT - 1) =
@ -1 @ -

we have Y, = r’Z, (mod r). Likewise, (%) can be verified for w. This
completes the proof of the lemma. ]

r* (mod r),

Lemma 4.3. Let 2 = Im(Zlo, p, W1). Then ¥ < End (A), and the fol-
lowing are elements of 2':

w, w,= {1+ (r+ l)p}-};, w, = (rp — ‘02)%.
Proof. Let ue(Z[¢])* be the endomorphism of A such that p = uz?".
As an element of End’(A), W = wu~'. Hence the image of w is in 2,
and X < End (A).
From we = (¢ + ro"p + r’e”p")1/z* and ow = (¢ + rop + rlep’)l/z’, we
have

ow — we = (r — Dp{l + (r + Lo}~ (mod 4).
T
Since p does not divide r — 1 and p € Aut(A), there is a 2€Z such that
14+ l)p}L = Ap*(ow — wo) (mod 4).
T

Hence, w,e 3. Since w, = rpw, (mod 4), we have w, € Y also. O

LEMMA 4.4. The mapping f: (Z[L])} — 4, (X, Y, Z) > X + pY + o°Z is
a right Z[{]-module isomorphism.

Proof. By definition, f is surjective. By Proposition 2.1, f®1: K® =
(Q(g,))’ > 4® Q is an isomorphism. Hence f is injective. O

LEMmA 4.5. Let V be the subspace of @ spanned by w, w, and w;.
Then dimg (V) = 3.
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Proof. Let 2, A, A, € Z be such that
4.9 AW + Aw, + Aw, e d.

Multiplying by = on the right, A1 + rp + r*o*) e sd. Using Lemma 4.4,
AreZ[t). Hence ie(x)NZ = pZ. Since p/z’e Z[{], we have

(4.10) AWy + ALw, e A.

Another application of Lemma 4.4 to (4.10) gives A, 4, € pZ. Therefore
{w, wy, wi} is an F,-basis for V. O
Combining Lemmas 4.3 and 4.5,

dimg (£/4) > 3.

Since dimg (Q) < 3, we have the desired equality: End (4) = 3, and End (4)
has group index p® over A. This completes the proof of Theorem 4.1.

COROLLARY 4.6. A free Z-basis for End (A) is given by:
"0 <j <2 0<k<p—4U{on”? p*a” %, pr? 3 U{w, wy, wi}.

Proof. Let M be the Z-submodule of End (A) spanned by the above
elements. Inspection shows that 4 & M. By Lemma 4.5, the corollary
follows. O

Remarks. Let k be a proper subfield of K, and let & be a generator
of Gal(K/k) € (Z/pZ)*. Then the subring of endomorphisms of A defined
over k is

End (4) = Im (z[]zl o, plae z]) :

where ¢ is the order of 4. End,(A) is commutative if and only if k is Q or
L = K. In the latter cases, End,(A) are contained in Z X Z[(1 + + —3)/2]
and O X Oy =5 respectively.

§5. Action of rho on some division points

Let P, P, and P; be any 3 points on F, where X =0, Y =0 and
Z = 0 respectively. Recall that ¢,: F,— F, is the canonical projection.
Set

00y = SDA(Pl)’ 003 = SDA(PZ), and oo, = SDA(Ps) .

Then the group of A[x] of z-division points on A has order p, and con-
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tains all the divisor classes of degree zero supported on the set of cusps
{00y, 00,, 0oy} of F,.
For each integer a > 1,

Cr_ln.u,

np = p({" — 1 =p c—1

in End (A), so that p induces an automorphism of A[z"] by restriction.
Lemma 5.1. p acts on A[n] as multiplication by r.

Proof. Recall that the equation of F, is v* = u(1l — u)". The divisor
of the rational function v on F, is o0, — (r + 1)oo, + roo,. Hence, on A,
00, — (r + 1)oo; + reo; = 0 = oo, — (r + 1)oo, -+ roo, (the latter equality is
obtained by applying p to the former). In particular,

P(°°x — 00y) = 00, — 00y = (I + 1)(00; — c0y) = r(co, — 00,). O
LeEmMMA 5.2. There is an element Q< A[=*] — Alx] such that p(Q) = Q.

Proof. Let us fix a @ in A[z'] — A[z]. Then A[7*] = {(¢ + b7)Q]a, b
eF,} is a vector space of dimension 2 over F,. Let f(x) be the minimal
polynomial of p restricted to A[s*]. Since p has order 3, we have
f@)|(x — 1)(x — r)(x — r*) in F,[x]. Since p can have at most two distinct
eigenvalues, and f(x) splits completely, we have f(x) = x — 1, or f(x) =
(x — 2)(x — 2,), where 4, L, €{l,r,r*} and A # 4.

Suppose that f(x) = x — 2. Then 4(zQ) = p(zQ) = (" — 1)zQ =
WMl — D/ataQ = A{r + (r(r — 1)/2)x + - - -}2Q = A4r(zQ), whence 2, = Ar
and A, = 0, a contradiction. Hence, f(x) = (x — 4)(x — 4,), and there is
an F,-basis @, @, of A[r’] such that the matrix of p with respect to

{@y, @y} is ((2)‘ 22) Since at least one of @,, @, is not in A[r], we have

found a @ in A[z*] — A[z] and a 1€ {1, r,r*} such that (@) = 1Q. By
Lemma 5.1, r(zQ) = p(zQ) = ar(zQ), and 2 = 1. This completes the proof
of the lemma. 0

Remarks. (1) In the same way as above, we can show that there
is a Qe A[r’] — A[#*] such that p(Q) = r*Q. We also remark that the
annihilator, in End (A), of A[x] is

Z[0r + ZI(o — 1) + ZINe — 1) + ZA + 1o — (r + 1),02)% :
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(2) If - denotes complex conjugation, then for Qe A[z?] — A[z], @ =
-Q& (@) = Q.
§ 6. The kernel of an isogeny
Let X, = F,/{d’pa’), (j =0,1,2), and we denote the canonical pro-
jection F, — X; by ¢, Let ¢ be the isogeny
2 2
o =[] (p)s: A-—> H Jac (X)) .
7=0 J=0
LEmMmA 6.1. Ker(p) € Al#].
Proof. The composition A @) Jac (X)) (W)i Ais A+ p+p 7€
End (A), so that Ker(p,), € A[L'(1 + p + )¢, Let N be M3, AL +
o+ 0)¢7]. Then

Ker (¢) = Ker (¢y)4 N Ker (¢, N Ker (¢,),,  N.

We claim that N C A[#*]. Let De N. Then we have

(6.1) Q+p+)D=0,
(6.2) A+ 7p+ "D =0,
and

(6.3) 1+ 8%+ Cp)D =0,

using the relations pop™' = ¢” and p~'op = ¢”* in Aut(F,). From (6.1) and
(6.2), we obtain that

(6.4) @@=+ C " =pkD = 0.
From (6.2) and (6.3),
(6.5) @ =D+ @77 =)D =0.

From (6.4) and (6.5),
T = A —*NeD = {7 — 7)) — (¢ = 8¥)eD = 0.

Hence, 7*(pD) = 0 and p((¢"™* — 1)/({ — 1))’z*D = 0. Since p and ({”* — 1)/ —1)
are in Aut(A), we have z%(D) = 0. O

THEOREM 6.2. Let N = ., Al + p 4+ oY) Then we have
Ker(p) = N = Alx].
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Proof. Under the canonical projection ¢,: F, - X, = F,/{p), oo, and
oo, are mapped onto the same point. Thus, Ker(p,), contains A[x].
Likewise, A[n] is contained in Ker(gp;),. Thus

Alz] € Ker(p) © N < A[r"].

Let De N. Applying the endomorphism w = (1 + rp + r*p)1/z* to #*D = 0,
we get
1+ rpo+ rp)D = 0.

Since (1 + p + p»)D =0 also, we obtain {(r — 1)p + (r* — 1)p}D =0 or
(r — Dpfl + (r + 1)p}D = 0. Since D is a p-division point, (p,r —1) =1
and pe€ Aut(A), it follows that {1 4+ (r + 1)p}D =0 or (r — p)D =r{l +
(r + 1p}D = 0. Hence,

Alr] € Ker(p) € N S Al 1N Afp — r].

By Lemmas 5.1 and 5.2, there is a Q€ A[r’] — A[x] such that p(Q) = @
and p(zQ) = r(zQ). Let D = (a + brn)Q@ec Alp — r], with a,beF,. Then
(a + br)Q = (ar + bra)Q, whence a = ar and ¢ = 0. Thus De A[z] and
Alz 1N Alp — r] = Alz]. Hence, Ker(p) = N = Alx]. O

CoroLLARY 6.3. The isogeny ¢: A — []i_,dac(X;) factors as

A——> ] Jac(X))

xl V“” ,

A

where f: A — []).,Jax(X]) is an isomorphism of abelian varieties defined
over K.

Proof. We define an isomorphism f: A — [[}.,Jac(X,) of abelian
varieties as follows. Given D e Pic'(F,), let E be such that zE =D. E
exists since r is an isogeny. Then we define f(D) = ¢(E). f is well-defined
and injective by definition. In particular, f is a birational isomorphism
of abelian varieties and hence an isomorphism of abelian varieties. O

Let C be the Klein quartic curve over C with projective equation
XY+ YZ+ZX=0.
C has genus 3, Aut(C) = PSL(2, F,), and the morphism
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Floi—C, (%, —> (x — D)y, —(x—Dy)

is a birational isomorphism. Let Jac(C) be the Jacobian of C. We will
denote by ¢ and p the following automorphisms of C:

o: (x,y) —> &', 8y), p: (x,5) —> 1)y, x[y),

where { is a primitive 7-th root of unity. Then by Proposition 2.1, we
have the erimorphism

Qlo, p] —> End’(Jac (C)).
By Theorem 4.1 and Corollary 6.3, we have

COROLLARY 6.4. Let W = 7-'(1 4+ rp + r*o’)(c — 1)* € Qla, pl, with r = 2.
Then End (Jac(C)) = Im(Z[e, p, W]) and Jac(C) is isomorphic to a cube
of an elliptic curve E.

Remarks. (1) From the Weierstrass equation for E computed in [10],
we see that E is J(49).

(2) As an application of Theorem 4.1, we give a second proof of the
following result due to Prapavessi [10]: Let oo, = (1,0,0), p; = ¢ + {77
(j>0) and let P = (y, u5',1). Then D = P + pP — 200, generates the
kernel of z* over Z[{]. Prapavessi showed ([10], Lemma 2.1) that z%D) = 0.
It remains to show that z%(D) +0. Let oo, = (0,1,0) and oo, = (C, 0, 1).
Suppose, on the contrary, that #*(D) = 0. Applying the endomorphism
(1 — r*p)1/z of Jac(C) we obtain (1 — r’p)zD = 0, or

D = r2{ ¢ }npD = r2{r + L(L_;_ll;r + --'}n'pD = mpD.
T

Since the group of z-division points on Jac(C) is generated by oo, — oo,

@ #7J), (P — p'P) =0 follows from z(D — pD) = 0. Hence there is a

non-constant rational function g on C whose divisor is n(P — p’P). In

particular, g: C — P" is a double covering, and C is a hyperelliptic curve,

which is a contradiction. This completes the proof that #%D) == 0.

(8) Our knowledge of the endomorphism ring of A allows us to
deduce a result of Greenberg [5] for A = J?, ,.,. We have noted that
w = (14 rp + r’p)l/z* is an endomorphism of A which is defined over K.
Thus if D e A(K), then it follows that w(D) e A(K). Let Q¢ A[z°] — A[z']
be such that p(@) = r’Q. Setting P = 7°Q, we have w(P)= 1+ rp +
ro)(Q) = 3Q is an element of A(K). Let 2, peZ be such that 3ux + pi
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= 1. Then @ = 3uQ € A(K). Since A[z’] is a cyclic Z[{]-module with
as a generator, it follows that A[z’] € A(K). We also remark that the
p-part of A(K) is of the form A[z"] for some [ > 1.
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