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A UNIFIED TREATMENT OF TRANSFINITE CONSTRUCTIONS
FOR FREE ALGEBRAS, FREE MONOIDS, COLIMTS,

ASSOCIATED SHEAVES, AND SO ON

G.lt. KELLY

Many problems lead to the consideration of "algebras", given by

an object A of a category A together with "actions" T,A -*• A

on A of one or more endofunctors of A , subjected to equational

axioms. Such problems include those of free monads and free

monoids, of cocompleteness in categories of monads and of monoids,

of orthogonal subcategories (= generalized sheaf-categories), of

categories of continuous functors, and so on; apart from problems

involving the algebras for their own sake.

Desirable properties of the category of algebras - existence of

free ones, cocompleteness, existence of adjoints to algebraic

functors - all follow if this category can be proved reflective

in some well-behaved category: for which we choose a certain

comma-category T/k .

We show that the reflexion exists and is given as the colimit of

a simple transfinite sequence, if A is cocomplete and the T1

preserve either colimits or unions of suitably-long chains of

subobjects.

The article draws heavily on the work of earlier authors, unifies

and simplifies this, and extends it to new problems. Moreover

the reflectivity in T/k is stronger than any earlier result, and

will be applied in forthcoming articles, in an enriched version, to
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2 G.M. KelIy

the study of categories with structure.

Introduction

Many existence theorems in categorical algebra have been proved by

transfinite-induction arguments, either leading directly to the universal

object sought, or establishing a solution-set condition permitting the

application of Freyd's general adjoint functor theorem.

Thus, in the late 1960s, both Ehresmann and Gabriel used such

arguments to prove the reflectivity, among presheaves, of the algebras they

were considering - namely functors sending chosen cones to limit-cones. In

Gabriel and Ulmer [S] this becomes the theorem on the reflectivity, in a

locally-presentable category A , of the full subcategory K given by the

objects A which are orthogonal to, or sheaves for, each map k of a

small set K ; in the sense that each A(k, A) is an isomorphism. This

was later generalized by Freyd and Kelly [7], both in respect to the

conditions on A and the size of K .

Again, both Schubert [7 6] and Barr [2], at about the same time and

independently, gave such arguments for the existence of colimits in the

category of algebras for a monad: under suitable conditions, those of Barr

being the weaker. In the same paper, Barr proved under similar conditions

the existence of a free monad on a given endofunctor; and later Dubuc did

the same for free monoids in any monoidal category - but only under

stronger conditions like those of Schubert. Much more recently, Bousfield

[5] used such arguments to show, under strong conditions, that a prefactor-

ization system is a factorization system.

Freyd and Kelly remarked in [7] that "Our results seem to bear some

relation, not too well understood, to those of Barr and Schubert". The

connexion was made clear by Wolff [77], who showed that K consisted of

the algebras for a pointed endofunctor T on A ; since Barr had

constructed the free monad on an endofunctor H by constructing the free

ff-algebra, which is also the free T-algebra for the pointed endofunctor

T = 1 + H , the problems were now closely related.

This was pointed out by the present author in [9], along with a
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A unified treatment of transfinite constructions 3

further unification and generalization: namely, the category T-Alg of

algebras for T , whether T is a monad or merely a pointed endofunctor, is

a full subcategory of the well-behaved comma category T/k ; and the

desired results all follow by proving it reflective. This reflectivity

moreover played an essential role in the thesis of Blackwell [4], who was

dealing with a 2-monad T and comparing the strict and lax morphisms of

its algebras.

However it still remained true that there were two different kinds of

argument for the reflectivity: one in the strong conditions of Gabriel and

Ulmer, Schubert, or Dubuc, which gave the reflexion directly as the colimit

of a transfinite sequence, and one in the weaker conditons of Barr or Freyd

and Kelly, which used a transfinite argument to get a solution set.

In the meantime, the question of algebras for an endofunctor,

especially in its relation to automata theory, had attracted considerable

attention from the Prague school; their advances in particular aspects of

the question are summed up in Reiterman [7 5] and AdaVnek [7], where further

references can be found. More recently, Koubek and Reiterman [73] have

shown that, even under the weaker type of conditions, the free algebras for

an endofunctor H are obtained directly by the convergence of the

appropriate transfinite sequence, with no necessity for an appeal to the

general adjoint functor theorem. They do not consider pointed endo-

functor s, although they do give a modification covering the algebras for a

monad. Nor do they use the setting of [9] embedding the algebras into

T/k ; instead they use an embedding into "generalized partial

ff-algebras", which would not answer the needs of Blackwell's argument.

These results are now spread over an enormous body of literature, many

of the articles in fact being written in ignorance of one another. There

is also a scattering of mistakes: not in the statements of major theorems,

but rather in incomplete or false proofs. It seems to the present author

an appropriate time to write a unified and simplified account, that may

serve as a fairly full reference; and at the same time to complete the

above work in some important respects. Besides the "constructive"

existence in the pointed-endofunctor case, and the reflectivity in T/k

which will be used by BlackwelI and the author in a forthcoming paper,

there are important aspects of the existence of free monoids, and of

colimits in categories of monoids, which do not seem to have been
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discussed, but which we include in the present account. '-s icrii'

In arranging the account we obtain a conceptual simplification by the

following observation. The algebras for a well-pointed endofunctor on A

- by which we mean a pointed endofunctor a : 1 -*• S satisfying Sa = oS -

form a full subcategory of A ; and in this case the transfinite

construction leading to the free algebras, and hence to the reflexion into

the algebras, is particularly simple. Then, for a general pointed T

(which may be 1 + H for an unpointed H ), there is a well-pointed

endofunctor S on T/A whose algebras form precisely the full subcategory

T-Alg whose reflectivity we seek; and S is as well-behaved as T |.

Our desire for completeness, involving us in the discussion of special

cases and of counter-examples, has made the technical first chapter a

little long; the reader may wish to skim through this and start with

Chapter II.

I. BASIC TECHNICAL RESULTS

1. Factorization systems

1.1. We identify cardinals with initial ordinals, and an ordinal with

the set of lower ones. We suppose there is an inaccessible cardinal °° ,

and call cardinals and ordinals less than °° small; in future when we say

simply "a is an ordinal", we mean a small one. A set is small if its

cardinal is small; a category A is small if its set of maps is small,

and has small hotn-sets if each A{A, B) is small. It is oocomplete if it

admits all small colimits. The results are easily adapted to any other

view of the foundations.

1.2. By a factorization system (E, M) on A we mean one in the

sense of Freyd and Kelly [7], where most of the important properties of

such systems are given: one property we use often is that any pushout of

an E is an E . Another important property, noted by Bousf ield [5], only

special cases of which are given in [7], is the following: for a natural

transformation a : T •+ S : K •* A , if each aK i E , then

colim a : colim T •* colim S lies in E , whenever these colimits exist.

In future we shall write "a € E" for "each aK € E ", using the same

letters (E, M) for the factorization system on the functor-category
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[K, A] induced pointwise from the system (E, M) on A .

Recall that the factorization system (E, M) is said to be proper if

every E is an epimorphism and every M a monomorphism; and that this is

not required in general. Recall that among the proper ones there are two

extreme ones given by (extremal epimorphisms, all monomorphisms) and by

(all epimorphisms, extremal monomorphisms), at least if A is a cocomplete

category admitting all cointersections of epimorphisms.

1.3. It follows from [7] that every fibred coproduct of maps in E

is again in E . It is not possible that all such fibred coproducts, of

whatever size, should exist, unless every E is an epimorphism. For let

/ € E , let its cokernel-pair be u, v , let w be the unique map with

wu = wv = 1 , and let e be the idempotent uw . Then u, v € E as

pushouts of / , w € E since u and wu do, and hence e t E . To

prove / epimorphic is to prove e = 1 ; suppose the contrary. For some

cardinal 8 , let the fibred coproduct of

A. is A and each e. is e , be
Is Is

h = [h. : A . -*• Aj ca , where each h. is

a
h- = kg. for a unique k : B •+ A . Since there are 2 such families, we
Is "V

have card A(B, 4)2 2 , which is a contradiction if 9 is as big as the

cardinal of the set of maps of A .

Nor is it possible for those E with a given domain always to form a

small set (to within isomorphism), if A is cocomplete and has small hom-

sets, unless every E is an epimorphism; for then in the above argument,

since g. € E , B is one of a small set {B .} of objects depending only1 3

on A , and we get the contradiction already for a small 6 , namely

max. card k\B ., A) . This was first pointed out by Adamek [/].
3 3

We call the factorization system (E, M) cocomplete if all fibred

coproducts of maps in E do exist; and we now make a blanket assumption

to hold throughout this paper (except in an occasional definition or remark

where it is clearly irrelevant): the category A is cocomplete, and so -is

any factorization system (E, M) or (E', M') on A that we actually use

(as distinct from those we merely discuss in §11). So every E will be an

epimorphism; however (E, M) need not be proper, an important case being

t of

is

(•.

A.̂

1

. : A

-20

or

•* A

e ,

i'iW '

. Then

has the

where each

any family

form
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(isomorphisms, all maps).

The E-quotients of an object A (that is, the isomorphism-classes of

maps in E with domain A ) then form an ordered set which is a complete

lattice (with 1. as its greatest element). There is now no distinction

between the fibred coproduct of a family of such quotients and that of the

corresponding set; it is appropriately called their cointersection. We

say that A is E-cowellpowered if each object has only a small set of

such quotients; this is by far the most usual case in practice.

1.4. A (not necessarily small, but possibly empty) family of maps

(/. : A -* B.) is jointly in M , or simply in M , if given any p : C -*• D
Is Is

in E , and any maps u : A -*• C and v . : B . -*• D such that v .p = f .u
1r Is Is Is

for all i , there is a "unique diagonal fill-in" t : D •*• A with tp = u

and f.t = V. (of. [7], p. 177). In our case, since p is epimorphic, we
Is Is

only need some t with tp = u ; the other commutativity and the

uniqueness are then automatic. Since we are supposing pushouts to exist,

we can simplify the criterion still further, to that in the following

proposition: whose easy proof we leave to the reader.

PROPOSITION 1.1. (i) [f^-.A-* B^\ is in M if and only if,

whenever each f. faatorizes through t : A -*• C with t € E , then t is
"\s

an isomorphism.

(ii) If [f. : A -*• B.) is in M and each f. factorizes through
Is Is tr

t : A •* C , then t € M .

(iii) If [f.:A+B.).eT is in M so is any bigger family
%> Is Is t - i

^i •• A *Bduj with ^ 3 J •

(iv) If [f. : A •*• B.) is in M and each [g. . : B: •*• C. .) is in

then the family [g. .f. : A •* C. .) is in M . •

PROPOSITION 1.2. Any family [g. : D •*• B.) factorizes uniquely as
't.

some p : D •* A i n E f o l l o w e d by a f a m i l y ( f . : A - > - B . ) i n M .
Is ts

Proof. Let {q.} "be the totality of maps in E , with domain A ,
3
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through which each g. factorizes, and let p be their cointersection.

Then each g. factorizes through p as f.p , say; and (f.) is in M

since there is no further E through which all the / . factorize. The
Is

uniqueness is clear from the "unique diagonal f i l l - in" . D

REMARK. Even without the cocompleteness of A , i t is easy to see
that the truth of Proposition 1.2 implies, conversely, the cocompleteness
of (E, M) .

REMARK. When the g. in Proposition 1.2 are in E , p is their

union in the la t t ice of quotient-objects of D . This is more familiar in
the dual case of M-subobjects, when every M is a monomorphism, in which
i t was introduced in [7] , and in which i t will be used, for small families,
in §2.2 below.

1.5. The following result is well known in the case of a proper
factorization, at least in the cowellpowered case. I t use in the present
context was suggested by Barr [3] .

If 8 is a full subcategory of A , define i t s U-cleisure to consist
of those A € A admitting some family (/ . : A -*• B.) in M with each

B. € B . By Proposition 1.1 (Hi), i t comes to the same thing to say that
the family (A, 8) , consisting of all f : A -> B with B € B , is in M .
Say that B is M-closed if i t is equal to i t s M-closure; by Proposition
1.1 (iv), the M-closure of B is M-closed. Say that a reflective full
subcategory of A is E-reflective if the reflecting maps are in E .

PROPOSITION 1.3. A full subcategory 8 of A is M-olosed if and
only if it is replete and E-refleotive. Then B is itself oocomplete,
and (E, M) restricts to a coaomplete factorization system on B .

Proof. Let 8 be E-reflective, with reflexion io4 : A •*• KA , and
let A belong to the M-closure of E . Then the family (A, B)
factorizes through \cA , which is therefore in M by Proposition 1.1 (ii),
since (A, 8) is in M . Since KA belongs to E , i t is an isomorphism,
so that A € B if B is replete.

Conversely, if B is M-closed, and we factorize the family (A, 8)
as in Proposition 1.2, i t is immediate that the E-part KA : A -*• KA of
the factorization is a reflexion of A into B .
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The factorization system restricts to 8 in the sense that, if a map.

B •* C in B has the factorization B ->• D •+ C , then D € 8 ; for B is

M-closed and D -*• C is in M . D

2. The effect of endofunctors on cones and colimits

2.1 . A diagram (that is, a functor) X : K •*• A will be called an

a-ahain if the category K is the (small) ordinal a , and will be called

a sequence if K. = °° . For a general K. we shall write X~ for the value

of X on objects, and X. : #„ -»• X for the value on maps; but mostly we

deal with chains or sequences, and then we write the connecting maps as

xj : Xo ->• X for 6 5 Y . We say that a sequence X converges if the xl
p p Y p

are isomorphisms for y — 3 - s o m e 5 .

An inductive cone r = (ro : Xo -*• N) over X , with vertex N and
v P P

generators r^ , may be called a K-aone, or an a-aone when K = a . I t

factorizes through the colimit-cone q as

(2.1) ra : Xa >• c o l i m X —>- N ,

where in our applications r is in fact colim r , since K is always at

least connected, indeed filtered.

For a factorization-system (E, M) satisfying our blanket assumptions,

we call r an W-cone, or an (M, Vj-oone, if each r~ (. M . This implies

(because the E are epimorphisms -of. Proposition 1.1 (ii) or [7],

Proposition 2.1.U) that each q~ € M ; which we express by saying that X

is an (M, K)-diagram, or an (M, a)-chain. This in turn implies that the

connecting maps X, are in M , but is in general stronger (although not

when A = Set , K is filtered, and M is the monomorphisms).

2.2. We say that the cone r is E-tight, or just tight when E is

understood, if r € E in (2.1); thus when E is the isomorphisms, the

only tight cones are the colimit-cones. In general, if we take the

(E, M)-factorization of ro to be
p

(2.2) r : X —+ Z -r-+ N ,
p p do P do
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and make Z into a functor such that g is natural and j is a cone

(using the naturality of the factorization), we have r = j • colim g .

Since colim g € E because g £ E , we see that r is tight if and only

if the M-cone 3 is tight. If (E, M) is proper, to say that 3 is

tight is just to say that N is the union of the 3 o in the lat t ice of
p

M-subobjects; or tha t N = U im ro {of. the remark a t the end of §1.U) .
P

When M is the monomorphisms and K is filtered, an M-cone 3 has

J € M if A = Set ; hence also if A is Top or Haus (the categories

of topological or hausdorff spaces); hence too if A' is locally

presentable, provided that now K is sufficiently-highly filtered. In

such cases an E-tight M-cone is a colimit-cone. But this is no longer

true for Top or Haus if M is the subspace-inclusions; for an

uncountable power of the reals is not a fe-space, and is hence the

(filtered) union of its compact subspaces without being their colimit. And

in general nothing of the kind is true: in the category Comp of compact

hausdorff spaces, with E = the epimorphisms = the extremal epimorphisms

and M = the monomorphisms = the extremal monomorphisms , the one-point

compactification of the natural numbers is the union of the w-chain of

subspaces {0, 1, ..., n) , but not their colimit, which is the Stone-Cech

compactification.

2.3. The most general "smallness condition" we are going to consider

on an endofunctor T : A ->• A is:

(*) T preserves the E-tightness of (M;, K)-aones.

Here, in accordance with our blanket assumptions, (E, M) and (E', M')

are to be two cocomplete factorization systems on the cocomplete category

A . What we mean by (*) is that, whenever r = [ro : Xo -*• N) is an

(M', K)-cone that is E-tight, then the cone Tr = [TTQ : TX& •* TN) is also

E-tight, although it need not in general be an M'-cone.

We may impose this condition for a single K , or for a set of such.

The only cases we in fact consider are the following, wherein a is a

regular cardinal:

(i) (*) is imposed for K = a alone;

(ii) (*) is imposed when K is any a-filtered (small)
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ordinal $ ;

(iii) (*) is imposed when K is any a-filtered small category.

Of these, (i) is the weakest (at least a priori, but also in fact: see

§2.6 below); but is sufficient for our purposes so long as we consider a

single T . If we have a family [f.) of endofunctors, we may want each
Is

t o s a t i s f y ( i i ) for some a . , so t h a t t h e y s imul taneous ly s a t i s f y ( i ) for
tr

any a > each a. . In fact we very often have (iii) if we have anything

at all; and although we do not need it here, it is very important in

universal algebra.

Special cases of (*) have special names. When E is the

isomorphisms, (*) is the condition that T preserves the aolimits of all

(M'j K)-diagrams, in the sense that the canonical comparison map

T : colim TX •* T colim X is an isomorphism. When E' is the

isomorphisms, so that M' is all maps, it is the condition that T

•preserves the E-tightness of all K-aones. When both E and E' are the

isomorphisms, it is that T preserves the aolimits of all K-diagrams;

when this is so for all ot-filtered (small) K , it is common to say that

T has rank less than or equal to a (or loosely that T has rank a ).

When (E, M) and (£', M') coincide and are proper, it is the condition

that, whenever if is a K-indexed union of M-subobjects N = U rR , we

have TN = U im Tro ; and if further I'M c M , so that Trn = im Tro , itP P P

is the condition that T preserves K-indexed unions.

2.4. Since colimits commute with colimits, and since a colimit of

maps in E is in E , it follows that a colimit of E-tight cones is

E-tight. We conclude that if T : I -»• [A, A] is a functor such that each

T. : A -»• A satisfies (*), and such that colim T exists, then

colim T : A -»• A satisfies (*) .

Again, if <$> : T •*• 2" : A -»• A is in E , and if T satisfies (*), so

does T' ; for colim <$>X € E and (j># € E , so that colim T'r € E if

colim Tr € E .

What is not true is that, if T, T: A •+ A both satisfy (*), so does

T T ; unless perchance TM' c W . In some contexts (as when we are
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considering algebras for a monad, and need to look a t both T and T } ,

we can get around th i s d i f f icu l ty by such a t r i ck as that in Remark k.3

below. But where, as in considerations such as those of §27.2 below, we

rea l ly do need closure under composition, we must in general impose (*)

with M' equal to a l l maps, to ensure that I'M' c M' .

2 .5 . This case of M' equaling a l l maps i s a very special one; i t

cannot happen except in the important special case where we have

(t) I f c E .

For, K being connected in our applications, we can take for X the

constant diagram at any object, whereupon (*) gives (t). Conversely, of

course, once we have (t), we get (*) for any (M', K)-cone r once we have

it for each aolimit (M', K)-cone. Moreover we have:

PROPOSITION 2.1. If TE e E , the following are equivalent:

(i) T preserves the E-tightness of all K-cones;

(ii) T preserves the E-tightness of all (M, K.)-cones.

Proof. Given (ii) let r be an E-tight K-cone and let it factorize

as (2.2). Since r is tight so is j , and hence Tj by (ii) . On the

other hand, Tg d E since g € E , so that colim Tg € E . It follows

that Tr is tight. •

2.6. Because the case A = Set is both extremely special and

extremely important, we consider it separately. Here we take (E, M) to

be (epimorphisms, monomorphisms). Since every epimorphism is a retraction

(we assume the axiom of choice), (t) is satisfied by every endomorphism

T . Now we have (generalizing Reiterman [/5], §5):

PROPOSITION 2.2. If K. is a filtered ordered set and T is an

endofunctor of Set , the following are equivalent:

(i) T preserves the colimits of all K-diagrams;

(ii) T preserves the colimits of all (M, K)-diagrams;

(Hi) T preserves the E-tightness of all (M, K)-cones;

(iv) T preserves the E-tightness of all K-cones.

Proof, (i) implies (ii) trivially, (ii) implies (iii) since

TE c E , by the remark before Proposition 2.1, and (iii) implies (iv) by
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that proposition. It remains to show that (iv) implies (i) .

Let qg • %o "*• colim X be the colimit of a ^-diagram. By (iv) , the

canonical comparison T : colim TX -*• T colim X is in E , and we succeed

if we prove that it is in M . Let x, y € colim TX with Tx = Ty .

Remembering how filtered colimits in Set are constructed, let a;, y have

representatives u, V in some TX ; then Tq -u = Tq 'V . Since the

result is trivial if every A"- is the empty set 0 , we may suppose that

*Y * ° •
Let q have the (E, M)-factorization q = jp , let i be a right

inverse for the epimorphism p , and write e for the idempotent

endomorphism ip of X For each 8 - Y let k^ • X~ c X be the

equalizer of X* and X®e ; then K c K&l for 8 5 8' , and '

X = U Jtg , since pe = p and hence g e = q . By setting KR = K if

8 ^ Y » w e c a n make K into a diagram defined on all of K .

Applying (iv) to this diagram gives TX = U im Tk~ . So for some

6 R
8 2 Y we h.ave u = Tko'u' and y = Tko'V' . Since X feD = # gfcD we

p p Y P Y P

o R
conclude that TX 'u = TX -Te'U , and similarly for U .

Since X ^ 0 the domain of the monomorphism j is not 0 ; so j

is a coretraction and ITj is a monomorphism. From Tq mu = Tq «u we

therefore get Tp-u = Tp'V and hence Te-u = re#y . The conclusion of the

ft R ~
last paragraph now gives TX 'U = TX 'V ; so that x = y , proving T

monomorphic. E

A functor A ->- Set is often called small (or petty) if it satisfies

the solution-set condition, or equivalently if it is the quotient of a

small coproduct of representables. The small endofunctors of Set are

precisely those that have some rank a (cf. [ 7 5], pp. 69, 70):

PROPOSITION 2.3. For T: Set -> Set and a regular cardinal a, the

following are equivalent:
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(i) T preserves the colimits of all a-filtered diagrams;

(ii) T preserves the colimits of all a-filtered U-diagrams;

(iii) T is the left Kan extension of its restriction to the
full subcategory S of Set given by the sets of

cardinal less than a. ;

(iv) T is a quotient of a small coproduct £ Set(s. , -) of

representables with card B. < a .
A

Proof, (i) implies (ii) trivially. To see that (ii) implies (iii),

let the counit of the Kan extension be

B€S
f a

:
f

e : TB x Set(B, -) -»• T .

Any set A is the a-filtered M-colimit of its subsets A . of cardinal

less than a , and both the domain and the codomain of e preserve this

colimit; since each zA . is an isomorphism by Yoneda, so is zA . (iii)

implies (i) since Set(B, -) preserves a-filtered colimits for

card B < a , and (iii) implies (iv) trivially. On the other hand (iv)

implies that each zA is at any rate an epimorphism, since it is an

isomorphism when T is replaced by ]T Set(B., -) . To conclude that (iv)

implies (iii) it suffices therefore to observe that each zA is a

monomorphlsm. If elements in the domain of zA represented by

(x (. TB, f : B •* A) and by (y (. TC, g : C •* A) have the same image in

TA , so that Tf'x = Tg-y , let i : D •+ A be the inclusion of a subset of

cardinal less than a containing the images of / and g , and not

empty unless A is empty. Then Ti is a monomorphism since i is a

coretraction, so that Tf'X = Tg' •y where f - if and g = ig' . Thus

(x, /) and (y, g) represent the same element of the domain oi zA . 0

Reiterman [/5] (cf. also Barr [2]) shows that an endofunctor of Set

preserving all colimits of w-chains may fail to be small, if and only if

there exists a large set of strongly measurable cardinals; with a

corresponding result for other regular cardinals a in place of co .

2.7. Although our interest is in endofunctors, not functors, an
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endofunctor of A may arise as the composite of T : A -»• A and

F : A -»• A , where F (usually a left adjoint) preserves colimits and

satisfies FE c E , where [E , M J is a suitable factorization system on

A . Then for FT to have the property (*) it suffices that T have it,

in the sense of sending every E-tight (M', K)-cone to an E-tight cone.

The remarks of §§2.U, 2.5 extend at once to this case.

Note in particular that, when A = Set and E is the epimorphisms,

and when TW is contained in the monomorphisms (as it is when T has the

form A(A, -) and M' is contained in the monomorphisms), T has the

property (*) if and only if it sends each E-tight M'-cone to a colimit-

cone: by the remarks in §2.2.

3. Examples and counterexamples

3.1 . In spite of the results about special cases in §2.5 and §2.6,

the truth of condition (*) is in general highly sensitive to the

factorization systems (E, M) and (£', M') . As far as the dependence on

(£', M') goes, the condition (*) is weaker the smaller M' is, so that we

get the strongest results by taking the smallest possible M' -

consistently with our requirements that (E', M') be cocomplete, or with

the stronger requirement of E'-cowellpoweredness where we need it. Since

every E' has to be an epimorphism, the smallest possible M' is the

extremal monomorphisms; and this will suit whenever, as is usually the

case, A is epi-cowellpowered. Of course where we need (*) to be

preserved under composition, we are forced back to M' = all maps , as we

said in §2.^.

In general (*) is strictly weaker for a smaller M' . This is of

course true in one trivial sense: if A is an ot-generated but not

ot-presentable object in a locally-presentable category A , the functor

A(4, -) : A -* Set preserves ct-filtered colimits of mono-diagrams but not

of all diagrams; yet in this case A is 3-presentable for some larger

cardinal 6 . We mean rather that, when M' is enlarged, (*) may cease to

be true for any a .

3.2. For instance, consider T : Top •+ Top given by
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T = Top(-4, -)-B , where S-B for 5 € Set denotes the coproduct of S

copies of B € Top . For a > card A , the functor TopU, -) : Top -*• Set

sends a - f i l t e r ed unions of subobjects to unions, and hence to colimits by

§2.7; so for M' equals the subobject - inclusions equals the extremal

monomorphisms, T s a t i s f i e s (*) for a - f i l t e r ed K both for E equal to

the isomorphisms and for any proper (E, M) . Yet i f we enlarge M' to

the monomorphisms, and take A to be the chaotic two-point space and B

the one-point space 1 , Top(<4, -) no longer preserves for any regular a

the unions of (M', a ) -chains , even of those that are col imi ts . The

example (C7], Example 3.3.3) i s the a-chain X where each X& i s a + 1

as a s e t , the connecting maps are i d e n t i t i e s , and the open sets in Xo are

p

the empty set, the whole set, and the sets {6 | 6 > y] for Y - B . It

follows that T no longer satisfies (*) for any of the above E , with K

equal to any ex .

3.3. Again, for the same reasons, the endofunctor T = Haus(/4, -)'B

of Haus satisfies (*) for a-filtered K with a > card A if M'

equals the subspace-inclusions (and a fortiori if M' = the extremal

monomorphisms = the closed-subspace inclusions), both for E = the

isomorphisms and for any E lying between the quotient maps and the

surjections. In the special case A = X , this remains true (for filtered

K ) even for M' = the monomorphisms; for the colimits in Haus of mono-

diagrams are the colimits in Top . Yet when A = B = 1 , T does not

satisfy (*) for K = any a , if E = the isomorphisms and M' = all maps;

even if all the connecting-maps in the a-chain are monomorphisms.

For consider the a-chain X in which every X~ , as a set, is the

disjoint union of two copies of the.ordinal wa + 1 ; the elements

corresponding to Y - ̂  in the two copies being denoted by Y' and y" .

Give Xo the topology in which each (Y'J and (Y") is open for

Y < ua , while a set containing (wa) ' is open if it contains all but a

finite number of the Y' with Y < <">P" , and all the y" with y < tax

from some point on; and symmetrically for (oxx)" . With identities for

the connecting maps, each X» is hausdorff but their colimit in Top is

not; so that T does not preserve their colimit in Haus .

3.4. On the other hand, for a given M' , even for M' = the extremal
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monomorphisms or M' = all maps , the strength of the condition (•) does

not vary monotonically with changes in E . Thus with M' = all maps , the

endofunctor Hom(Z , -) of abelian groups satisfies (*) for filtered K

and E = the isomorphisms , hut not for K = any a if E = the

epimorphisms. On the other hand the Stone-Cech compactification

T : Haus -> Haus satisfies (*) for any K with M' = all maps , if

E = the epimorphisms (by §2.U, since there is an epimorphism 1 -*• T );

yet for any E contained in the surjections it fails for K. = any ex ,

even if M' is changed to the extremal monomorphisms. To see this, take

Xo to be 3 + 1 with the order-topology, for 3 < a , so that colim X
p

is a with the order topology. Since Xo is compact, the canonical map

p

T : colim TX •* T colim X is just the inclusion of a in Ta , which is a

subspace inclusion since a. is completely regular, but not a surjection

since a is not compact.

3.5. Again, the endofunctor T = Haus(l, -)«B of Haus satisfies

(*) for any K with M' = all maps , if E is between the quotient maps

and the surjections: for Haus(l, -) sends colimit-cones to epi-tight

cones and sends surjections to epimorphisms. We have seen in §3.3 that

this fails, for K = any a , if E is the isomorphisms; it also fails,

again for K = any a , if E is the epimorphisms, even if now M' = the

extremal monomorphisms. The example ([7], Example 3.3.3) is the a-chain

X of §3.U above, with the epi-tight cone given by the embedding of

Xr, = 3 + 1 into a + 1 , the latter again with the order topology.

3.6. In §10 below we have to consider an endofunctor T , knowing

only that it is a regular-epimorphic quotient of 1 + A(A, -)-S . If, say,

A = Haus , we can still conclude, by §3.3 and §2.U, that T satisfies (*)

for a-filtered K with a > card A , if M' is the subobjects and E is

between the quotient maps and the surjections; but we can no longer

conclude it for E = the isomorphisms.

3.7. Barr [2] considers the example where T is the loop-space

endofunctor of the category A of pointed hausdorff fe-spaces, showing

that T satisfies (*) for M' = subspace-inclusions and E = the

isomorphisms, if K = to . He remarks that his proof, using a result of

Dold and Thorn, works for no other K than o) . Yet his purpose - to show
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cocompleteness of the category of algebras for the corresponding monad -

can now equally well be served (see §25.1 below) by having T satisfy (*)

for M = M' = subspace-inclusions and for K sufficiently highly fi l tered;

and this may be easily shown to be so.

In fact A(i, -)T = A(S, -) : A -*• Set , where S i s the c i rc le .

Since A(S, -) preserves the unions of a-f i l tered M-cones for

a > card 5 , so does 1 .

4. A reduction in the well-copowered case

The t r ick is to get things to work even though we have (*) only for

(M', K)-cones and not a l l K-cones. One way, suggested by Barr [3] in the

case E = the isomorphisms, is to use Proposition 1.2 (with M' for i t s

M ). Another i s to use the proposition below, due to Koubek and Reiterman

(.1131, §8.5, Lemma). This is stronger: not only does i t give constructive

existence in the applications, but i t is the only method the author knows

of which establishes cocompleteness of the algebras for a monad when E =

the isomorphisms and M' is not a l l maps. On the other hand i t requires

E'-cowellpoweredness rather than just cocompleteness of (E' , M') ; but

then this is a very mild res t r ic t ion in practice.

If ( ) ' : oo -»• oo is a str ict ly-increasing map (= injective functor),

and X is any sequence, we write X' for the sequence given by

XL - Xr>, . In particular we write X for the sequence given by

%o = %o -, j w e have the natural transformation i> : X -*• X with
p fcS+1

components <)>„ = X% . A cocontinuous str ictly-increasing ( ) ' : °° •* °°

has 0' = 0 and a ' = sup $' for a limit-ordinal a , and is hence

defined inductively by giving for each 6 some (S+l)' > 3 ' .

PROPOSITION 4 .1 . Let A be E'-cowellpowered and X : <» * A any

sequence. Then there are a aocontinuous strictly-increasing map

( ) ' : oo •+ oo j a sequence Y : » -»• A , and a natural transformation

i : Y * X'+ , such that

(i) xj&+l) f i g € M' for all y > (p+l) ' ,

(ii) for any S : A -*• A and any limit-ordinal a , the map

https://doi.org/10.1017/S0004972700006353 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700006353


G.M. KelIy

colim Sio : colim SYO •*• colim SX, o ., > ,
3<a 3<a 3<a ^PTJ-'

is an isomorphism.

Proof. We define ( )' inductively; suppose 6' defined. The E'-

part of the (E', M')-factorization of X*, for y - 6' gets smaller with

increasing Y , and ultimately becomes stationary by the E'-cowell-

poweredness; take for (6+1) ' the first y at which it achieves this

stationary value, and let

(U.I) V fa

(6+1)'
be the factorization of L r . Using the naturality of the

factorization, make Y into a functor in such a way that f : X' •*• Y ,

i : Y •*• X' are natural. Then (i) is automatic from the construction.

Consider the diagram

6+1
where <f>Q = Yo

p P
and ty is the corresponding map for X' . Since (U.

= if , the bottom triangle of (U.2) commutes. Since

= f+if ,
expresses that

<f>/ = /+* by the naturality of / , we also have by (l*.l) that

whence $ = f i since / € E' is an epimorphism. Thus the top triangle

of (U.2) commutes.

Now apply S to (k.2) and pass to the colimit over the segment

6 < a . Writing for simplicity colim Si for colim SiR and so on, and
6<a ^

observing that colim SY = colim SY with colim S$ = 1 , and similarly

for colim Si|> , we conclude that colim 5/ and colim Si are inverse,

giving (ii). &

PROPOSITION 4.2. Let A be E'-aowellpowered, let S : A ->- A

satisfy (*) for K = i?ig regular cardinal a , and £ei X : <» -*• A . 27zen
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there is a limit-ordinal a ' such that, for each y > a ' , if the cone
r Y "i
\xl : Xo -»- X \ is E-tight for some (E, M) , so is the cone

3<a'

Proof. Let ( ) ', Y, i be as in Proposition U.I, and let \x\

be tight (= E-tight). Since the 3' with 3 < a are final in a' , so

that (Xo)o. , and [xo,)o. have the same colimit, the cone \xT,
p p^-Ot p P̂ -Ot i p / o

is also tight; equally the cone |l(fiil^, , and so too the M'-cone
'3<a

' Y • 1
Xjr, -, \,tJ , since colim ^. is an isomorphism.

Since 5 satisfies (*), S of this last cone is also tight. Now

reversing the above steps, since colim Sio is an isomorphism, we have the

desired result that ISXU is tight. •

REMARK 4.3. If in Proposition U.I we start with two sequences

X, X : °° -*• A , we can use the-same ( ) ' for both, getting i : Y -*• X'

and i : Y •*• X' with the desired properties; we merely rewrite the proof

taking for (3+l)' the first y a t which the E'-parts of both xi, and

—Y
Xn , achieve their stationary values.

If, in the proof of Proposition U.2, we use this improved version of

Proposition U.I, taking X to be SX , we get an improved version of

Proposition U.2, in which the phrase after the last comma is replaced by

"so are the cones 5*1 and \S2XO\ ".

II. WELL-POINTED ENDOFUNCTORS

5. The free-algebra sequence

5.1. A pointed endofimctor (S, a) on A is an endofunctor
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5 : A •* A together with a natural transformation a : 1 ->• S . An (S, a ) -

algebra (A, a) is an object 4 of A together with an action a of

(5, a) on A ; by which is meant a map a : SA •*• A satisfying

a'OA = 1. . Where confusion is unlikely we abbreviate (S, a) to S and

(i4, a) to 4 , and speak of the S-algebra A . With an S-algebra-map

f : (A, a) •*• {A', a') defined as a map / : A -*• A ' for which

f'a = a''Sf , the S-algebras form a category S-Alg . The forgetful

functor U : S-Alg ->• A sending (A, a) to A clearly creates limits and

^/-absolute colimits; and hence is monadic whenever i t admits a left

adjoint.

We say that S = (S, a) is a well-pointed endofunctor if

2
So = aS : S •*• S . As we said in the Introduction, we shall first give

conditions for the existence of free S-algebras in the well-pointed

case, where the transfinite construction is particularly simple; and then

all our later existence results will be obtained by various reductions to

this case. From now to the end of §8 it is a standing hypothesis, repeated

occasionally for emphasis, that S is a well-pointed endofunctor.

LEMMA 5.1. For a well-pointed S and any map g : SB -*• A , if

f : B •*• A is the composite g'OB , then Sf = oA-g .

Proof. oA'g = Sg'aSB by naturality; but this is S{g-aB) since

So = aS . D

Recall that a map h in A and an object A are said to be

orthogonal if k(h, A) is an isomorphism. Following Wolff [77], we have:

PROPOSITION 5.2. For a well-pointed (S, a) the following

properties of A 6 A are equivalent:

(i) A admits some S-aation a ;

(ii) oA is an isomorphism, so that A admits the unique

S-action a = (oA)~ ;

(iii) A is orthogonal to OB for each B € A .

Thus S-Alg is isomorphic to, and may be identified with, the full replete

subcategory of A determined by such objects; whereupon U : S-Alg -»• A

is identified with the inclusion.
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Proof. First, (i) ** (ii): since a'dA = 1 , Lemma 5-1 gives

oA'a = 51 = 1 . Next, (ii) =* (iii) : to say that A is orthogonal to aB

is to say that each f : B -*• A factorizes uniquely through aB . But

f = (o4)~1«S/-aB by naturality; and if f = g-aB , then g = (aA^'Sf

by Lemma 5.1- Finally, (iii) °* (i): since A is orthogonal to oA , we

have some a with a'aA = 1 . 0

5.2. Supposing A cocomplete, in accordance with our blanket

assumptions, we define inductively a sequence 5 = [S J_ : °° + [A, A] .

We set S° = 1, ; 5^+1 = S5^ with connecting-map S*Z+1 equal to
A (5

a5 : Sp -*• 55 ; and, for a limit-ordinal a , 5^ = colim 5 with, as
6<a

connecting-maps SZ : S^ -+ £r , the generators of the colimit-cone. If,

for a given A 6 A , the map as A : Is A -*• 55<4 is an isomorphism for some

a , then 5L4 is an isomorphism for Y - B 5 ot , and the sequence

54 = [s A) converges; we may say that it converges at a .

PROPOSITION 5.3. If SA converges at a , then 5a4 is the free

S-algebra on A , the reflexion of A into 5-Alg being WlA -. A -*•

Proof. It follows inductively from Proposition 5.2 (iii) that any map

from A into an S-algebra B factorizes uniquely through each

and 5/1 is an 5-algebra by Proposition 5.2 (ii) . O

We call 54 the free-algebra sequence for A , and when it converges

we say that the free algebra on 4 exists constructively. If this happens

for every A (the a at which convergence occurs depending in general on

A ) we may say that 5-Alg is constructively reflective in A . The

idempotent monad on A corresponding to this reflexion is then

00 R °°

S = colim 5 , this large colimit existing pointwise, 5 A being the

ultimate value of S A .

REMARK 5.4. 5-Alg may be reflective without being constructively
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so. Take for A the cocomplete category °° + 1 , define 5 by
S3 = 3 + 1 for 3 < °° , S<*> = <» , and take for a the unique map 1 •+ 5 .
Then 5-Alg = {°°} is reflective but not constructively so.

LEMMA 5.5. The sequence S , in the sense of §h, coincides with the
sequence SS .

Proof. Since si = s i -aS for y > 3 , Lemma 5.1 gives
p P+J-

SB} = OSY-SJ+1 ; which is slU . O

6. The constructive existence theorem

Theorem 6.2 below i s the ( s l igh t ly generalized) analogue, in the

present context, of Theorem 8.5 of Koubek and Reiterman [73] .

PROPOSITION 6.1. Let A be E-cowellpowered, let A € A , and let
a be a .limit-ordinal such that, for each y > a , if the cone

\SIA : S^A -»• SyA\ is E-tight, so is the cone \SSIA\ . Then SA

converges.

Proof. We show inductively that the cone \SlA\ is tight for all

Y 2 a . When y = a , it is tight because it is a colimit-cone. For the

passage from y to y + 1 , we use the hypothesis of the proposition,

together with Lemma 5-5- For the passage to a limit-ordinal, we use the

observation of §2.U that a colimit of tight cones is tight.

How to say that sl4 is tight is to say that SyA is in E .
^ -'3<a a

Hence SA converges by the E-cowellpoweredness. •

Combining this with Proposition k.2 now gives:

THEOREM 6.2. Let A be E- and E'-cowellpowered, let S be a

well-pointed endofunctor, and for some regular cardinal a let S

preserve the E-tightness of (M', a)-cones. Then S-Alg is

constructively reflective in A . D

REMARK 6.3. When both E and E' are the isomorphisms, so that S

preserves all colimlts of a-chains, the sequences SA all converge at
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a . In the more general cases we have no such "uniformity" of the

convergence.

7. AnJexistence theorem without cowellpoweredness

We now give the analogue (once again generalized) of the alternative

existence proof of Barr's manuscript [3].

PROPOSITION 7.1. Let (S, a) be a well-pointed endofunctor, let

<f> : S -*• S* be a map of endofunctors with each §A epimorphic, and set

o* = (j>o : l -s- 5* . Then (S*, o*) is a well-pointed endo functor, and

S*-Alg consists of those S-algebras A for which <j>>4 is an isomorphism.

Proof. By Lemma 5.1, aS*-(j> = So* since a* = (|>a . Hence

O*S*-<$> = (j>S*'aS*-<J> = <t>S*'So* , which is S*0*'<j> by naturality. Since <J>

is epimorphic, we have O*S* = S*a* as desired.

By Proposition 5-2, A is an S*-algebra precisely when a*A = §A'OA

is invertible. But then oA has a left inverse, so by Proposition 5-2 is

already invertible; whence the result. •

Now let (5, a) be a well-pointed endofunctor on A , and (E, M) a

cocomplete factorization system on A . Let B be the M-closure in A

of S-Alg, in the sense of §1.5, and let K r l + X i A + A be the

E-reflexion of A into 8 given by Proposition 1.3.

PROPOSITION 7.2. KS : A -*- A with <a : 1 ->• KS is a well-pointed

endofunctor on A whose algebras coincide with S-Alg .

Proof, KO : 1 •+ KS is the composite of a : 1 •* 5 and <S : S -*• KS .

Since the latter is in E and hence an epimorphism, KS is well-pointed

by Proposition 7-1. Moreover its algebras are those S-algebras A for

which <SA is an isomorphism; but this is all S-algebras. For if A is

an S-algebra, SA ̂ A is already in B . •

Write S* : B •+ B for the restriction to B of KS , with a* for

the restriction of ica . Then S* is a well-pointed endofunctor on the

cocomplete B , the algebras for which again coincide with S-Alg . Recall

from Proposition 1.3 that (E, M) restricts to a cocomplete factorization

system on B .

PROPOSITION 7.3. For each B € B , all the connecting maps in the

free-algebra sequence S* are in M ; and if B admits a reflexion
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f : B ->• C into S-Alg , then f f M . For any A € A , the reflexion of

A into S-Alg exists if the sequence S*KA converges; and when A is

M-wellpowered, it exists only if this sequence converges.

Proof. The first sentence follows from Proposition 1.1 (ii), since

any map from S* B into an S-algebra factorizes through each Si B , and

since, when the reflexion exists, every map from B into an S-algebra

factorizes through / . In this latter situation / factorizes as

fo'S% B for each 6 ; and fa € M , being the reflexion into S-Alg of
p 0 P

S* B ; so tha t S*B i s a sequence of M-subobjects of C , and

necessar i ly converges i f A i s M-wellpowered. The remainder follows from

Proposi t ion 5.3. ^

PROPOSITION 7.4. A cone (r •. X * N) in 8 is E-tight as a cone

in 8 if and only if it is E-tight as a cone in A .

Proof. If colim X denotes the colimit of X in A , so that i t s

col imi t in B i s K colim X , the induced map r : colim X •*• N factorizes

as K colim X : colim X •* K colim X , followed by r* : K colim X •* N ,

say. Since K € E we have r* € E i f and only if r € E . D

THEOREM 7.5. Let S be a well-pointed endofunctor. If, for some

regular a , either S preserves the E-tightness of (M, a)-cones, or

else S preserves the colimits of (M, a)-chains, the sequence S*B

converges at a for each B € 8 , and free algebras exist.

Proof. Under the f i r s t hypothesis, by %2.\, since KS : S -*• KS i s in

E , t he endofunctor KS of A preserves the E-tightness of (M, a)-cones

since S does. But then, by Proposition 7-^, the endofunctor S* of 8

preserves the E-tightness of (M, a)-cones.

f „ •!
Write X for the sequence S*B . Then r , : Xn ->• X \ i s an

I P P Ct i r\

M-cone by Proposition 7-3, and is E-tight since it is a colimit-cone in

8 . Hence by hypothesis \s*^g\ i s E-tight. But by Lemma 5.5 this

•Xg+, ; its E-tightness means that X0" , = a*X , lies in

E ; and since it l'ies in M by Proposition 7.3, it is an isomorphism; so
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that X = S* B is an S-algebra, and the sequence converges.

Turning to the second hypothesis, we observe that C^g) g< i s a n

(M, a)-chain in A , since \x^\ is an M-cone; so that by hypothesis

the canonical map

(7.1) colim SXg •+ S colim Xg
6<a g<a

is an isomorphism, where these are the colimits in A . Write Z for

colim Xg , with generators q~ : X~ -»• Z .

Now by Lemma 5-l> since KS'G = a* , the composite

is So*Xn, = SXQ ; so that i ts colimit in A over 3 < a is the
p P

identity map of colim SÂ . . Therefore colim <SXO is a coretraction;

since i t is also in E because K € E , i t is an isomorphism; so that the

cone

6+1 q

is the colimit over $ < a of SXO . It easily follows that (7.1) is just
p

aZ : Z •* SZ ; for aZ-qa -KSXa = Sq -aX^^-KSX by naturality, and by
p+ i P p+l p+l p

(7.2) t h i s i s S4R+1'
S}TQ+1 = 5<?g •

Thus Z i s an S-algebra, since oZ i s an isomorphism. Since Z is

therefore already in 8 , i t i s also the colimit in 8 of (AO _ ; that

i s , i t i s X = S* B . Hence the sequence converges. •

REMARK 7.6 . The author cannot see how to adapt t h i s argument to the

s l ight ly more general hypothesis, as in Theorem 6.2, that S preserves the

E-tightness of (M', a)-cones; however the hypotheses of Theorem 7.2 cover

most p rac t ica l cases.

REMARK 7 .7 . The fact that free S*-algebras exist constructivelv in
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these circumstances by no means implies that free S-algebras exis t

cons t ruc t ive ly . In the example of Remark 5.^s with M = the extremal

monomorphisms, "both the hypotheses of Theorem 7-5 are t r i v i a l l y sa t i s f i ed ;

and B reduces to S-alg = {°°} .

8. The case SEc E

In the important but special case where the well-pointed S satisfies

SE c E , we can say a certain amount even when 5 satisfies no global

condition of the form (*) of §2.3. First:

PROPOSITION 8.1. Let SE c E . Then if oA € E for some A € A

the free S-algebra on A exists, and is given by the <A : A -*• KA of §7.

If, moreover, A is E-cowellpowered, the free S-algebra on A exists

constructively.

Proof. Since OKA-KA = SKA'OA by naturality, since oA and KA are

in E , and since SKA € E because SE c E , we have aKA £ E . But

aKA € M by Proposition 1.1 (ii) , since KA € 8 and every map from KA to

an S-algebra factorizes through aKA . So aKA is an isomorphism, so

that KA is already in 5-Alg .

For the final assertion we argue inductively that 514 € E for all

3 , whence the sequence SA converges by the E-cowellpoweredness. The

assertion is trivial for 8 = 0 , and for 3 = 1 it is the hypothesis

OA € E . for the passage from B to 3 + 1 , SE c E gives SSZA € E ,

which by Lemma 5-5 says S!T A € E , giving SJ: A € E . The closure of E

under cointersections gives the passage to a limit-ordinal. D

REMARK 8.2. When oA € E for a H /I , the well-pointedness of S

is automatic by Proposition 7-lj and SE c E is also automatic. Moreover

S preserves the E-tightness of all cones by §2.^. Hence Proposition 8.1

is then a special case of Theorems 6.2 and 7.5-

PROPOSITION 8.3. Let SE c E , and let f : A •* B be in E . If

the free S-algebra on A exists, so does that on B ; and if the first

exists constructively, so does the second, in the case where A is

E-coweIIpowered.
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Proof. Consider the pushout

A

where g : A •*• C is the reflexion of A into S-Alg . Then since / € E

we have k (. E and hence Sk 6 E . Since oC is an isomorphism we

conclude that OD € E , so that by Proposition 8.1, D admits a reflexion

t : D •*• E into S-Alg . Since g is orthogonal to every S-algebra, so

is its pushout h ; and since t too is orthogonal to every S-algebra,

so is th {of. [7], Proposition 2.1.3). Since E is an S-algebra, it

follows that th : B •* E is the reflexion of B into S-Alg .

For the constructive part, we observe that there is a natural

transformation s = Sf : SA -*• SB , given by 8n = f , so , = Sso , and
U P+X p

s = colim s . for a limit-ordinal a . Since f t E SE c E , and E is

closed under colimits, we have s (. E . It follows that, if SlA is an

P

isomorphism for y - B - a , then SIB £ E for y > $ > a ; whence by the

E-cowellpoweredness SB converges. D

We now consider the s i tua t ion (which occurs in §9 and §16.2 below) of

well-pointed endofunctors (S, a) on A and ( S ' , a ' ) on A' , together

with a functor G : A' •+ A (which commonly has a r igh t adjoint

V : A •+ A ' ) , and a natural transformation 6 : GS' -*• SG satisfying

GS'

(8.1)

oG

here A and A' are to be cocomplete, and A is to have a cocomplete

factorization system (E, M) .

PROPOSITION 8.4. In the situation above, let SE c E and let

6 € E . Then if A is E-cowellpouered and the free S'-algebra on
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B € A ' exists constructively, so does the free S-algebra on GB € A . If
A is not necessarily E-cowellpowered, but G has a right adjoint V ,
and the free S'-algebra on B exists, so does the free S-algebra on
GB .

Proof. For the first part, consider the natural transformation

^ ft i * * 8 6
6 : GS' •*• SG whose components 9g : GS' -*• S G are defined inductively as
follows: 9 = 1 : G -*• G , 9g i s the composite

5S-* SS&G .GS'S'® SGS'
9 5 '

and, for a limit-ordinal a , 9 = colim 9a
a 6<a

the naturality is immediate

from (8.1). It follows by induction that each 9O € E ; so that if S'B
p

converges so does SGB , by the latter argument used in the proof of
Proposition 8.3.

For the second part, l e t <J> : S'V •* VS be the mate of 9 under the
adjunction (of. LI01, §2); i t satisfies the transform

S'V

(8.2)

of (8.1). For any S-algebra A , oA is invertible; hence by (8.2),
a'VA has a left inverse; so that VA is an S'-algebra by Proposition
5.2. Hence VA is orthogonal to the reflexion f : B -*• C of B into
S'-Alg ; whence by the adjunction A is orthogonal to Gf : GB •*• GC . I t
follows that the reflexion of GB into 5-Alg exists if that of GC
does; which i t does indeed by Proposition 8.1, OGC being in E by (8.1)
since 6 € E and since a'C i s an isomorphism. D

9. The construction of well-pointed endofunctors

Recall that a pointed endofunctor (/?, p) on A is called an

idempotent monad if R = R with pff = Rp = 1 ; i t is clearly well-
pointed, and i t s algebras are reflective in A . Moreover every full
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replete reflective subcategory of A consists of the algebras for such an

idempotent monad (i?, p) , which is uniquely determined to within

isomorphism.

There are a number of processes that, starting from well-pointed

endofunctors, produce others. The well-pointed endofunctors to which we

shall apply the results of this chapter all arise from the repeated

application of these processes, starting with idempotent monads.

The first such process is that of Proposition 7.1 above. Another is

the following; note that the family it refers to does not have to be

small, so long as the fibred coproduct exists - which it will do if ^ f E

for all but a small set of i .

PROPOSITION 9.1. Let [s., a.) be a family of well-pointed endo-
Is Is

functors on A and let a : 1 •* S be the fibred coproduct of the family

a. • 1 -+ 5. . Then (S, a) is well-pointed and S-Alg is the
i v

intersection of the categories S.-Alg .
Is

Proof. Let the generators of the colimit cone be p^ : S^ -*• S . The

equation S .a. = a.S. , composed with p.p. : S.S. •*• SS , gives the
1 1 t 1 2. Z. 4. 7.

equation So-p. = crS'p. ; this being so for all i , we have Sa = OS .

The last statement is clear from Proposition 5-2. a

The final (and central) such process is that given by Wolff (['7],

Theorem 2.1).

PROPOSITION 9.2. Let G -H V : A -»• A' be an adjunction with counit

e : GV ->• 1 , let (S1, a') be a well-pointed endofunctor on A' > and

define a pointed endofunctor (S, o) on A by the pushout

(9-1)

Then (S, a) is well-pointed, and S-Alg consists of those A € A for

which VA is an S'-algebra. Moreover the natural transformations
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6 : GS' -*• SG and <p : S'V ->• VS corresponding to ty satisfy (8 .1 ) and

( 8 . 2 ) .

Proof. The l a s t statement i s immediate for (j> and hence follows for

6 . Composing the equal i ty S'o'V = a'S'V : S'V->-S'2V with

(j)S'S'(J> : S'2V •+ VS2 , and simplifying by the use of (8 .2 ) , we get

VSo-(j> = VaS'$ , or equivalently Sa«i|> = aS-ty . Since SO'O = oS-a by

n a t u r a l i t y , we have So = OS because (9-1) i s a pushout.

The following are successively equivalent: A i s an 5-algebra; 1.

fac to r i zes through aA ; eA factorizes through Go'VA ; 1^. factorizes

through o'VA ; VA i s an S'-algebra. •

REMARK 9 .3 . The above proposition wil l most often be used when

(S', o') i s an idempotent monad (i?, p) on A' .

I I I . ORTHOGONAL SUBCATEGORIES AND RELATED QUESTIONS

10. Orthogonal subcategories

This chapter treats some applications where a subcategory to be proved,

reflective may be exhibited fairly directly as the category of algebras for

a well-pointed endofunctor. The first of these is that mentioned in the

Introduction: given a set K of maps in A , we consider the full

subcategory K of A given by the objects orthogonal to each k € K .

We suppose for this chapter that A has small horn-sets; then for

each object M we have the representable functor A{M, -) : A •*• Set , with

a l e f t adjoint sending X to the coproduct X'M of / copies of M .

The counit r\Jl : A(M, A)'M -*• A of this adjunction has, for each

f € A(M, A) , i t s /-component equal to / .

2

For each map k : 'M -*• N the functor V : A •*• Set sending A to

A(k, A) has a left adjoint G , whose value Go at v : X •*• Y is given

by the pushout
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X-N Go .

There is an idempotent monad R on Set sending V : X •+ Y to

Rv = ly : Y -*• Y , with unit pv = (v, l) ; its algebras consist of those

v that are isomorphisms; so that A is orthogonal to k if and only if

VA is an i?-algebra.

-l-
It follows from Proposition 9-2 that the full subcategory k of A

is 5-Alg , where (S, a) is the well-pointed endofunctor on A given by

the pushout (9-1), with (R, p) for (5', a') . An easy calculation gives

(S, a) explicitly as the pushout

A(M,-)-N + A(N,-)-N

(10.1)

-»• s

If we now consider a set K = {k. : M. •+ N.} of maps and rewrite
Is 1? 1s

( 1 0 . 1 ) r e p l a c i n g k , M, N , o , 5 b y k . , M . , N . , a - , S . , a n d t h e n t a k e
Is % 1s %• Is

(S, a) t o be the f ib red coproduct of t he [S., a.) as in Propos i t ion 9-1
1s Is

(if it exists), we conclude that K = 5-Alg for the well-pointed endo-

functor S .

For a cocomplete factorization system (£', M') on A , consider the

"local presentability" property

(P) for each A 6 A there is a regular cardinal a. such that

A(4, -) : A •+ Set preserves the colimits of (M', (3)-chains

for each a.-filtered ordinal 3 •

THEOREM 10.1. Let K be small, and for some regular cardinal

let each A [A/., -) and each A fiV., -) -preserve the colimits of
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(M', a)-chains; which is the case if A satisfies (P). Then K is
reflective, and constructively so if A i s E'-eowellpowered.

P r o o f . E a c h S. p r e s e r v e s by §2.k t h e c o l i m i t s o f ( M ' , a ) - c h a i n s ,
Is

•since the other three corners of (lO.l) do so and 5. is the colimit of
%

that diagram. Hence S , as the fibred coproduct of the a. : 1 •* S. ,

does so too. The result now follows from Theorems 6.2 and 7-5. E

The above is essentially Corollary 3.1 of Wolff [?7]; the case M' =

all maps includes Satz 8.5 of Gabriel and Ulmer [S] and the remarks in

their §§8.6 and 8.7. The smallness of K is used in Theorem 10.1 in two

ways: to ensure the existence of the fibred coproduct S - which might

be ensured in other ways - and to get from (P) the hypotheses we really

use, on A[M., -) and Af/17., -) .

The possibility of dealing with certain cases of a large K , at the

cost of strengthening (P), was first recognized in the (non-constructive)

treatment of Freyd and Kelly [7J. Suppose that, for some cocomplete

factorization system (E, M) , k. has the factorization
i'

(10.2) M i — r h - i r h .
^ t

Then, because k'. i s epimorphic, i t easily follows {of. [7] , Lemma U.12)

in
-L -L -L / •, ,

t ha t k. = k'. n k". . Let [S'., a'.) and (S'.;, a'.'J be what we get
Z- If 1s Is Is 1s 1s

(10.l) when we replace k by k'. and by k". . If we now suppose further
Is Is

that the system (E, M) is proper, we have that a'. € E ; for it is the
1s

pushout of the top edge of (10.l), which is in E since its composite with

one of the injecLiens is the map 1'k'. of E (we are using Proposition
1s

2.1.U of [7]). Thus the a'. : 1 ->• S! admit a fibred coproduct
Is 1s

a ' : 1 -»• S' with a ' i E .

To proceed, we must suppose that the number of different k". (to
1s

within isomorphism) is small; since A has small hom-sets, this is to

say that the numbers of different L. and N. are small; and if A is

M-wellpowered, it is to say that the number of different N. is small.
1s
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We may then form the fibred coproduct a" : 1 -»• 5" , not of the family

a'! : 1 •+ S" , but of the small set of different elements which comprise i t .
if 1>

Finally we may form the pushout a : 1 ->• S of a' : 1 -»• S ' and

a" : 1 •* S" ; t h i s need not of course coincide with our previous 5 , even
X

when K i s small; but i t s t i l l s a t i s f i e s S-Alg = K . Moreover we have

a map $ : S" -*• S which, as the pushout of a ' : 1 -* 5 ' , i s in E .

In re la t ion to the above proper (E, M) and some (E ' , M') consider,

in place of (P) , the "local boundedness" property

(B) for each A € A there is a regular cardinal a. such t ha t ,

whenever $ is an a - f i l t e r ed ordinal , A(J4, -) : A -»• Set sends

each E-tight (M', B)-cone to an epi - t ight cone.

This condition is most often considered for M' = M , and then asser t s (of.

§2.3) that A(A, -) preserves a . - f i l t e r e d ordinal unions of M-subobjects

(in the sense of taking them to ordinary unions in Set ) . I t may be a

l i t t l e weaker than t h i s if M ' c N ; but there i s no point in imposing i t

for an M' bigger than M . Since i t i s thus contemplated only for a

proper (E r , M') , i t i s by §2.7 stronger than (P) - in general s t r i c t l y

so, by §§3.3 and 3.5- Yet with M' = M i t i s sa t i s f ied by §2.2 by any

local ly-presentable A with M = the monomorphisms, and by §§3.2 and 3.3

by any category l ike Top or Haus with M = the subspace-inclusions;

similarly by any category l ike topological groups with M = the subgroups

that are subspaces.

The following improves in various minor respects - including the

dropping of the completeness hypothesis on A - Theorem U.I.3 of Freyd and

Kelly [ 7 ] .

THEOREM 10 .2 . For a proper (E, M) , with the k. faatorizing as in
Is

( 1 0 . 2 ) J let the number of different k". be small. For some regular a ,

let each A ( L . , -) send E-tight (M', a)-cones to epi-tight cones; which

is the case if A satisfies (B). Then K is constructively reflective

when A is E- and E'-cowellpowered; and is at any rate reflective when

E' = E .

Proof. Since the functor --N. : Set -»• A preserves colimits and
Is
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sends epimorphisms to r e t r ac t ions which surely l i e in E , the endofunctor

A(L., -)'N. preserves the E-tightness of (M', ot)-cones. Since 1 does

t o o , so by §2.4 does S" , which by ( lO. l ) i s a regular quotient , and hence

an E-quotient, of 1 + A(L., - ) • # . . So then, by §2.4 again, does the

fibred coproduct S" of the different 5'.' . So again, by §2.U once more,

does S , as an E-quotient of 5 " . The r e su l t now follows from Theorems

6.2 and 7-5- D

11. Factorization systems

A close ly- re la ted problem i s that of whether, for a set K of maps in

A as above, the pre - fac to r iza t ion system (F, N) = [K , K ) , in the

nota t ion of Freyd and Kelly [ 7 ] , §2.1 , i s ac tua l ly a factorizat ion system.

We r e c a l l from [7] t h a t , for any prefactor izat ion system (F, W) ,

p : A -*• B i s in F i f and only if, for every commutative diagram

P

(11.1)

^

with i € W , there exists a "unique diagonal fill-in" w : B •*• C .

LEMMA 11.1. When A admits pullbacks, we may conclude that p € F

if the above "unique diagonal fill-in" property holds for those diagrams

(11.1) in whiah D = B and v = 1 .

Proof. We factorize p and u through the pullback of i and v ;

we leave the reader to complete the easy proof. •

For E € A , write N for the full subcategory of A/2? whose

objects are those maps in W with codomain E .

PROPOSITION 11.2. If the prefactorization system (F, M) is a

factorization system, then H is reflective in A/E for each E € A ;

and the converse is true if A admits pullbacks.

Proof. The direct assertion is immediate: if f : A •*• E has the
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(F, N)-factorization

(11.2) A -j+B -j+E ,

it is clear that p : / •+ 3 is the reflexion into U of / € k/E . For

the converse, let (11.2) be this reflexion; we use Lemma 11.1 to show that

p € F .

Suppose then that p = iu with i £ N (as in (11.1) with D = B and

V = 1 ) . Since ji ? N the map u : f •*• ji of k/E factorizes uniquely

£1

through the reflexion p ; that is, there is a unique w : B -*• C with

wp = u and 3'iw = 3 . In fact iw = 1 as desired; for it is a map

3 •* 3 in W , and its composite with the reflexion p is
iwp = iu = p . d

We now proceed by applying Theorems 10.1 and 10.2 to k/E in place of

A . The category k/E i s cocomplete, with colimits formed as in A ;

each factor izat ion system (E, M) on A induces one, with the same name,

on k/E ; and k/E i s E-cowellpowered i f A i s . As for the effect on

cones of {k/E)(a, -) , where a : A -*• E i s an object of k/E , consider

a 3-cone (r : x -»• «)Y<g in k/E , where x : X -*• E and n : N -»• E ;

i t i s c lear from the formation of f i l t e red colimits in Set tha t

(k/E)[a, v J i s a colimit cone or an epi- t ight cone i f the same i s t rue of

Write K^, for the set of all maps in k/E of the form k . : f -*• g ,

where k^ : M^ •* N. is in K and where f : M. •* E , g : N. •*• E . It is

clear that, if N = K , then N is the full subcategory X_ of k/E .
hi ti

Since A has small horn-sets, ¥.„ i s small i f K i s ; and more generally,

i f K i s such that the number of different k". in (10.2) i s small, the

corresponding thing i s t rue of Kp . Thus:

THEOREM 11.3. Let A admit pullbacks. Then in the eirewnstanees of

either Theorem 10.1 or Theorem 10.2, (F, W) = [K**, K*) is a factor-

ization system on A . •
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The requirement that A admit pullbaeks, although a very mild

restriction in practice, is inelegant when the core of the argument uses

only colimits. In the simplest case, corresponding to Theorem 10.1 with

cowellpoweredness, we can remove it, and at the same time describe F more

concretely.

Write K for the smallest set of maps containing K , closed under

composition and containing the isomorphisms, closed under pushout, and

closed under colimits in the sense of §1.2.

LEMMA 11 .4. Each component of the a of (10.1) lies in k .

Proof. The top and bottom ddfamonds in the following commutative

diagram are pushcuts:

A(M,-)-M .

1 + I'k

A(M,-)'M + A(N,-)'N

Since 1 and I'k lie in k

A(M,-)-N

so too does a .

THEOREM 11.5. Let the hypotheses be as in Theorem 10 . l , with A

being E'-aowelZpoweved. Then (F, N) = [K , K ) is a factorization

system on A , and F = K .

Proof. Clearly K c F , since F has the desired closure properties

{cf. [7], Proposition 2.1.1). We argue just as before, except for the

appeal to pullbacks in the proof of Proposition 11.2, when we are to show

that the reflexion p is in F ; we replace this by a direct argument

that p £ K+ .
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The a : 1 •*• S of Theorem 10.1 is in K since it is the colimit of

the a. , which are in K by Lemma 11.U. Hence the maps SB of §5.2

are in K by an evident induction, so that by Proposition 5-3 and Theorem

6.2, the reflexion of A into K is in K

What we really need is the same conclusion when A is replaced by

A/E and K by !„ ; and we do get this since, colimits being formed in

A/E as in A , each map in K is clearly in K when seen as a map in

A . •

The case M' = all maps of this last result, with a slightly less-

sharp description of F , is Theorem k.1 of Bousfield [5].

12. Continuous functors

The question of "continuous functors" was reduced by Freyd and Kelly

[7] to that of an orthogonal subcategory.

By a cylinder1 (J, \) : P -*• Q in a small category K we mean

functors P : P •* K. and Q : Q. •* K with small domains, a functor

J : Q. -*- P , and a natural transformation x : PJ + Q . A functor

F : K -*• A , where A is complete, is said to be continuous with respect to

(J, x) if the induced map

(12.1) lim FP —y-+ lim FPJ . > lim FQ
J* limFx

is an isomorphism. A cylinder with P the unit category 1 is just a

protective cone over Q , and F is continuous with respect to it when F

sends it to a limit-cone in A . Those functors F continuous with

respect to each cylinder (</, x) of some family T form a full replete

subcategory [K, A] of the category [K, A] ; and the question arises of

its reflectivity.

Let A : A -»• [P, A] and 6 : A •* [Q_, A] denote the diagonal

functors. To say that (12.l) is an isomorphism is to say that A(A, -) of

it is an isomorphism for each A d A ; which by the definition of limit is

to say that each

(12.2) ( M , FP) [;L>J]» (&4, FPJ) ( 1 > f x )' (&*,
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is an isomorphism, where the parentheses denote horns in [P, A] and

[Q., A] . In this form the problem can be stated without supposing A to

be complete.

Of course we retain our blanket hypothesis that A is cocomplete.

Then (M, FT) in (12.2) may be replaced by [K, A] [LanJsA, F) , and

similarly for the other terms. This left Kan extension Lan_M of AA

along P is easy to compute: i t is just P*'A , where P* € [K, Set] is

the colimit of the functor P°P * [K, Set] sending p € P to K(Pp, -) .

In this way we see that [K, A]_ consists of these F € [K, A] which are

orthogonal to (J, x)*'A for each (J, x) f T and each A € A , where

(Jt X)* i s the induced map

(12.3) Q* -£*

Now suppose that A has, in the sense of [7], §2.5, a small

generating set G with respect to some proper factorization system

(E, M) . Freyd and Kelly give in [7], Lemma 5-1.1, an easy proof that

[K, A]p consists of those F orthogonal to each (J, x)*'G with G € G

and also orthogonal to a certain set $ of maps in E ; and they further

show in Remark 5-1.2 that orthogonality to $ is an automatic consequence

of the rest if G is also a generating set for the factorization system

(extremal epimorphisms, monomorphisms).

An A with a small generating set is M-wellpowered if it admits

finite intersections of M-subobjects ([7], Corollary 2.5.2); in this case

the maps (12.3) have but a small set of different M-parts, in the sense of

the factorization (10.2), if there are but a small number of different

P : P •*• K ; in particular if all but a small set of the cylinders in T

are cones.

We therefore have the following, which slightly generalizes in various

ways Theorem 5-2.1 of C7]; the factorization systems involved are as usual

supposed cocomplete:

THEOREM 12.1. Let A have the small generating set G for the

proper factorization system (E, M) . If T is small and G is also a

generator for the system (extremal epimorphisms, monomorphisms), [K, A]

is reflective under the hypothesis (P) of §10 (for some (E', M') ). If
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A is M-well-powered - as when it admits finite M-interseations -

[K, A]_ is reflective when the number of different P is small, under the

hypothesis (B) of §10 - if either E' = E or A is E- and E'-eowell-

powered.

13. Functors sending given maps into M

To ask of a functor F : K -*• A from a small K that it send a given

morphism \p of K to a monomorphism in A , is to ask that it send the

diagram

in K to a pullback in A ; which falls under the considerations of §12

above. Koubek has observed in the manuscript [77] that problems of initial

automata lead to the more general consideration of those F : K -*• A for

which Fty lies in the M of some factorization system (E, M) on A .

ty : 2 •+ K induces a functor V = [ijj, l] : [K, A] -»• [2, A] with a

left Kan adjoint G . The full replete subcategory 8 of [2, A]

determined by those / : 2 -*- A with / € M is reflective, the reflexion

of an arbitrary / being (p, l) : / •+• j in

f

where / = 3V i s the (E, M)-factorization of / ; t h i s i s immediate from

the unique-diagonal-f i l l - in property. Thus the corresponding idempotent

monad (R, p) has Rf =j and p / = (p, l ) .

I t follows from Proposition 9-2 tha t the fu l l subcategory [K, A] of

[K, A] given by those F : K •* A with Fip € M consis ts of the

S-algebras, where S i s given by (9-1) with (R, p) for ( 5 ' , a ' ) .

Since p 6 E , and since CEc E because (clear ly) VU c M , we conclude
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that a 6 E .

Now consider a set t - (ifi.) of maps in K , along with a
1/

factorization system (E., M.) on A for each i ; and let [K, A]w
1 / 1 / T

consist of those F such that FiJ;. i M. for each i . If we now write

a. : 1 -*• S. for the above 0" : 1 -> S when ty. replaces ty , and then
If 1s Is

define a new a : 1 ->• 5 as the fibred coproduct of the a. , we have
1/

[K, A]^ = 5-Alg ; provided that S exists.

5 certainly does exist if there is some cocomplete factorization

system (E, M) on A such that E. c E for each i ; and then o € E .

From Remark 8.2 and Proposition 8.1, we have the following result , which

includes Theorem III .7 of Koubek [77].

THEOREM 1 3 . 1 . If each E. c E , where (E, M) is coaomplete, then
1/

[K, AJy is reflective in [K, A] . Q

IV. ALGEBRAS FOR GENERAL POINTED ENDOFUNCTORS

14. Reduction o f the pointed to the wel l -po in ted case

14.1. For any endofunctor T of A we have the comma category

T/A ; an object is a t r ip l e (A, a, B) where A, B € A and a : TA -»• B ;

a m a p ( A , a , B) -*• { A ' , a ' , B ' ) i s a p a i r (f : A -*• A ' , g : B •*• B ' ) s u c h

t h a t g - a = a ' - T f .

The category T/A is cocomplete; a functor K •+ T/A is given by

functors X, Y : K -*• A and a natural transformation x : TX -*• Y , and i t s

colimit is given by (colim X, a, B) , where

, . „„ colim x .. . „
colim TX »• colim Y

(lU.l) T b

T col im X • 5
a

is a pushout, T being the canonical comparison map.
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A natural transformation a : T' -»• T induces a functor

a* : T/k •+ T'/k sending (A, a, B) to (A, a-aA, B) . This functor has a

left adjoint a* : T'/k + T/k which sends (C, a, D) to (C, e, D) given

by the pushout

(lit.2)

The (C, c, 0)-component of the unit r\ : 1 -> a^a^ of this adjunction is

given by

(1^.3) n = ( 1 , c) : (C, a, D) •* (C, c-aC, D) ;

and the (A, a, B)-component of the counit e : a^cx* -*• 1 is given by

(lit.lt) e = (1, 2) : (-4, a, B) -> (A, a, B)

where, in (lU.2), we take C = A , D = B , a = a*aA , and a is

determined by

(lk.5) ao = a , aa = 1 .

Our concern below is with pointed endofunctors (T, T) on A . By a

map a : (2", T') -»• (T, T) O/ pointed endofunctors we mean a natural

transformation a : T' -*• T satisfying ax' = T . Hote that l/A is just

2
the functor category A ; and that for a pointed [T, x) the adjunction
above has the special case

,2
(lit.6) X* : T/k

14.2. For any pointed endofunctor (T, x) we have the category

T-Alg of i t s algebras, as defined in §5-1. The functor J : 2"-Alg * T/k

sending (A, a) to (A, a, A) and / to ( / , / ) is a full embedding;

for any map ( / , g) : J(A, a) -*• J(A', a') must have g = / , as a

consequence of a'lA = 1 and a''TA' = 1 . We henceforth regard J as an

inclusion. T-kXg is evidently closed under limits in T/k ; we are

concerned with the question of i t s ref lect ivi ty. Clearly

PROPOSITION 14.1 . A functor K •* 7-Alg , given by a functor

X : K -*• A and an action z : TX •+ X , admits a colimit in T-Ale. if and
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only if, when we form the pushout (llt.l) with Y = X , the object
(colim X, a, B) admits a reflexion in T-Alg . In particular, T-Alg is
cocomplete if it is reflective in T/A . •

If a : (2", T ' ) -*• (T, T) is a map of pointed endofunctors, the
functor a* : T/A -»• T'/A of §l*».l clearly restr ic ts to a functor

u

a : T-Alg -*- 2"-Alg . For a T-algebra A = (A, a) and a T'-algebra

B = (S , b) we have 2"-Alg(5, a A] ^T'/A{J'B, a*JA) 9* T/Aia^J'B, JA) .

Hence:

PROPOSITION 14.2. a# : T-Alg -»• T'-klg has a left adjoint a, if
ff

and only if3 for each T*-algebra B ^ the object a^JrB of T/A admits a
reflexion in T-Alg . In particular the left adjoint ati exists if T-Alg

TT

is reflective in T/A . •

This has the special case where 2" = 1 and a = T . The category

1-Alg (for the pointed endofunctor 1 ) i s jus t A , and the embedding

J' : 1-Alg -*• l/A i s jus t the diagonal embedding A : A -»• A . Of course

2
A is both reflective and coreflective in A , the domain and codomain

2
functors d-, d. : A -*• A a re respectively the r igh t and l e f t adjoints of

A . Clearly T : T-Alg -»• 1-Alg is nothing but the forgetful functor

U : T-Alg •*• A of § 5 . 1 . Since T̂ AS , by ( l i t .2 ) , i s [B, 1^, TB) , we

have:

PROPOSITION 14.3. Free T-algebras exist - that is, the forgetful
functor U : T-Alg •+ A has a left adjoint - if and only if, for each
B € A , the object [B, 1 TB) of T/A admits a reflexion in T-Alg ;

which is certainly so if T-Alg is reflective in T/A . •

The full subcategory 7-Alg of T/A is not replete; clearly
{A, a, B) is isomorphic to a T-algebra precisely when a'TA i s an

isomorphism. In particular A , embedded by A , is not replete in A ,
i t s repletion consisting of those {A, a, B) with a an isomorphism.
These la t te r objects are of course the algebras for the idempotent monad

(/?, p) on A arising from the adjunction d 1 -* A : A -»- A ; here
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R = M sends (A, a , B) to ( s , 1 , B] , and the component of i t s uni t

p : 1 •* R i s (a , 1) .

I t follows that the object (A, a, B) of T/k is isomorphic to a

T-algebra if and only if i ts image T*(A, a, B) in A is an fl-algebra.

Hence, if we define a pointed endofunctor (S, a) on T/k by the pushout

(lfc.T)

we conclude from P r o p o s i t i o n 9-2 t h a t :

THEOREM 14.4. S is a well-pointed endofunator on T/k and S-Alg

is the repletion of T-Alg . C

Thus an object (A, a, B) of T/k admits a reflexion into T-Alg if

and only if i t admits one into S-Alg ; we say that the first reflexion

exists constructively if the second does, in the sense of §5.2; and we say

that T-Alg is constructively reflective in T/k when this is so for

every (A, a, B) . We further say that a colimit in T-Alg , or a left

adjoint a , or a free T-algebra, exist constructively when the
TT

reflexions needed in Proposition llj.l-l̂ .S do so.

15. The existence theorem in the pointed case

15.1. We now show that a factorization system (E, M) on A induces

one (with the same name) on T/k .

First, we certainly have one, defined pointwise, on the functor
2

category A ; the map (/, g) is in E or M precisely when both /

and g a re .

2

Next, we cons ide r t h e ad junc t ion T , H T * : T/k •* A , and t h e

p r e f a c t o r i z a t i o n system (E, M) on T/k whose E-par t i s generated by t h e

T*( / \ 9) wi th f , g i E . By [ 7 ] , Lemma I * . 2 . 1 , we have

PROPOSITION 15.1. A map ( / , g) in T/k is in M if and only if,
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as maps in A , / € M and g € M . D

F i n a l l y , we show t h a t t h i s i s indeed a f a c t o r i z a t i o n system on T/A ,

and we desc r ibe E e x p l i c i t l y . For any (p , q) : (A, a, B) •+ (A1, a', B')

i n T/A def ine r as t h e connecting map i n

(15 .1 )

where the top quadrangle i s a pushout.

PROPOSITION 15.2. (E, M) is a factorisation system on T/A , and
(p, q) € E if and only if, as maps in A , p t E and r € E , where r
is the connecting map in (15.1).

Proof. It is easy to verify directly, using the unique-diagonal-fill-

in criterion, that in the situation of (l5.l) with C the pushout,

( p , v) : (A, a, B) •*• {A1, u, C) i s i n E i f p € E and

( 1 , r) : (A', u, C) •* {A', a', B') i s i n E i f r £ E . We conclude t h a t

( p , q) € E i f p £ E and r 6 E .

I t remains t o show t h a t every map ( / , g) : (A, a, B) •+ {A", a", B")

f a c t o r i z e s as a ( p , q) w i th p € E and r € E , followed by an (i, j)

w i t h i , j € M . Begin by l e t t i n g ip be t h e (E, M ) - f a c t o r i z a t i o n of

/ . Then d e f i n e v, u, C by t h e pushout i n ( 1 5 . l ) , and d e f i n e h : C •* B"

by hv = g , hu = a"'Ti . F i n a l l y l e t jr be t h e (E, M ) - f a c t o r i z a t i o n

of 7z , and s e t a' = ru . E

PROPOSITION 15.3. J/" every E in A is an epimorphism, or every M
a monomorphism, or both, the same is true of T/A . If A is E-cowell-
powered or M-wellpouered, the same is true of T/A . If the factorization
system (E, M) on A is cocomplete, so is that on T/A .

Proof. All the verifications are immediate or straightforward, unless

perhaps the last. For this, consider a family

{pit qi) : (A, a, B) - {/LI, a!, Bl)

of maps in E , and use the notation of (15.1) decorated with subscripts.
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Let the cointersection of the p. "be given by t. : A'. -*• A
Is Is Is

Form the

pushouts

U .
%

TA'.

observing that . y and D are independent of i because y is the push-

out of a by Tt.'Tp. , which is independent of i . The 3. are in E
"h Is Is

as the pushcuts of the J". ; let their cointersection be given by
Is

W. : E. •+ B Write a^ for the common value of the W .z .y ; it is now

easy to verify that (t., W -X .) : [A '., a '., B '.) -»• [A^, a^, S j is the

cointersection of the [p., q.) . D

PROPOSITION 15.4. For any map a : T' •*• T of pointed endo functors,

we have a*M cz M and a.S c E .

Proof. Since a'' is given on maps by a*(f, g) = (/, g1) , the first

statement is immediate; the second is then an evident consequence. D

15.2. We now consider two factorization systems (E, M) and

(E', M') on A , along with the induced ones on T/k .

PROPOSITION 15.5. If T -. A •+ A preserves, for some regular

cardinal a , the E-tightness of (M', a)-cones, so does S : T/k •* T/k .

Proof. It suffices by §2.^ to show that the vertices of (lit.7), other

than S , have the corresponding property. Since T^ preserves colimits

and (by Proposition 15.*0 maps E into E , and since the same is clearly

true of R , it remains to prove that T* has the corresponding property.

Consider an a-chain in T/k given (as in §1^.1) by X, Y : a -*• A

and x : TX -»• Y ; and an E-tight M'-cone over it, with vertex

(/}', a', B') and generators £„ •*• A
g : -+ 3' giving

p
t : colim X •* A ' and S : colim Y •* B' . Since the E of A is given
pointwise, as are colimits there, and since T*(tR, sR) = (tft, sR) , what
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we have to show is that t,s£E.

Form as in (lU.l) the colimit in T/K , and write A for colim A' .

Let the comparison map in T/K , from the colimit to the vertex, be

(p, q) ; and let this be analyzed as in (l5.l). Then the tightness in

T/K is expressed by (p, q) € E , or by p, r € E .

Since t is in fact p , we have t € E . Since, by Proposition

15.1, (tg) is also an (M', a)-cone, the hypothesis on T gives the

tightness of [Ttg] '•> °r equivalently that Tp'T € E . Since v and b

are the pushouts of Tp and T respectively, it follows that vb 6 E as

the pushout of Tp-T . Hence rvb d E ; but this is just s . •

Theorems 6.2 and 7.5 now give our central result:

THEOREM 15.6. Let T preserve, for some regular a , the

E-tightness of (M', a)-cones. If A is E- and E'-cowellpowered,

T-Alg is constructively reflective in T/k . Even without the cowell-

poweredness, it is still reflective if M' = M or if E is the

isomorphisms. n

16. Pointed endofunctors with TE c E

16.1. We now apply §8 to get partial results, without the full

hypotheses of Theorem 15.6, in the special case TE c E .

PROPOSITION 16.1. Uhen f E c E , a map (p, q) in T/K is in E

if and only if p, q € E . Moreover we have SE c E .

Proof. The first statement follows easily from Proposition 15.2;

given that p € E , the map Tp and hence its pushout u in (15.l) are in

E , whence q € E if and only if r € E .

It follows from this that T*E C E . Since E is in any case

preserved by T^ and by i? , it is preserved by each vertex of (lh.'J)

other than S ; since E is closed under colimits, it is preserved by S

too. •

Propositions 8.1 and 8.3 now give:

PROPOSITION 16.2. When T E c E , (A, a, B) admits a reflexion into

T-Alg , which in fact lies in E 3 whenever a(A, a, B) € E ; and if

(p, q) : (A, a, B) -* (A', a', B') is in E , then {A1, a', B') admits a
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reflexion if {A, a, B) does. In the E-cowellpowered case, we can add

"constructively" throughout. 0

Since a(A, a, B) is the pushout (1^.7) of x*px*(A, a, B) , since

T^E c E , and since pj*(A, a, B) = (a-xA, 1) , we have:

PROPOSITION 16.3. When T E c E , {A, a, B) has an E-reflexion

into T-Alg whenever a-xA € E . •

Of course no consequences flow from TE c E if E is the

isomorphisms. To get sharper results we now suppose that (E, M) is

proper.

PROPOSITION 16.4. When (E, M) is proper, the map i\i : x^Rx* •* s'

of (ik.T) is in E (whether TE c E or not).

Proof. \l> is the pushout of e ; and each component of e is in

E , being by (lU.lt) and (lit.5) of the form (l, a) where a is a

retraction. C

The following generalizes, to the pointed-endofunctor case, Theorem

9.3 of Koubek and Reiterman [13].

THEOREM 16.5. Let TE c E where (E, M) is proper. Then

(A, a, B) € T/k has a reflexion in T-Alg if the free T-algebra on B

exists. Thus T-Alg is reflective in T/k if and only if U : T-Alg -»• A

has a left adjoint. When A is E-cowellpowered, we can add

"constructive" to the conclusions if we add it to the hypotheses.

Proof. {A, a, B) admits a reflexion (or a constructive reflexion)

into T-Alg if S(A, a, B) does, by §5-2; and S{A, a, B) does if

T^?T<t(4, a, B) does, by Propositions l6.M and l6.2. But

T ^ T ^ U , a, B) = (S, 1 , TB) ; and to give a reflexion of this is, by

Proposition lU.3, to give the free T-algebra on B . O

REMARK 16.6. As Koubek and Reiterman point out, this result is false

without the hypothesis that TE c E for some proper (E, M) ; for Adamek

[?] has given an example where free T-algebras exist constructively, but

T-Alg is not cocomplete, lacking even coequalizers.

On the other hand, TE c E ensures coequalizers in T-Alg , whether

free T-algebras exist or not; cf. [73], Corollary 9.6. More generally:

THEOREM 16.7. Let TE c E for a proper (E, M) . Then a functor
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K -*• T-Alg given by X : K. •* A , x : TX -*• X , has a colimit in 7-Alg if

T : colim TX -*• T colim X is in E . This is certainly the case when K.

has a terminal object; thus in particular T-Alg admits coequalizers;

constructively so, in the E-cowellpowered case.

Proof. By Proposition lU.l, we seek a reflexion of the (A, a, B)

given by (l^t.l), where Y = X and A denotes colim X . Clearly

TA_: colim X -*• T colim X is the composite of T with

colim TX : colim X •*• colim TX . Since x-xX - 1 , it follows from (lU.l)

that a'xA = b . If T is in E , so is its pushout b , and the

reflexion exists by Proposition l6.3.

If K has a terminal object 3 , the generators q. : Xo •* colim X
p P

and rr, • TX^ •* colim TX of the colimit-cones are regular epimorphisms,

and hence in E . Since Tqo = T-rn and TqD € E , we have T € E . C
P t> P

REMARK 16.8. TE c E does not ensure cocompleteness of T-Alg ;

when A = Set and E = the epimorphisms, T-Alg may lack even an initial

object; as when T = 1 + H and H is the covariant-power-set functor.

See Barr [2], Example 6.8, or Proposition 20.6 below.

16.2. Now consider a map a : (2", x ') •+ (T, x) of pointed

endofunctors, and let (S', a') be the well-pointed endofunctor on T'/A

corresponding to the above (5, a) on T/A .

PROPOSITION 16.9. We have a pushout diagram

•* a^S'a*

(16.1)

where e is the counit of the adjunction a ^ a ' .

Proof. S' and a' are defined by the primed analogue (\k.l)* of the

pushout (lU.T). But (lU.7)1 remains a pushout when we compose each vertex,

on the right, with any functor; or when we compose each vertex, on the

left, with a left-adjoint functor. Thus 0̂ (1*4.7)'a* is again a pushout;

it exhibits a^o'a* as the pushout by a^e ,a* of a^T^px '*a* =
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we are using subscripts here to distinguish one e from another.

If we suppose for the moment that S and 0 are defined by the push-

out (16.1), then pasting c^d1*.7)'ct* on top of (l6.l) exhibits a : X -*• S

as the pushout of T^px* by e*a*e ,a* = e ; so that this 5, O is

indeed that originally defined by the pushout (lU .7). D

It now follows from Proposition 9.2 that the 9 : a^S' •* Sat ,

corresponding to the IJJ of (l6.l), satisfies (8.1), where 0 = 01^.

PROPOSITION 16.10. If (E, M) is proper and a € E we have

6 € E .

Proof. It is immediate from the definition of maps in T/k that

a* , which is always faithful, is also full when a is epimorphic. Hence

the e of (l6.l) is an isomorphism; so too is its pushout if) . Since 6

is the composite

we have only to show that â 5'ri € E ; since a^E c E , it suffices to

show S'r\ € E . By Proposition 16.U, 5' is an E-quotient of T^RT'* ,

so it suffices in fact to show that T^TT'*T\ € E , and therefore to show

that i?T'*n € E .

By (lU.3), n has the form (l, a) ; hence x'*n. has the same form,

and i?xMn = (a, a) . This is in E because a , being by (1^.2) the

pushout of aC , is in E . •

Proposition 8.U, along with Propositions 1^.2 and 1^.3, now gives the

following, which generalizes to the pointed case Corollary 9-5 of Koubek

and Reiterman [73] and the results on pages 65 and 66 of Reiterman [J5] :

THEOREM 16.11. Let T E c E for a proper (E, M) and let

a : (I", T') •+ (T, T) be in E . Then if an object (A, a, B) of T'/k

has a reflexion into 2"-Alg , the object a^(A, a, B) of T/k has a

reflexion into 7-Alg . In particular the free T-algebra on A exists if

the free T'-algebra does. Moreover the full inclusion

a : T-Alg -»• 2"-Alg has a left adjoint a# . If A is E-cowellpowered,

we can add "constructively" throughout. Q
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17. The explicit form of 5, a for a pointed T

17.1. The results above were obtained directly from the definition

(lU.7) of (S, a) , without an explicit calculation of it. Yet such a

calculation is of interest as giving explicitly the sequence in T/A

which, in the constructive case, converges to the reflexion in T-Alg .

Given {A, a, B) in T/A , consider the coequalizer b : TB •* C of

Ta'TTa and Ta-TxA in

TTA

(17.1) u = 1 fa --+ TB -^ C .

PROPOSITION 17.1. S defined by the pushout (lU.7) has

S{A, a, B) = (S, b, C) with b, C as in (17-1); the {A, a, B)-component

of a is (a'TA, ZJ'TB) J and the {A, a, B)-component of the transform

<f> : RT* •+ T*5 of ty is (1, b'TB) .

Proof. Consider what it is to give maps

(f, g) : (A, a, B) •* (A1, a', B')

and

(h, k) : T^T*(A, a, B) •+ (A', a', B')

in T/K satisfying (f, g)-e(A, a, B) = (h, k)'T^pT*{A, a, B) .

To give (h, k) is equally to give its transform

(u, v) : RT*(A, a, 3) -* T*{A', a', B')

2
in A , under the adjunction T^ H T * ; that is,

(u, v) : [B, 1B, B) •* (A', a'-TA', B') .

Then the commutativity condition above transforms to

(/ , g) = (M» U ) ' P T * U , a, 5) = («, v)-{a-TA, l) ;

or f = u'a'XA and g = v .

But the condition that (u, v) be a map in A is V = a'-xA''u ;

so t ha t a l l i s determined by u alone. There remains the condition for

( / , g) to be a map in T/A ; namely a''Tf = g-a , or

a'-Tu'Ta-TrA = a'-TA''u-a . Since the r igh t side of the l a t t e r i s also

a'-Tu'Ta'iTA by na tu ra l i ty , the condition i s ul t imately, by ( 1 7 . l ) , that
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a''Tu = wb for some (necessarily unique) w : C •* B ' .

Since this last is the assertion that (u, w) is a map

( B , b, C) -> (A', a', B') i n T/A , and s i n c e ( u , w)(a-jA, b-rB) = {f, g)

and (u, w ) ( l , b'XB) = (u , u) , t h e r e s u l t f o l l o w s . •

REMARK 17 .2 . Since 5 ( 4 , a, B) = (B, b , C) where J i s a r e g u l a r

epimorphism, t h e va lue of 5 a t t h e map ( / , g) : (A, a, B) •* (A1, a ' , B']

has t h e form (g, h) : (B, b, C) ->• ( B ' , fe', C") , where h i s determined

by to = b'-Tg . Note t h a t when T i s i t s e l f w e l l - p o i n t e d , so t h a t

TT = xT , we have S{A, a, B) = ( B , 1 TB) and a ( 4 , a , B) = (a-x/1, xB) .

1 7 . 2 . Now for any (A, a, B) in T/A , t h e f r e e - a l g e b r a sequence

S(A, a, B) .of §5-2 may be called the algebra-reflexion sequence for

{A, a, B) . We give i t explicitly.

We define inductively a sequence X : °° ->- A and a natural

transformation x : TX -»• X , such that the composite x-xX is the

canonical map X + X of §i*. This fixes the values of the non-limit

connecting maps by

(17.2) ^ + 1 = oc&-TX& .

We start by setting

(17-3) XQ = A , Xx = B , xQ = a : TA •* B ;

we define xo+-i a n d XR+o t o ^ e t l l e c o e 1 u a l i z e r i n

T \ W; Vl 5

for a limit-ordinal a we set

(17.5) X = colim Xo , with XZ the generators of the colimit-
a & 6 cone

and we define x and X , to be the coequalizer in
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(17.6) colim TX a I

That x is indeed natural follows automatically from our inductive proof

of:

THEOREM 17.3. With X, x as above, the sequence

S(A, a, B) : oo -* T/A is (X, x, X+) , so that

S B U , a, B) = [XQ, arg, ̂ + 1 ) .

sequence S{A, a, B) converges at a precisely when the sequence X

does; and then [if we take for simplicity A to be 1 ) the reflexion

of (A, a, B) in T-Alg is X with the action x : TX •* X = X .

Proof. In view of Proposition 17.1, the only point which is not

immediate is the identification of the two sequences at a limit-ordinal

a . Given the description (lU.l) of colimits in 7/A , what we are to

prove is that

colim TXn

colim xo
B<a B

X 'XX
a a

TX -* X
a+1

is a pushout. If u : TX •*• D and v : X -*• D satisfy wT = u•colim XQ ,

they satisfy u-rf = u"*g+1*
xo for a 1 1 B < a . On composing this with

TXO , the left side becomes U-TX 'tft hy natural!ty, while by (17.2) the

right side becomes U**g+I*
xg+1> = u**g • x t follows that v = WTAT ; so

that u-T = M«TX 'colim xo , and the result follows from (17.6). •
a p<a 3
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REMARK 17.4. In the special case when T is well-pointed, so that
Tx = xT , i t is clear by induction that X = TX and x = 1 , for

P+-L P P

g * l ; here we use Lemma 5-5 to check that, for a limit-ordinal a , the
T in (17.6) is just TX . So in this case the sequence X is just the

free-algebra sequence TB of §5-2; and (A, a, B) has a reflexion into
T-Alg exactly when the free 7-algebra on B exists.

Thus Theorems 6.2 and 7-5 are in fact special cases of Theorem 15-6,
while the results of §8 are special cases of those of §l6.

V. ALGEBRAS FOR UNPOINTED ENDOFUNCTORS

18. Reduction of the unpointed to the pointed case

From any endofunctor H of A we get a pointed endofunctor (T, x) ,

by taking T to be the coproduct 1 + B and x : 1 -»• 1 + H to be the

in jec t ion . To give an act ion of (T, x) on A i s j u s t to give any map

a : HA •* A ; we c a l l a an action of H on A , and c a l l (A, a) an

H-algebra. A map of T-algebras i s j u s t an f : A •*• A' with

f-a = a' -Hf ; we c a l l i t a map of H-algebras. Thus T-Alg and #-Alg

are the same category; confusion between the pointed and the unpointed

senses of the words i s unl ike ly .

An object of 7/A = (l+#)/A i s now a co-span

(18.1) HA • B A,
m n

the maps being pairs (/ : A •*• A', g : B •*• B') for which the evident

diagrams commute.

Clearly T preserves the E-tightness of (Mr, a)-cones if H does.

Further TE C E if HE c E . Moreover, in the case of a functor

X : K •* A and the comparison-map H : colim HX •*• H colim X , we have

T £ E if H € E . Finally, a natural transformation a : H' •*• H gives a

map l + a : l + f f ' - > - l + t f of pointed endofunctors, inducing an

u
a : ff-Alg •+H'-Alg ; and (l+a) € E if a € E . Thus:

THEOREM 18 .1 . In Theorems 15.6, 16 .5 , 16.7, a«d l6 . l l . , if we replace

T by the unpointed H , replace T-Alg by H-Alg , replace T/k by
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(l+#)/A 3 and replace the hypotheses on T, T , and a by the same

hypotheses on H, H 3 and a , the conclusions still hold. O

It is this case of Theorem 15.6 which generalizes Theorem 8.5 of

Koubek and Reiterman [7 3]; while the other three theorems generalize, as

we have already remarked, various results of their §9.

The results in the pointed case are the stronger ones; for they

include as above those in the unpointed case, while the converse is false.

19. Partial algebras

Suppose for this section that A admits finite limits and is

E-cowellpowered for a proper factorization system (E, M) .

A span

(18.2) HA ^-C -^ A

is called by Koubek and Reiterman [J3] in their §5 a generalized partial

algebra for H ; if a map between two such is a pair

(/ : A ->-<4'5 h : C •*• C') for which the evident diagrams commute, they form

a category GPA . A full subcategory NDA is formed by the non-

deterministic algebras: those spans for which < u, v) : C -*• HA x A is in

M . Still smaller is the full subcategory PA of partial algebras, given

by those spans with u € M . Another full subcategory of GPA smaller

than NDA is the category REG of regular generalized partial algebras,

namely those for which the span (l8.2) is the pullback of some cospan

(l8.l). Inside all of these sits the full subcategory #-Alg of honest

algebras, indentified with those generalized partial algebras for which

C = HA and u = 1 . Thus we have full inclusions

ff-Alg NDA • GPA

REG

Koubek and Reiterman point out in their §5 that there are left

adjoints to the inclusion NDA •* GPA (take the (E, M)-factorization of

<w, v) ) , to the inclusion REG •* GPA (take the pushout (l8.l) of (18.2)

and then take its pullback) , and to the inclusion PA -»• GPA (a simple
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transfinite argument using the cowellpoweredness). It follows (this is

their Proposition 6.6) that:

PROPOSITION 19 .1 . If any one of the full inclusions

# - A l g -»- REG , ff-Alg •* PA , fl-Alg -»• NDA , tf-Alg -»• GPA

has a left adjoint, so do all the others. Q

Now if T again denotes 1 + H , the functor K : T/k -*• GPA sending

(18.1) to i t s pullback (18.2) has the left adjoint L : GPA •+ T/k which

sends (l8.2) to i t s pushout. Since the composite of K with the inclusion

J : tf-Alg •+ T/k of §1^.2 is clearly the embedding ff-Alg ->• GPA , we have:

THEOREM 19 .2 . The generalized partial algebra (A, u, v, C) of

(18.2) has a reflexion in ff-Alg if its image L(A, u, v, C) in T/k

does, and in particular when the algebra-reflexion sequence for this latter

converges. When' fl-Alg is reflective in T/k 3 each of the inclusions in

Proposition 19.1 has a left adjoint. D

The f irs t sentence here includes Theorem 7.1 of Koubek and Reiterman,

who use GPA as a well-behaved category in which to embed ff-Alg , as we

use T/k , and whose "completion construction" is precisely our algebra-

reflexion sequence applied to L{A, u, V, C) ; as follows easily from §20

below. We further recapture their Theorem 9-^ in the form:

PROPOSITION 19.3. If HE c E , the generalized partial algebra

(A, u, v, C) has a constructive reflexion in ff-Alg whenever u € E .

Proof. I f L{A., u, v, C) i s t h e pushout ( l 8 . l ) of ( l 8 . 2 ) , we have

n € E . If a deno te s < n, m) : TA = A + HA -*• A , t h en a-iA = n Z E ;

and the result follows from Theorem 19.2 and Proposition 16.3. O

20. The expl ic i t form of the sequence for a mere endofunctor

20.1. Given a co-span [A, m, n, B) as in (l8.l), consider the push-

out

HA

(20.1)
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PROPOSITION 20.1. The well-pointed endofunctor S ofi.ik.'j), with.

T = 1 + H , is given by S(A, m, n, B) = (B, r, s, C) ; and the

(A, m, n, B)-component of o is (n, s) .

Proof. One v e r i f i e s immediately tha t b = <s, r> i s the coequalizer

in (17.1) when a = <n, m) . D

We now consider the a lgebra-ref lexion sequence X of §17.2 in the

present case . Given {A, m, n, B) as in ( l 8 . l ) , we define a sequence

X : 00 ->- A and a na tura l transformation y : HX •*• X . S tar t ing with

(20.2) x
0 = A > X

± = B • X^ = n •• A •+ B , y Q = m : HA •* B ,

we define xo+2> ^ R + 1 >
 a n d b v t h e P u s h o u t

•* X,B+l

(20.3)
,3+2
0+1

HX.
3+1 y3+1

for a l imi t -o rd ina l a we set

(20.U) X = colim X. , with XZ the generators of the colimit-cone;
a 3<a B e

and we define X , x , and y by the pushout

colim HX

colim ya
3<a P

(20.5)

-»• x
0+1

THEOREM 2 0 . 2 . Le t AT, y be as a ioue and let $ : X ->• X+ be the

canonical map with (j>g = xt . Then the sequence
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S(A, m, n, B) = « -»• (i+#)/A is (X, y, <)>, X ) . This sequence converges

at a precisely when the sequence X does; whereupon X , with the

action y : HX -* X = X 3 is the reflexion of (A, m, n, B) into

ff-Alg .

Proof. This is what Theorem 17-3 reduces to in the present case: for

(17-**) reduces to (20.3) by Proposition 20.1, and it is equally immediate

that (17.6) reduces to (20.5). D

In the present case we can simplify and unify (20.3) and (20.5); for

an easy inductive argument gives:

PROPOSITION 20.3. For X, y as above the diagram

yr'0
0

(20.6)

HXn yB
B+l

is a pushout for each 6 • a

Combining this with Propositions lU.l, 1*».2, and lU.3, we get

simplified descriptions of what we might call the colimit sequence, "the

algebraic-adjoint sequence, and. the free-algebra sequence, for an unpointed

H ; of. Koubek and Reiterman [/3], §3, and Reiterman [15], §1.

We give the free-algebra sequence explicitly. By Proposition 1^.3 we

are to apply Theorem 20.2 to the cospan

HA — • A + HA < A
m n

where m and n are the injections. If 0 denotes the initial object,

we have a pushout

(20.7)

HA
m

-»• A + HA
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and we g e t ano the r by p a s t i n g t h i s on t o p of t h e pushout ( 2 0 . 6 ) . Hence we

h a v e :

THEOREM 20.4. Given A € A define X : «> •+ A and y : HX •* X+ by

setting Xn = A ; setting X = A + HX with injections X^ and

yo ; and, for a limit-ordinal a , setting X = colim X with generators

XT. . Then if X converges at a the free H-algebra on A is X with

the action y : HX ->• X = X . O
a a a a+1 a

20.2. Recall tha t an ff-algebra (C, o) embeds in (l+H)/A as the

cospan (C, c, 1, C) . A map in (l+ff)/A from (A, m, n, B) to t h i s i s a

pair ( / , g) of maps sat is fying

HA

(20.8)

o ' 1

and hence equivalently a single map g satisfying

c ,

(20.9)

HA

tin

HB

HC

m B

C .

The following is an adaptation to (l+#)/A of Proposition 6.7 of Koubek

and Reiterman [73]:

PROPOSITION 20.5. If (20.8) is in fact the reflexion of

(A, m, n, B) into fl-Alg , then (20.9) is a pushout.

Proof. Let the pushout of the top and left edges of (20.9) be given

by u : HC •*• D and V : B -*• D , and let w : D -*• C be the unique map

satisfying wu = c and wv = g . Make D into an #-algebra by giving it
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the action U'Hw : HD -»• D , and observe that w : D •* C is then an

algebra-map.

Since vm = wHg'Un = wHwHvHn , it follows by analogy with (20.9)

that v provides a map in (l+#)/A from (A, m, n, B) to the //-algebra

D . Since (20.8) is the reflexion, we have V = tg for a unique algebra-

map t : C -*• D . But now g = wv = wtg ; whence the algebra-map wt = 1 ,

because g gives the reflexion.

As an algebra-map, t satisfies to = wHW'Ht ; since wt = 1 , this

gives u = to = tuu . On the other hand v = tg = twv . Since u and v

constitute the pushout, we conclude that tio = 1 . Hence w is an

isomorphism, and (20.9) is the pushout. d

The following special case, obtained by pasting (20.7) on top of

(20.9) when B = A + HA , is Proposition 5-11 of Barr [2]:

PROPOSITION 20.6. If the free U-algebra on A € A is (C, a) ,

with unit f : A -*• C , then f and a : HC •* C express C as the

coproduct A + HC . D

REMARK 20.7. Propositions 20.5 and 20.6 seem to have no simple

analogue in the pointed-endofunctor case. Of course they follow

alternatively from Proposition 20.3 and Theorem 20.h when the reflexion

exists constructively; but the real point is their more general validity.

In certain rather restricted cases, this leads to a necessary condition for

the existence, and even for the constructive existence, of the reflexion.

An example is given by Theorem 6.8 of Koubek and Reiterman [13], which is

easily modified to deal with out (l+#)/A instead of their GPA . Because

of the very restricted applicability of this result we pass it by, and

consider necessary conditions only for the important special case

A = Set .

21. The special case A = Set

21.1. If E is the epimorphisms, every endofunctor H of Set has

HE <r. c , since epimorphisms are retractions. We need not have Hh\ c: M ;

but a monomorphism i with non-empty domain is a coretraction, so that Hi

is a monomorphism.

For a cardinal a , let us loosely write Ha for card Ha . The
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essence of the following result is due to Kurkovd-Pohlova and Koubek 1141:

THEOREM 21.1. For an endofunctor H of Set , the following are

equivalent:

(i) free H-algebras exist constructively;

(ii) #-Alg is constructively reflective in (l+#)/Set ;

(Hi) free H-algebras exist;

(iv) there are arbitrarily large cardinals y with Hy < y •

Proof, (i) implies (ii) by Theorem 16.5, and (ii) implies (iii)

t r i v i a l ly ; (iii) implies (iv) since, if the free #-algebra on the

cardinal a has cardinal y , Proposition 20.6 gives a + Hy = y , so that

a — y and Hy — y . I t remains to prove that (iv) implies (i) .

Given a non-zero cardinal a , we can find by (iv) an infinite

cardinal 3 satisfying a 5 3 and H$ < 3 . and hence satisfying

a + #3 - 6 • Let 3 be the least cardinal satisfying this las t

inequality. If y = a + #3 we have 0 < a 5 y < 3 ; hence Hy < //3

since there is a coretraction y -*• 3 • Thus a+Hy<a+H&=y ; and

since 3 was the least solution we have y = 3 , or a + ff3 = 3 •

We f i r s t consider the free-algebra sequence X of Theorem 20.*+ in the

case of a non-empty A . By the last paragraph we can find a set B and

an isomorphism k : A + HB -*• B . We define inductively maps rft : Xo -*• B

forming (as is easy to verify inductively) a cone over X with vertex B .

Let r • XQ = A •+ B be the composite of k with the injection

A •*• A + HB , le t rn . be the composite
fcs+1

and, for a limit-ordinal a , let r : X = colim Xo •* B be the induced

map. Since the domain of r^ is not empty, it follows inductively (using

§2.2 at the limit-ordinals) that each ro is a monomorphism. Hence the
p

sequence X converges since Set is wellpowered.

Vhen A is the empty set 0 we have X = 0 and X = HO , so that

the sequence converges trivially if HO = 0 . In the contrary case the
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free ff-algebra on HO exis ts constructively by the above, so that by

Theorem 16.5 the reflexion in #-Alg of the cospan {HO -*• 0 + HO «- 0)

exis ts construct ively; but by Proposition lU.3 the reflexion-sequence for

t h i s cospan i s jus t the free-algebra sequence for 4 = 0 . D

REMARK 21 .2 . The authors of [74] ca l l H non-excessive i f i t

s a t i s f i e s the necessary and sufficient condition (iv) of the above theorem.

This condition i s of course implied by the suff ic ient conditions given by

Theorems 18.1 and 15.6; which, since the only cocomplete factor izat ion

systems on Set have for E the isomorphisms or the epimorphisms, f a l l

together by Proposition 2.2 into the requirement tha t H preserve, for

some regular cardinal a , the colimits of a-chains. This l a t t e r

requirement, by Proposition 2.3 and the remark following i t , i s implied by

the smallness of H ; and may or may not conversely imply t h i s , depending

on the existence of very large cardinals . However non-excessivity is a

s t r i c t l y weaker condition - the following example, suggested by G. Monro,

improves that of Koubek and Reiterman [72] , §3, in being independent of the

Generalized Continuum Hypothesis.

EXAMPLE 21.3. There is a non-excessive H : Set -»• Set which does

not, for any regular cardinal a , preserve the colimits of a-chains.

Proof. Define inductively the sequence X of "beth-cardinals" by

Xn = to , XDj_ = 2 , X = sup Xa for a l imi t ordinal a . Define a0 0+1 a 6 < a B

functor H : Set -»• Set on objects by

HA == { I Inj(X , A)\

where Lim i s the set of a l l small l imi t -o rd ina l s , where Inj{N, A) i s the

set of a l l in ject ive maps N -*• A , and where 1 i s the one-element set

{0} . For a map / : A -*• B l e t Hf send the inject ion g : X •*• A to

fg i f fg i s an in ject ion, and to 0 otherwise; and l e t i t send 0 to

0 .

I t i s immediate that H i s non-excessive, since for any 3 we have

the inequali ty of cardinals #Ao+1 < Xg+1 . Yet, for any regular cardinal

a , H does not preserve the colimit of the a-chain X , where Xo = Ao
p P+l
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and XQ is the inclusion of ^g+1
 a s a n initial segment of X +, ; for

X
colim HX has cardinal A , while H colim X = HX has cardinal 2 a . •

REMARK 21.4. Koubek and Reiterman give in [73], §11, necessary and

sufficient conditions, in the case A = Set , for the weaker requirement

that a : H-Alg -*• ff'-Alg , induced by a : H' •*• H , have a left adjoint.

21.2. Following Reiterman [75], §1» and Koubek and Reiterman [72], §3,

we can extend from A = Set to certain "concrete" categories A , for

endofunctors with HE c E , the sufficiency (but not the necessity - see

[72], §3) of a cardinal-condition of the non-excessivity type; which here

too may in suitable cases be weaker than conditions of the Theorem 15.6

type:

THEOREM 21.5. Let A be E-oowellpowered for a proper factorization

system (E, M) 3 and let H -. A ->- A satisfy HE c E . Suppose there is an

adjunction G —t V : A -»• Set with its counit e : GV •+ 1 in E . Then if

VHG : Set -*• Set is non-excessive^ H-h±g, is constructively reflective in

Proof. By Theorem 16.5 we have only to prove that free ^-algebras

exist constructively. Let X be the free-ff-algebra sequence on A £ A ,

and Y the free-K#G-algebra sequence on VA t Set . We produce a natural

transformation f : GY -*• X in E ; then, since Y converges by Theorem

21.1, the convergence of X follows from the E-cowellpoweredness.

We define /„ inductively, checking inductively that it lies in E .

For / : GY •* X we take eA : GVA •* A , which lies in E . Using

Theorem 20.1* v e take for fo n : GYO . -*- Xn ., the composite

p+J- p+l p+-L

{ ) - GVA
which is in E since e and f_ are. Finally for a limit-ordinal a we

p
take f = colim /„ , which makes sense because G preserves colimits;

8<a

again it lies in E . The naturality of / is easily checked by

induction. E

We can moreover deduce similar results in the pointed-endofunctor

https://doi.org/10.1017/S0004972700006353 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700006353


A u n i f i e d t r e a t m e n t o f t r a n s f i n i t e c o n s t r u c t i o n s 6 3

case: we content ourselves with the following, for the case A = Set :

THEOREM 21.6. For a pointed endofunotor {T, x) of Set , T-Alg

is constructively reflective in T/Set if there are arbitrarily large

cardinals y with Ty 5 y .

Proof. Write H for T considered as a mere endofunctor, write T'

for the pointed endofunctor 1 + H , and observe that the map a : T' •*• T

of endofunctors given by a = ( X, 1> : 1 + H -»• T is a retraction. The

result now follows from Theorem 16.11 in the light of Theorem 21.1. C

V I . FREE MONADS AND FREE MONOIDS

22. Free and a lgeb ra i ca l l y - f ree monads

22.1. That reliance on the context, which has enabled us to manage

without a notational distinction between a mere endofunctor H and a

pointed endofunctor T = (T, x) , becomes too stretched when we pass to a

third level and consider a monad (P : A -• A, IT : 1 -»• P, v : P -»• P) .

Accordingly we denote the monad (P, ff, v) by the bold-face le t ter P ,

but use the ordinary le t te r P for the pointed endofunctor (P, IT)

whenever confusion is unlikely. Then P-Alg is the full subcategory of

P-Alg determined by those (A, a) where the action a satisfies, in

addition to the unit condition WT\A = 1 , also the associativity condition

a-Pa = a-vA .

If P is such a monad, T = (T, x) is a pointed endofunctor, and

a : (T, x) -*• (P, IT) is a map of pointed endofunctors, we write a' for

the restriction

P-Alg •+ P-Alg -^+ y-Alg

# t
of a ; observe that a commutes with the forgetful functors P-Alg -»• A

and T-Alg •> A . Proposition 5.2 of Barr [2] has the following simple

extension to'the pointed case:

PROPOSITION 22.1. Every functor P-Alg -»• T-Alg commuting with the

forgetful functors is a for a unique a , namely the composite
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where (PA, pA) is the image of the free ?-algebra (PA, vA) . Moreover,

if (T, T) underlies a monad T = (T, x, u) , then a takes its values

in T-Alg c T-Alg if and only if a is a monad-map T ->• P . G

We say that the monad P , with the pointed-endofunctor map

a : T -*• P , is the algebraically-free monad on T if a is an

isomorphism of categories; that is , if every T-action a : TA -*• A is

a'aA for a unique P-action a , and every T-algebra map / : A •*• A' is

also a P-algebra^nap. The phrase is meant to suggest that P is the

"free monad-with-the-same-algebras"; i t s adverbial form is justified by

the following consequence of Proposition 22.1:

PROPOSITION 22.2. If the algebraically-free-monad on the pointed

endofunctor T exists, it is the free monad, in the ordinary sense, on

this pointed endofunctor. Q

The observation of §5-1, that the forgetful functor T-Alg -»• A is

monadic whenever i t has a left adjoint, gives:

THEOREM 22.3. The algebraically-free monad on T exists if and only

if the forgetful functor U : T-Alg •* A has a left adjoint F ; and then

it is the monad P arising from the adjunction F -t U . In particular it

exists if T satisfies the hypotheses of Theorem 15.6 or Theorem 21.6. D

In the case where T = 1 + H for a mere endofunctor H , we speak of

the algebraically-free monad on H ; which by Proposition 22.2 is also the

free monad, in the ordinary sense, on the endofunctor H : since

T = 1 + H is clearly the free pointed-endofunctor on H .

22.2. Barr gives an example in [3], §5, for an A that is neither

complete nor cocomplete, where the free monad on an endofunctor H exists

without being the algebraically-free-monad.

Observe that, for any monad P = (P, ir, v) , we have a monad-map

TT : 1 -»• P from the unit-monad 1 . If A is a one-object category that

is a group, every map is an isomorphism, and hence every monad is

isomorphic. to 1 . An endomorphism of the mere endofunctor 1 = 1 . is an

element in the centre of the group A ; if this centre is t r iv ia l , the

category of monads on A is equivalent to the unit category, and hence the
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endofunctor H = 1 is 1 .

An object of 1-Alg is an element x of the group A , and a

morphism x •* y is an element z with z xz = y ; there are no such

morphisms if x is the unit element of A and y is not. However

1-Alg = A ; so that in general 1-Alg is not equivalent to 1-Alg .

22.3. Yet the converse of Proposition 22.2 does hold if A is

complete and has small hom-sets : this is Corollary 5.10 of Barr [2];

but his proof, in its appeal to his Proposition 5.6 with its use of the

special adjoint functor theorem, seems to be incomplete unless A is well-

powered .

PROPOSITION 22.4. If A is complete (but not necessarily

cocomplete) and has small hom-sets , and if the free monad (P, a : T -*• P)

on the pointed endofunctor T exists, it is the algebraioally-free monad;

and similarly when T is replaced by a mere endofunctor H .

Proof. The actions on A , and on the arrow-category A , of the

strict monoidal category End A of endomorphisms of A , both admit right

adjoints; in that we have, for any endomorphism H of A ,

A(ft4, B) £ (End A)(#, {A, B}) ,

A2(Hf, g) SS (End k){H, (f,g>) ,

where {A, B} is the right Kan extension of B : 1 •*• A along A : 1 -»• A ,

given by

{A, B}C=^C>A) ,

and where < /, g') is defined by the pullback

(22.1) </, g) {A, B'} .

{A1, B'}

By the general principles of such actions with right adjoints, {A, A} and

^/) ft have canonical monad-structures. Pointed-endofunctor maps
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T •*• {A, A} and monad-maps P •* {A, A} correspond respect ively to

T-actions TA •*• A and P-actions PA -*• A , while pointed-endofunctor maps

T •*• (f, f) and monad-maps P •*• </, f) correspond to morphisms of the

respec t ive algebras. I t follows at once that a i s an isomorphism if

(P, a) i s the free monad on the pointed T ; and s imilar ly of course in

the unpointed case. ^

23. Free and algebraically-free monoids

23 .1 . A monad P on A i s a monoid in the monoidal category

End A , the tensor product in which i s composition; and conversely a

monoid P in any monoidal category A gives a monad P ® - on A . So

each of monads and monoids can be discussed in terms of the other; we in

fact find i t convenient to refer monoids back to monads.

Suppose then that A i s a monoidal category - not in general

symmetric - with tensor product ® and unit object J . We change

nota t ion to the extent tha t H (respectively T = (T, T) ,

P = (P, IT, v) ) represents an object (respectively pointed object , monoid)

in A ra ther than the corresponding endofunctor H ® - (respect ively

pointed endofunctor T ® - , monad P ® - ) . By an action of H on A we

now mean an action of H ® - , and we write ff-Alg for (H ® -)-Alg ;

s imi la r ly for 7-Alg and P-Alg . Observe that if a : T ® A •*• A i s an

ac t ion of T on A , then a ® B : T®A<8)B-*A®B is-an act ion of T

on A ® B , so that - ® B gives a functor T-Alg -»• T-Alg ; and s imilar ly

for act ions of H or P . Given a map a : (2", T) •*• (F, ir) of pointed

objects we write a : P-Alg -»• T-Alg for the (a ® -) ' of §22.1; observe

that a+(U, a) ®B) = af(A, a) ® B .

We say that the monoid P , with the pointed-object map a : T -*• P ,

i s the algebraically-free monoid on T i f a : P-Alg -»• T-Alg i s an

isomorphism of ca tegor ies ; tha t i s , i f every T-action a : T ® A •* A i s

a'(a ® 4 ) for a unique P-action a , and every T-algebra map i s also a

P-algebra map; in other words, i f a ® - : 2 " ® - * P ® - gives the

a lgebra ica l ly - f ree monad on T ® - . Similarly when T i s replaced by a

mere object H ; the a lgebra ica l ly- f ree monoid on H i s the

a lgebra ica l ly - f ree monoid on the pointed I + H . The uniqueness of the
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algebraically-free monoid on T , when i t exists, can be deduced from the

observations above, or directly from the last assertion of the following;

which is stated for the pointed case but applies equally to the unpointed

one:

THEOREM 23.1. The algebraically-free monoid on T exists if and

only if there is a T-algebra (P, p) and a map TT : I ->• P such that, for

each A € A 3 p ® A with the unit TT®A: A+P&A is the free

T-algebra on A . When it does exist, P is the free monoid on T , with

unit a : T -»• P the composite

(23.1)

Proof. F i r s t , l e t a : T •*• P give the algebraical ly-free monoid on

T . Then, since the free P-algebra on A i s ( P ® / 1 , v ® .4) with the

unit 7T ® A , the free T-algebra on A i s (P ® A, p ® A) with the same

uni t ; where p = v ( a ® P) : T ® P -> P .

Next, suppose that the forgetful functor U : T-Alg -*• A has a l e f t

adjoint F sending A to P ® A , for some T-algebra (P, p) , with unit

of the form TT ® A : A -*• P ® A . Then, since IT ® P i s the unit of the

free T-algebra on P , there i s a unique map \> : P ® P -*• P of

T-algebras with V(TT ® P) = 1 ; whence moreover

V ® A : P<g)P®A->-P®A must be the unique map of T-algebras with

(v ®A)'(TT ® P ®/l) = 1 . Hence v ® - i s the mult ipl icat ion of the monad

UF on A , which therefore has the form (P ® - , TT ® - , v ® -) and thus

ar ises from a monoid P = (P, TT, v) in A . The isomorphism

P-Alg -»• T-Alg , whose existence follows from Theorem 22.3, i s now by

Proposition 22.1 given by a = (a ® l ) , where a i s defined by (23.1).

Last ly, suppose a to be an isomorphism as above, l e t R = (i?, p, X)

be any monoid and 3 : T -*• R a map of pointed objects . Then, by

Proposition 22 .1 , g : R-Alg -»• T-Alg i s a 6 for a unique monad-map

5 : P ® _ - » - R ® _ . For a P-algebra A and an object B we have

6 (-4 ®S) = (6 A) g> B , since the corresponding thing i s t rue for (3 and

1* t f f

the isomorphism a . I t follows that 6 has the form y = (y ® l )

for some y : P •*• R , namely y = 61 ; then tha t y i s a monoid-map

P •*• R ; and f ina l ly tha t i t i s the unique one with yc = B . D
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23.2. Unless the monoidal structure has special properties, the
existence of the algebraically-free monoid on T is a strong condition,
even for very good categories A ; i t does not follow from the existence
of the free monoid on T , nor from the existence of the algebraically-free
monad on T ® - : the la t te r may well exist without being of the form
P ® - with a unit of the form a ® - .

Consider for example the monoidal structure on A = Set having as
tensor product the eoproduct + , for which the unit object is the empty
set 0 . For any monoid P = (P, IT, v) , the unit IT : 0 -»• P is the
unique map, while the lef t and right unit-axioms force V : P + P •*• P to
be the codiagonal. Hence the category of monoids in A is A itself, and
the free monoid on the (mere) object 0 is 0 . Yet the functor
0 + - : A ->• A is the identity, and the algebraically-free monad on this is
N x - , where N is the *-monoid of the natural numbers under addition.
This monad is quite different from the monad 0 + - given by the free
+-monoid 0 on 0 .

However i t is otherwise when the monoidal structure on A is right-
closed, in the sense that A(A ® B, C) is isomorphic, naturally in A , to
A(A, [B, C]) for some [B, C] .

PROPOSITION 23.2. If A is right-closed, the algebraically-free
monoid on T exists if and only if the free T-algebra on I exists. If
moreover A has pullbacks, the free monoid on T , if it exists, is
algebraically free.

Proof. Let (p, p) be the free y-algebra on I , with uni t

n : I •*• P . For any T-algebra (A, a) and any object B l e t

aR : T ® [5 , i4] •*• [B, A] be the map corresponding under the adjunction to

a - ( l ® e) : T ® [B, A ] ® 5 •*- A , where e : [S, A] ® B -• A i s the

evaluat ion. Then the composite of au with T ® 1 : [5, A] ->• T ® [B, A]
D

c o r r e s p o n d s under t h e a d j u n c t i o n t o a - ( l ® e ) ' ( x ® l ) = a*(x ® l ) * ( l ® e) ,

which i s e s i n c e a*(x ® l ) = 1 and we a r e n o t a t i o n a l l y suppres s ing

isomorphisms J ® X = X . Thus aD*(T ® l ) = 1 , and a_ i s a T -ac t i o n
b is

on [5, A] .

I t is immediate that f : P ® B -*• A is a 7-algebra map if and only
if the corresponding f : P •* [B, A] i s ; since fn corresponds to
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/•(IT ® B) , i t follows that I T ® B : B - » - P ® B is the free T-algebra on

B ; and we now appeal to Theorem 23.1.

For the final assertion, we define </, g) as in (22.1), but with

[A, B] in place of {A, B) , and imitate the proof of Proposition 22.lt. •

23.3. In some cases the slightly weaker condition that - ® A

preserves colimits can replace right-closedness in the f i rs t part of

Proposition 23.2.

THEOREM 23.3. If each - ® A : A -*• A preserves colimits, the
algebraically-free monoid on T exists if the free T-algebra on I
exists constructively. In particular it exists if, for some regular a ,
T ® - : A -»• A preserves the E-tightness of (M', a)-cones, where A is
E- and E'-cowellpowered.

Proof. If X is the free-algebra sequence for I , i t is clear from

the construction of X in §17-2 that X ® A is the free-algebra sequence

for A . If the f i rs t converges to {P, p) , the second converges to

(P ® A, p ® A) ; and we appeal again to Theorem 23.1. •

In these circumstances; we may say that the free monoid on T exists

constructively, being given by the convergence of X . The explicit form

of X is simplest when T = I + H for amere object H ; then Theorem

20.lt gives

(23.2) Xn = I , XR = I + H ® X
0 (3+1

If the sequence converges a t a , so tha t X <~X

i s Xa , IT i s the in ject ion I-*-X

of the maps Xn ® X -*• X defined by induction on & using the inject ion

H ® Xa •+ X , and the map H •* P i s the composite of the l a t t e r inject ion

w i t h _ 1 ® T I : H •* H ® Xa .

Of course the formula (23.2) simplifies in the classical case where

both - ® A and A ® - preserve colimits, as when A is biclosed. In

fact we then only need preservation of coproducts, not all colimits: as ve

have when A is Top and ® is x . For we have the classical result

whose proof is immediate:

, X

X s
a

= colim Xo

Vl = X +

X
a

a

is the

, then

colimit
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THEOREM 2 3 . 4 . When -®A and A®- preserve countable

coproducts, the algebraically-free monoid on a (mere) object H is

P = Y, H > where H = # ® # ® . . . ® # . •
n€N

REMARK. Free monoids, as distinct from free monads, in cases where

Theorem 23.*+ does not apply, were first considered by Dubuc [6], under the

hypothesis that T ® - or H ® - has some rank.

VII. THE CATEGORY OF ALGEBRAS FOR A MONAD

24. Reduction to the well-pointed case

24.1 . How le t T = (T, T, y) be a monad on A , and write 1 for

the pointed endofunctor (T, T) ; so that we have full inclusions

T-Alg c 7-Alg c T/k .

Given (A, a, B) in T/k consider the pushout

Since \JA-TJA = \SA-TTA = 1 , the map \iA is the coequalizer of TxA -u4

and 1 ; or equally of iTA'\sA and 1 . Thus c is the coequalizer of

the maps Ta'TxA-\jA and Ta in

(2U.2)
Ta

TB

or equally of the maps we get if we replace TTA

composing {2h.X) with TTA shows that

here by TTA Moreover,

(21..3) d - cTa -TTA
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Now define an endofunctor L of T/k by sett ing

(24.4) L{A, a, B) = (B, c , D) ,

and making L functorial in the obvious way. We compare L with the

endofunctor 5 of §17-1, using the notation of (17.1). Since

\JA'TTA = \IA-TTA i t follows from (24.1) that C'Ta'iTA = cTa'TxA , so that

e factorizes through the b of (17.1) as c = qb for a unique q ; and

moreover q i s a regular epimorphism, since both b and c are. We

therefore have an epimorphism

(24.5) ( 1 , q) : (B, b, C) •+ (B, c, D)

in T/k , which is clearly the (A, a, B)-component of an epimorphic

natural transformation

(24.6) <(> : 5 -• L .

If we now define X : 1 ->• L by A = (jxj , i t follows from Proposition 7.1

that (£, X) is again a well-pointed endofunctor on T/k . In fact we

have:

THEOREM 24.1. L-Alg is the repletion of T-Alg .

Proof. By Proposition 7-1, an L-algebra (A, a, B) i s an S-algebra

for which <i>(A, a, B) i s an isomorphism; that i s , for which q i s an

isomorphism, or equivalently for which the coequalizer b in ( l7 . l )

already equalizes the two maps TA -*• TB in (24.2). But by Theorem 14.4,

an S-algebra, to within isomorphism, i s a T-algebra (A, a) ; and for

th i s we have b = a . The requirement that a equalize the two maps

7rA •*• TB = TA in (24.2) i s , because a-iA = 1 for a T-algebra, exactly

the associat ivi ty axiom for a T-algebra (A, a) . D

24.2. We can now form the free-£-algebra sequence L(A, a, B) in

T/k , and say that (A, a, B) admits a constructive reflexion in T-Alg

if this converges. We can further give L(A, a, B) expl ic i t ly . We

define a sequence X : » -»• A and a natural transformation a; : TX •*• X by

(17.2)-(17.6), except that we replace (17.4) by
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(2k. 7) * % , > r% - g ^ r^+ 1 — + x ;
fcs+l

then, corresponding to Theorem 17.3, and with the same proof, we have:

THEOREM 24.2. L(A, a, B) is (X, x, X+) , and converges at a

exactly when X does. Then the reflexion of (A, a, B) in T-Alg is X

with the action x : TX •*• X = X . Q

We may cal l X the T-algebra reflexion sequence for (A, a, B) . I t

i s at once seen to coincide with the sequence of Koubek and Reiterman [73],

§10.3, modulo the difference between our T/A and their GPA .

25. Existence theorems for the reflexion of T/A into T-Alg

25.1 . An analysis of the argument used in the proof of Proposition

15.5 gives:

LEMMA 25.1 . Consider an a.-chain in T/A given by X, Y : a ->• A

and x : TX •* Y , and a cone [to, so) : [Xo, xo, Yo) •* (A ' , a', B') over
p p p P p

it. If the cone (tg, Sg) in T/A is E-tight, so is the cone (tR) in

A . If the cones (ig) and [Ftp) in A are both E-tight, the cone

[to, Sg) in T/A is E-tight if and only if the cone (sR) in A is

so. D

THEOREM 25.2. Let T preserve, for some regular a , the

E-tightness of (M', a)-cones. Then if A is E- and E'-cowellpowered,

T-Alg is constructively reflective in T/A . Even without the cowell-

poweredness, it is still reflective if M' = M and (E, M) is proper.

Proof. We deal f i r s t with the la t ter assertion, which is easier. By

Proposition 15-5, S preserves the E-tightness of (M, a)-cones since

T does; so then does L by §2.*4 since <f> : S •*• L l i e s in E (for the

regular epimorphism q of (2U.5) l ies in any proper E ) ; and the result

follows by Theorem 7.5.
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Turning to the f i r s t asser t ion , we apply Proposition U.2 with Remark

t.3 to T , and to the sequence X of Theorem 2U.2, to obtain a l i m i t -
C yA

ordinal 6 such t h a t , for each y > 6 , i f the cone \xl\ i s E-tight,

so are the cones 2X» a n d \T X'\ . We then conclude the proof by

applying Proposition 6.1, with S and a replaced by L and 6 ; so it

remains to show that L and 6 satisfy the hypotheses of Proposition 6.1.

Writing L for L(A, a, B) = (X, x, X+) and "tight" for "E-tight",

suppose then that \Lo\ is tight. By Lemma 25.1, \XQ\ ^S tight;

then, by our choice of 6 , \TXl\ is tight; so that by Lemma 25.1

again, ul is tight; and by the choice of 6 again, IT̂ X
1 B+1J

f 2 Y!is tight. Moreover, by our choice of 6 , \T X'R\ is tight.

Now ^g+o i-
s given by the coequalizer (2*t.7), and X „ by a

Y+2
similar one. Hence JJ, is the colimit of a natural transformation

2 Y Y
between these diagrams, whose various components are T XI, TXl , and

P p

. Thus by §2.1* the cone uJ + J , as a colimit of tight cones, is

tight. Since, by (2U.lt) and (2U.7), LL = (X+, x+, Z++) , it now follows
f ~Y1

from Lemma 25.1 that ]LLl\ is tight, as required. •

I 6^B<6
REMARK 25.3. The author does not see how to prove the reflectivity

without E'-cowellpoweredness when E is the isomorphisms - contrast

Theorem 15.6. The first part of Theorem 25.2 is essentially Theorem 10.5

of Koubek and Reiterman [73].

As in §lU.l, we have as an immediate corollary:

THEOREM 25.4. Under the hypotheses of Theorem 25.2, T-Alg is

oooomplete. Moreover any a : T-Alg -* T '-Alg induced by a monad-map

a : T' •+ T has a left adjoint. D
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The cocompleteness of T-Alg was proved by Schubert [76] when T

preserves the col imits of a-chains. Barr deals in Theorem 3.3 of [2] with

the case where T preserves the colimits of (M, a) -chains ; but h is proof

seems faul ty to the present author, who sees no easy way to set i t r i g h t .

25.2. The r e s u l t s of T-Alg are especially simple in the special

case where !"E c E . Of course the free T-algebra on B always ex i s t s ,

being (TB, \iB) . But in fact i t exists constructively; for when, in

accordance with Proposit ion lU .3 , we apply L to (B, 1, TB) to get

(X, x, X ) as in Theorem 2^.2, X converges already at a = 1 ; since

x , as the coequalizer of TTB-UB and 1 , i s yB .

We can now imitate the argument of Theorem 16.5 . (A, a, B) has a

re f lex ion ( respect ive ly ,cons t ruc t ive reflexion) into T-Alg i f L(A, a, B)

does. But, by (2k.k), L(A, a, B) = (B, c, D) , where c from (2**.2) i s a

regular epimorphism and hence in the E of any proper (E, M) ; so that

( l , c) : (B, 1, TB) -»• (B, a, D) i s in E . Moreover LE c E , since

SE c E by Proposition 16.1 and since <J> : S -*• L i s in E (as we saw in

the proof of Theorem 25 .2) . Hence Proposition 8.3 gives:

THEOREM 2 5 . 5 . L e t T E c E where ( E , M) i s proper. Then T - A l g

is reflective in T/A 3 and constructively so when A is E-cowellpowered.

Consequently T-Alg is cocomplete, and algebraic functors

a : T-Alg •*• T'-Alg have left ad joints. O

V I I I . COLIMITS OF MONADS AND MONOIDS

26. Algebraic co l im i ts of monads

Denote by Monad A the category of monads on A and monad-maps, and

consider a functor T : K -*• Monad A with K small; wri t ing
Tfc = [T^-> Tk> Mfe) for the value of T a t the object k , and T for i t s

value a t the map (j> : k •*• k' .

Even when A = Set , T may admit no colimit ; as i s shown by

Proposi t ion 6.10 of Barr [ 2 ] . What he does show, in h i s Theorem 6.6, i s

the cocompleteness of the f u l l subcategory of Monad Set given by the

monads with rank. However, as Blackwel I pointed out in h i s thes i s [ 4 ] ,
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th i s does not suffice for prac t ica l appl icat ions; one wants a (colim T)-

algebra to be an A with compatible T,-act ions , and for t h i s colim T

must be the colimit in the whole category Monad A . BlackwelI [4]

established the existence of the colimit in t h i s "algebra-related" sense

when each T, has a rank and A i s complete as well as cocomplete, with

small hom-sets . We now take t h i s somewhat further .

We define a T-algebra to be an object A € A together with, for each

k € K , a T,-action a, : T.A -*• A , subject to the compatibility-

requirements a, ,'T, = a, for <f> : k •*• k' . A map / : A -*• A ' of
K 4) K

T-algebras i s to be a map of T,-algebras for each k . In other words,

T-Alg i s the l imi t of the functor K •*• Cat sending k to T,-Alg and

sending $ to T. ; we may write Qv : T-Alg -»• T,-Alg for the projection

functors.

Any cone r = (r, : T, •+ Pj over T in Monad A induces a functor

r : P-Alg ->• T-Alg which commutes with the forgetful functors to A ;

namely the functor with components Q,r" - r! . I t i s moreover immediate

from Proposition 22.1 tha t :

PROPOSITION 26.1 . Every functor P-Alg •* T-Alg commuting with the

underlying functors is r for a unique cone r as above. •

We now say that the monad P , with the cone r , i s the algebraic

colimit of T : K -+• Monad A if r i s an isomorphism of categories . From

Propositions 26.1 and 22.1 we conclude that

PROPOSITION 26.2. When the algebraic colimit of T exists, it is

the colimit in the ordinary sense of T : K+ Monad A . D

The proof of Proposition 22.h adapts at once to give:

PROPOSITION 26.3. If A is complete and has small hom-sets , the

colimit of T is algebraic whenever it exists. D

I t i s immediate that the forgetful functor U : T-Alg -»• A creates

l imi t s and {/-absolute col imits ; whence
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PROPOSITION 26.4. The algebraic colimit of T exists if and only if
the forgetful functor U : T-Alg •* A has a left adjoint F ; and then it
is the monad P arising from the adjunction F -\ U . O

27. An existence theorem for algebraic coiimits of monads

27.1 . Given 7 : K ->• Monad A as above, we do not change T-Alg if we
extend K and T by adding to K a new in i t ia l object 0 , by setting
T_ equal to the identity monad 1 , and by taking JQ -*• T^ to be the

monad-map T : 1 -»• T^ . We suppose this done, and now use K and T in

th is new meaning.

Write T , with r^ : T^ -*• T , for the colimit of T seen as a

functor K ->• End A . Then T is a pointed endofunctor (T, x) , where
T = r • l -»• T , and the r^ are pointed-endofunctor maps. We write as

usual 7-Alg for (T, t)-Alg , and similarly 2^-Alg for (2^, Tfe)-Alg .

To give a map a : TA -*• A is just to give component-maps

a, = ar. : T.A •* A for each k , subject to the compatibility condition

a, = a, ,'T.A ; and the unit-axiom a'^A = 1 for a is just an = 1 , and

hence equivalent to a^'T^A = 1 for each k . It follows that T-Alg is

the full subcategory of T-Alg given by those (A, a) such that, for each

k , the 2^-algebra ^(A, a) = [A, «̂ .) is in fact a T,-algebra. We have

the full inclusions

T-Alg <= r_Alg c T/k ,

and we shall have shown free T-algebras to exist if we prove T-Alg
reflective in T/A .

Given (A, a , 5) in T/A l e t c : TB •+ D be the joint coequalizer,
for a l l k € K , of the parallel pairs

(27.1) T& , , T*A _ - . T]B —+ TB

https://doi.org/10.1017/S0004972700006353 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700006353


A u n i f i e d t r e a t m e n t o f t r a n s f i n i t e c o n s t r u c t i o n s 77

where here too a, stands for ar, . Define an endofunctor L of T/A

(27.2) L{A, a, B) = (B,. c, D) ,

making it functorial in the obvious way; of. §2l».l. As there, we compare

L with the endofunctor S of §17-1.

The (three) squares in the diagram

(27.3)

TTA

clear ly commute. The map c : TB •* D equalizes the two maps in the top

leg of (27.3) , t h i s leg being the composite of (27. l) with TjT.A .

Therefore a equalizes the two maps in the bottom leg ; and since the r.A

are jo in t ly epimorphic, i t equalizes Ta'TrA and TWTTA . I t therefore

factorizes through the coequalizer b in (17. l) as a = qb for a regular

epimorphism .q . Thus as in §2U. 1 we have an epimorphic <j> : S -*• L with

(A, a, 5)-component ( l , q) ; and (L, X) becomes a well-pointed

endofunctor when we set A = $0 .

Arguing as in the proof of Theorem 2^.1 - for an S-algebra, that i s

a T-algebra, B = A and b = a , and then <j> is an isomorphism if and

only if a equalizes a l l the pairs (27.1) , which means exactly that each

a, is a T,-action - we have the formally-identical conclusion that £-Alg

i s the reple t ion of T-Alg . We then have Theorem 24.2, except tha t in the

description of (X, x) we replace (2^.7) by the analogue using (27.1) in

place of (2U.2).

THEOREM 27 .1 . For some regular a , let each T, preserve the

^--tightness of (Mr, a)-cones. Then the algebraic colinrlt of T exists if

A is E- and E'-cowellpoweredj or if M' = M and (E, M) is proper.
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Proof. The second case is dealt with exactly as in the proof of

Theorem 25.2; for the first case we modify that proof appropriately.

We begin by observing that the improvement of Proposition l*.l given in

Remark U.3, to deal with two sequences instead of one, applies equally well

to any small set of sequences. By applying it to the sequences X and

T,X for k € K , we get under our present hypotheses an improved version

of Proposition U.2: there is a limit-ordinal 6 such that, if \xl\

f Y 1
is t ight (= E-tight) for some y > 6 , so are each 2V,̂ o and each

The proof now proceeds as that of Theorem 25.2, by showing that L

and 6 satisfy the hypotheses of Proposition 6.1. From the tightness of

fvl f vl
we get as there that of \Xi] ; hence of 2", XU and of

? v^ f v+1 ^ f v+1 ^
TTXU ; also that of rf , and hence of \T1 X\ , . We get

the t ightness of T^o , as the colimit of the t igh t cones

; a n d t h e n t h e t ightness of U l + o as the colimit of

t i g h t cones in the ( 27.1)-analogue of ( 2^+.7). This gives the required

t igh tness of Lz2 . •
*• P-'e<6

27.2. In some contexts the question a r i ses whether, under the

hypotheses of Theorem 27 .1 , the algebraic colimit P of T inher i t s the

property of preserving the E-tightness of (M's a)-cones . The author does

not see how to show t h i s unless M' = a l l maps .

THEOREM 27.2. Let A be E-cowellpowered, and let each Tk

preserve the E-tightness of all a-cones. Then P too preserves the

E-tightness of all a-cones, where P is the algebraic colimit of T .

Proof. I f we wr i te (*) for the property of preserving the E-

t igh tnes s of a l l a-cones, (*) i s sat isf ied by each T, and hence by each
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T? , and also by the colimit T of the 2*fe . By Lemma 25.1 therefore, an

cx-cone in T/A is E-tight if and only if each of i t s components in A is
so.

I t follows that L satisfies (*). For if L sends a tight a-cone
(s , t) to {u, v) , we have u = s by (27.2), while V by (27.1) is a
colimit of tight cones and hence i tself t ight.

o
It then follows inductively that the transfinite powers L of L

OO

sat isfy (*) , and in par t i cu la r L ; which i s the composite JE of the

inclusion J : T-Alg •+ T/k with the reflexion R : T/K •* T-Alg . The

forgetful U : T-Alg •*• A is VJ , where V : T/K •* A sends (A, a, B) to

A and has the le f t adjoint G sending C to (C, 1, TC) : and the l e f t

adjoint F of U i s RG .

By Proposition 26.h, P = UF = VJRG = VL°G . But G preserves

col imits , and sends E to E by §15.1, so that G s a t i s f i e s (*); L

sa t i s f i e s (*) by the above; and V s a t i s f i e s (*) by Lemma 25 .1 . Hence P

sa t i s f i e s (*) . n

28. Algebraic colimits of monoids

Suppose now that A is a monoidal category, and that we change
notation as we did in §23. Denote by Mon A the category of monoids in
A , and now consider a functor T : K •* Mon A with K small, sending k
to the monoid T. . We define a T-algebra to be an A with compatible

T, -actions a, : T, ® A -*• A ; that i s , a (T ® -)-algebra in the sense of

§26. Again a cone (r, : T, •*• PJ over T , this time in Mon A , induces

r+ : P-Alg -»• T-Alg , namely the (r ® l ) f of §26.

We say that the monoid P , with the cone r , is the algebraic

coiimit of T if r is an isomorphism of categories; that i s , if the
monad P ® - is the algebraic colimit of T ® - . By a proof exactly
analogous to that of Theorem 23.1, but using Propositions 26.1 and 26.U in
place of Proposition 22.1 and Theorem 22.3, we get:

THEOREM 28.1. The algebraic colimit of T exists if and only if
there is a 1-algebra (P, p) and a map IT : I -*• P such that, for each
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A € A 3 p ® A with the unit ir ® A is the free T-algebra on A . When
it does exist, P is the colimit of T , with r, -. T, •* P the composite

Then a proof exactly analogous to that of Proposition 23.2 gives:

PROPOSITION 28.2. If A is Tight-closed, the algebraic colinrit of

T exists if and only if the free T-algebra on I exists. If moreover A

has pullbaoks, the colimit of T , if it exists, is the algebraic colimit.O

Finally, as in Theorem 23.3, but appealing now to Theorems 27.1 and
27.2, we get:

THEOREM 28.3. If each - <8> A preserves colimits, and if for some
regular a each T, ® - preserves the ^-tightness of (M', a.)-cones,

where A is E- and E'-cowellpowered, the algebraic colimit P of
exists. When M' = all maps , P too preserves the t-tightness of
a-cones. E

29. A comment on polyads

I t is clear that , in their formal aspects, the descriptions of T-Alg
in the sense of §26, of T-Alg for a single monad T , of r-Alg , and of
ff-Alg , follow a pattern and admit of a common abstract generalization.
This was given by Blackwell in his thesis [4].

By a polyad Blackwel I means a s t r ic t monoidal functor T from a small
s t r i c t monoidal category 1/ to the s t r ic t monoidal category End A . A
T-algebra then consists of an A £ A with compatible actions a : T A -*• A

x x
for x € V , related to the tensor products (written as juxtaposition) by

the requirement that a
xyTxyA ~ TxTyA Ta -f a

x

and that a. : T A = A -*• A be the identity. When A is (not only

cocomplete but) complete and with small hom-sets , we may regard the
monad {A, A] of Proposition 22.it as a (non-strict) monoidal functor
1 -»• End A , or again as the composite constant monoidal functor
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V •*• 1 H , .1 > E n d A

Then a T-action on A corresponds to a monoidal natural transformation

T •*• {A, A} , or a "monoidal cone" over T with vertex [A, A} . A

universal such mononoidal cone over T , with vertex the monad P say -

what we might call the "monoidal colimit" of T - exists precisely when

the forgetful functor 7-Alg -»• A has a left adjoint. Blackwell proves its

existence, in these circumstances, if each T has some rank.

In the various situations we have considered, V is in effect

presented by generators and relations, while T is given on the generators

and subjected to axioms corresponding to the relations. We have given

existence theorems under hypotheses weaker than having rank, namely that

the generating T should preserve the E-tightness of (M', a)-cones. It

is because this is not inherited by the composite T T , unless
x y

T M' c M' 5 that we have been forced to more subtle arguments, such as

those using the Koubek and Reiterman reduction of §1* above. At the same

time the individual situations we have considered present various

particular features, sometimes allowing stronger results than are available

for general polyads, or leading to side-results without meaning in the

general case.

Blackwell's thesis goes further, and considers 2-polyads on a

2-category, where new phenomena appear which are of importance in the study

of algebraic structures borne by a category. Some of these aspects will be

pursued in forthcoming articles by him and by the present author.
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