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EXTENSIONS OF CONTINUOUS FUNCTIONS:

REFLECTIVE FUNCTORS

W.N. HUNSAKER AND S.A. NAIMPALLY

The purpose of this paper is to develop a general technique for

attacking problems involving extensions of continuous functions from

dense subspaces and to use it to obtain new results as well as to

improve some of the known ones. The theory of structures developed

by Harris is used to get some general results relating filters and

covers. A necessary condition is derived for a continuous function

f: X •*• Y to have a continuous extension /; XX •*• \Y where XZ

denotes a given extension of the space Z . In the case of simple

extensions, / is continuous and in the case of strict extensions

f is 9-continuous. In the case of strict extensions, sufficient

conditions for uniqueness of / are derived. These results are

then applied to several extensions considered by Banaschewski, Fomin,

Katetov, Liu-Strecker, Blaszczyk-Mioduszewski, Rudolf, etc.

1. Introduction

Several mathematicians have studied problems concerning extensions

of continuous functions from dense subspaces. Much of the research
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has been centred around the problem of characterising known extensions as

(epi-)reflections: [4,5,72-20,25]. In addition to this the problem of

6-continuous extensions of continuous functions has been considered in

[2S] including the problem of uniqueness. Harris [/2] developed a general

theory of extensions using "structures" whereas using proximity or

nearness, the well-known Taimanov's theorem has been generalised in [6,7,

11,19,261. The main purpose of this paper is to develop a general technique

for attacking problems involving extensions of continuous functions and to

use it to obtain new results as well as improve some of the known ones.

In Section 2 we use techniques of Harris [72-75] to get some general

results relating to filters and covers. Suppose, with each member Z of

a given class of topological spaces, we associate an extension XZ . We

derive a necessary condition that a continuous function f: X •*• Y has a

continuous extension /: XX •*• XY . This condition enables us to describe

f . In Section 3 and 4 we show that f is continuous in the case of

simple extensions and 8-continuous in the case of strict extensions.

Special cases are the results in [73] and improvements of these in [24]

A new result concerning the a-closure of Liu [23] as a reflection is

obtained. In the case of strict extensions we get sufficient conditions

only for a unique 6-continuous extension ~f and our results include these

in [2,9] f°r suitable perfect maps.

In Section 5 we generalise some theorems in [25] t o certain simple

extensions. Finally, in Section 6 we use the method of proximities to

obtain the van der Slot realcompactification [29]-

We have given a fairly representative bibliography wherein the

interested reader will find further references to the topics discussed

here.

2. Preliminaries

The motivation for the method outlined in this section is Harris1

treatment of d-maps [72] and Fan and Gottesman's treatment of Freudenthal

compactification [8]. Thus by specialising the general theory of Harris

to a family satisfying some reasonable conditions, we get a leverage to get

several old and new results effortlessly. Since the proofs can be
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patterned after those in [S] and [J2] , we give an outline in this

section, omitting most of the proofs.

Let T denote a family of Hausdorff spaces. We assume that each X

in T has an open base B(X) for its topology and that B(X) satisfies:

(2.1) (i) if A,B in B(X) , then A n B e B(X) >

(U) If A e B(X) , then (X-A)° e B(X)

(see Fan and Gottesman [S])

Any cover of a space X in T which is formed from the members of B(X)

is called a B(X)-cover. A B(X)-cover of X which contains a finite

subfamily whose union is dense in X is called a X-cover. A

B(X)-filter is a filter formed from the members of B(X). We let X

denote the collection of all nonconvergent maximal B(X)-filters, and let

XX = {N(x): x e X) u ^

where

H(x) = iE e B(X>: a; e E) .

Cln some cases such as the a-closure aX [23] or almost real compactifi-

cation pX [24] , we have to consider certain subsets of X . The

necessary modifications are explained below.)

We recall two known methods of assigning topologies to XX .

(2.21 The simple extension topology is described by assigning to each

F £ XX , the neighbourhood base {V*: V e F} where

V* = {F} u Wx): x € V} .

One of the most famous examples of this type is the Katfetov extension iX

[22], where B(X) is the family of aLl open sets in X . Liu [23]

considered the subspace aX of tX consisting of all F with the count-

able intersection property (c.i.p.) and Liu and Strecker [24] the subspace

PX of TX consisting of all F with the countable closure intersection

property (c.c.i.p.).
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(2.3) The strict extension topology has a base for the open sets consisting

of all sets of the form

V* = {F £ XX: V e F}.

Examples of this type abound:

(i) If B(X) consists of all open sets in X , then \X = FX ,

the Forain extension of X [9].

(ii) If X is semi-regular and B(X) consists of all regular-

open subsets of X , then XX is the Banaschewski Tp-minimal extension

OX [2].

(iii) We may consider extensions a-Xi p1X (corresponding to aXi

pX in (2.2) above) as subspaces of FX and also a^X, p^X as subspaces

of QX .

If F is a B(X) -filter on X and u <= x • we write u n F ̂  0 if

U n F ^ 0 for every F e F and write u n F = 0 otherwise. We now state

without proof the basic results:

(2.4) LEMMA: A nonoonvergent B(X)-filter F is maximal if and only if

for each u e B(X), either u e F or (X-u)° e F .

(2.5) LEMMA: A nonoonvergent B(X)-filter F is maximal if and only if

F n a ̂  0 for each \-cover a of X .

(2.6) LEMMA: A B(X)-cover a is a \-cover if and only if a n F ̂  0

for each F e X*- .

(2.7) LEMMA: Let f be a continuous function from X to Y . The

following are equivalent:

(a) For each \-cover a of Y ., f~ (a) has a \-refinement in

(b) For each \-cover a of Y and each F e x , there exists

u e a , V e F such that f(V) c u .

(2.81 DEFINITION. A continuous map / satisfying (2.7) (a) or (b) is

called a \-map . tin the case of TX such maps are called p-maps and in

https://doi.org/10.1017/S0004972700013435 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700013435


AC.Q

Extensions of functions

the case of aX they are called m-maps.)

(2.9) THEOREM. A necessary condition that a continuous function f: X •*• I

has a continuous extension f: XX •*• XY {with simple or strict extension

topologies) is that f is a \-map.

Naturally questions arise:

(i) does a X-map / have an extension f: XX •*• XY ?

(ii) if f exists, is i t continuous?

We show here that the first question has an answer and defer the second

one to the next two sections.

(.2.10) LEMMA. If f: X •*• Y is a X-map, then for each F e XX
 t

f m = {u e B(Y): f2(M) <L F}

either converges or belongs to Y .

C2.ll) COROLLARY. Every X-map f; X •* Y has an extension J: XX -> XY

defined by

' N(fCx)) if F = N(x)

o if o

f°(T) otherwise.

3. Simple extensions

If XX, XY are simple extensions, then the map defined by (2.11)

is continuous. To see this, let u^ be a neighbourhood of f(f) , where

u e f(¥) . There is a B(Y) -cover a of Y such that

[ {u} if J(T) = H(y ) , y c Y

0 if j m e YX

Then B = a n {u, (X-\))°) is a X-cover of Y and since f is a X-map,

there exist V e F , W e $ such that f(V) c W . Clearly this means that
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W e f(T) and so W = u . Obviously f(V*) <= u* and so f i s continuous,

and hence is the unique continuous extension of f .

Thus we have using (2.9),

(3.1) THEOREM. A necessary and sufficient condition that f: X -*• Y have

a continuous extension f: XX •*• XY (with simple extension topologies) is

that f is a \-map. (see Harris [72 ,73] ) .

In ca tegor ica l terminology ( [ / 6 ] , [20]) (.3.1) takes the form:

(3.2) THEOREM. Let C be the category whose objects are Hausdorff spaces

with bases satisfying (2.1)} and whose morphisms are X-maps. Let V be

the full subcategory of C whose objects are the simple extensions XX

of objects in C and whose morphisms are continuous functions. V is an

epireflective subcategory of C , and for each object X in C > XX is

the epireflection.

We now consider the a-closure aX of X (Liu [23]). An open cover

£ of X is an a-cover if and only i f there i s a countable subcollection

{u } of g satisfying X = U u~ . We also write x" = aX - {U(x) :

x e X] . The following lemma characterises X ; we omit the proof.

(.3.31 LEMMA. A nonconvergent open filter F with the finite intersection

property is maximal if and only if F n % ̂  0 for every a-cover £ of X.

(3.4) DEFINITION, (see Lemma (2.7)). A continuous function f: X ->• Y is

an a(b)-map if and only if for each a-cover 5 of Y and F e X* 3

there exist u e £, V e F such that f(V) c u . It is called an

a (a) -map if and only if for each a-cover c of Y , f~ (£,) has an

a-refinement.

The following i s proved similar t o (2 .7) .

(3.5) LEMMA. Every a(a)-map is an a(b)-map.

(3.6) THEOREM. A necessary and sufficient condition that a function

f: X •*• Y has a continuous extension f: aX -*• aY is that f is an

a(b)-map.
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Proof. The unique continuous extension f of f is the function

defined in (2.11). The proof of the converse follows as in Theorem (2.9).

Since a(a)-maps are closed under composition, we get the following:

(3.7) THEOREM. The category of a-closed spaces and continuous functions

is an epireflective subcategory of the category of Hausdorff spaces and

a(a)-maps. For each Hausdorff space X, aX is the epireflection.

A p-map or equivalently T-proper reap [5] f: X •*• Y has a unique

continuous extension f: rX •*• TY given by (2.11) and it is not hard to

show that f(aX) <= oF . Thus we obtain another epireflective subcategory

in (3.7) if we replace a(a)-maps by p-maps.

We now consider the Liu-Strecker almost realcompactification pX

which is a subspace of xX consisting of all F in iX which have the

c.c.i.p. We write X9 = pX - W(x): x e X) .

(3.8) DEFINITION. An open cover y °f X is called a p-cover if and

only if y i.s either a p-cover or y has a countable subcover.

The following is an analogue of Lemma (2.5) and (3.3).

(3.9) LEMMA. A nonaonvergent open filter F is maximal and has c.c.i.p.

if and only if for each p-cover y of X s y n F ̂  0 .

Proof. Suppose F n y ̂  0 for each p-cover y . Since every

p-cover is a p-cover, it follows from (2.5) that F e X . Also from

Frolik L10, Lemma l] if F e XT , then F e / if and only if F n y £ 0

for every open cover y which has a countable subcover.. The converse

follows from Lemma (2.5) and the above quoted result of Frolik.

(3.10) DEFINITION. A continuous function f; X •* Y is a p(b)-map if

and only if for each p-cover y of Y and each F e / , there is a

u £ y i V e F such that f(V)c u . It is a p(a)-map if and only if for

each p-cover y of Y, f (y) has a p-refinement.

The following results are analogues of (3.5), (3.6), (3.7).

(3.11) LEMMA. Every (s(a)-map is a p(b)-map.
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(3.12)THEOREM. A necessary and sufficient condition that a continuous

function f: X •*• Y has a continuous extension f: pX •* pY is that f

is a p(b)-map.

(3.13)THEOREM. The category of almost realcompact spaces and continuous

functions is an epireflective subcategory of the category of Hausdorff

spaces and p(a)-maps. The epireflection of each Hausdorff space is pX .

As was remarked after Theorem (3.7), if / is a p-map or T-proper

map from X to Y , then f has a continuous extension f: TX -*• iY .

In fact, f(pX) c pY . For suppose F 6 / and suppose {u } is a

countable subcollection of f~(F) . f (v ) e F for each n and so

n {/" Cu ;".- n e W} ft 0 . Since / is continuous f (\i )~ c /"2fu ~)

and hence f ("n u ) # 0 . Thus we may replace p (a) -maps by p-maps in

Theorem (.3.13) to get another epireflective subcategory. This result

also follows directly from the fact that every p-map is obviously a

p(a)-map.

A continuous function / ; X ••* Y i s demi-open (semi-open) [24] if and
o Q

only i f for each A <= X, A ^ 0 implies (fCA)) / 0 (respectively

f(A) ^ 0\ . Harris [J3] has shown that a l l semi-open and demi-open maps

are p-maps and so we have

semi-open =* demi-open •* p-map =* p(a) =* p(b)

The following results of Liu-Strecker [24] follows from these

remarks and Theorem (3.12)

(3.14) THEOREM. The category of almost realcompact spaces and continuous

functions is an epireflective subcategory of the category of Hausdorff

spaces and semi-open (respectively demi-open) maps.

4. Strict extensions

In this section we study str ict extensions. In general, a X-map

need not have a continuous extension; an example is provided by

Banaschewski [2] in the case of semi-regular spaces X,Y and Banaschewski
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g extensions aX, oY respectively. We show below that neverthe-

less a X-map does have a 8-continuous extension between s t r i c t

extensions; this part i s analogous to the work of Rudolf [ZS].

We recall the definition of a 9-continuous function / : X •+ Y: for

each a; in AT and for each open set u containing f(x) , there exists

an open set V containing a; such that f(V~) c u~ . The notion of

6-continuity dates back at least to Fomin [9]; however, several recent

authors now use that term to describe a slightly weaker condition

(f(V) c u"; called weak 6-continuity by Rudolf

(4.1) THEOREM. Suppose XX, XY have s t r i c t extension topologies,
f: X •*• Y i s a X-map and le t / be defined by (2.11). Then / : XX •*- XY
is 9-continuous.

Proof. Suppose u* i s a neighbourhood of fCF) for F e X and

u e B(Y) . There exists a B(Y)-cover a of Y such that

a n f(F) = {u} if f(¥) = WyQ), yQ e Y

= 0 if 7m e YX

Then B = a u {u, (X-u) } is a X-cover of Y and f(T) n B = {u} .

Since / i s a X-map, there exists a V in F, W e B such that

f(V) c W . Clearly this means W = u . Note also that if F = U(x) for

some x e X, then for any u e N(f(x )), there is a V e U(x) such that

f(V) c u .

Claim: f(Cl V*) c cl u* .

If G € Cl V* , then we have shown that if u^ e f(G) there exists

a V1 e G such that f(VJ c yjj . Since G e Cl V* , there exists H e V*

such that V1 e H and hence F. n V e H . Let x e 7- n V ; then

/fxo; e /CKj n W c u3 n u and so N(f(xQ)) c fu n uJ* . Since

(u. n uJ* = ut n u* , we have f(G) e Cl u* . This completes the proof.

The proof of Theorem (4.1) shows that for each neighbourhood u* of
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f(F), u e B(Y), there exists V e F such that f(V) <= u . Consequently,

i f G e V*, then u e f (G) • Hence u e f(G) provided J(G) e YX .

This shows that if f(X ) c Y , then f is indeed continuous! A

necessary and sufficient condition for this to happen is given in the

following lemma; this is a generalisation of the one given by Blaszczyk

and Mioduszewski [5] for the case of the Katetov extension.

(4.2) LEMMA: For a X-map f: X + Y, f(XX) c YX -if and only if for each

F e X j there exists G e Y such that for every u e F., F e G,

f(u) n V / 0 .

Proof . In t h e p roo f of Lemma ( 2 . 1 0 ) , f o r F e X* , f (V) c / ( 'Fj

and t h e c o n d i t i o n f(u) n F / | for eve ry u e F, P e G i m p l i e s t h a t
O O O

/ (F) c G . So f (F) cannot converge and f (F) = G . Conversely, if

f(F) € YX for F e XX , then set J(F) = G . Clearly, f°(F) = G c /fF;

and the result follows trivially.

(4.3) DEFINITION. A continuous function f: X •*• Y is called \-perfeat

if and only if f has a continuous extension f: \X •*• XY such that

f(XX) c YX .

(4 .4) THEOREM. 4 continuous function f: X •*• Y is x-perfect if and only

if f is a X-map and for each F e. X , there is a G e Y such that for

each u e F ^ for each V e G, f(u) n V ̂  0.

(4.5) THEOREM. "Fhe category of H-closed spaces (respectively minimal

Eausdorff spaces) and continuous maps is an epireflective subcategory of

the category of Eausdorff spaces (respectively semi-regular spaces) and

X-perfect maps. The epireflection of X is its Fomin extension F(X)

(respectively the Banaschewski Tg-minimal extension aX).

Since all the spaces are Hausdorff i t is known that whenever f has

a continuous extension, this extension is unique. However, if f has a

6-continuous extension (as in Theorem (4.1)), then the extension need not

be unique (Rudolf [2S]). We now generalise a condition of Rudolf to ensure

that the 6-continuous extension is unique.
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(4.6) DEFINITION. A continuous function / : X -* Y i s called a

Urysohn map i f and only i f for every pa i r F, G of d i s t i nc t members of Y ,

there ex i s t s U- e F, u_ e G such tha t \_f (u~ n u_~,) ] = 0 .

(4.7) THEOREM. A Urysohn X-map f: X •*• Y has a unique e-oontinuous

extension f: XX •*• XY given by (2.11).

Proof: Theorem (4.1) yields the existence of a 6-continuous

extension / : XX •*• XY . We now show uniqueness. Suppose on the contrary

that fj and /„ are two distinct 8-continuous extension of / . Then

there exists F e X such that fJT) 91 f2^^ • s i n c e x ^ i s ^g ' t h e r e

exist W. e f.(?) i = 1,2 such that Wi n Wi = 0 . Since f is Urysohn,

t h e r e e x i s t V. e f.(V),,i = 1,2 s u c h t h a t if1(V~ n V~)l° = 0 .
is Is X U

Set u{ = Vi n Vv i = 1,2 . Then f1(^>1~ n ^2~
} c f~1(Vi~ n V{) '

Since f. is 9-continuous, there exists V e F such that f.(Cl V*)

c Cl u$, £ = ,̂,2 . Since the f . ' s are extensions of f and

V = Cl V n X , i t follows that /fV~.) c u . ' , ^ ] ^ . So

V c \T c f (u~ n u~) , a contradiction.

5. A reaicompactification

In this section we characterise a special case of the van der Slot

realcompactification [29] as an epireflection. Let L be a normal base

for the closed sets ([J], [30]) in a Hausdorff space X . We also assume

that L satisfies the countability condition: every countable cover of

X by complements of members of L has a countable refinement by members

of L . The realcompactification \>(L) of X consists of all

L-ultrafilters with c.i.p. with strict extension topology whose basis for

closed sets is {L*: L e L] where L* = {F e \>(U: L e F}. Van der Slot's

construction is more general than the above in that he assumes that L

satisfies the conditions of subbase-regularity, subbase-normality and the

countability condition.
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Let L- and L, be two normal bases satisfying the countability

condition on X} Y respectively and l e t v- = vd*), v,, = vfLn^ be their

respective van der Slot realcompactifications. Our problem is to find
necessary and sufficient conditions for a continuous function / : X -*• Y
to have a continuous extension f: v, •*• vg .

We assign the £0-proximity [Z7] 6 on each of v, and v, ,

respectively that i s , for subsets A} B in v. , A 6 B if and only i f

Cl A n Cl B ft 0 and the subspace proximities on X and Y denoted by

•5-7* <S<ji respectively. Thus

(6.1). A 62 B if and only if Cl A n Cl^ B ? 0

I t follows that A S- B i f and only if there exists an F e v? such that

i f A c L* e L-, B c L* e L-, then L., Lg e F. Obviously, if / : X •*• Y

has a continuous extension / ; v- -»• v«, then / is proximally continuous.
We now proceed to show that this condition is also sufficient:

If f: X •*• Y i s proximally continuous, then / has a continuous

extension f^- v^ •*• I.Y where f^T) = {E c Y: F e Clvf
1(E~)} ([17], 3.7,

3.8) , and Z7 is the space of a l l bunches in Y with the absorption

topology. Obviously, fyC^) ^ 0 a n d f o r ^1' ^2 £ ^2' ^1 U ^2 e ^Z^^

i f and only if L, e /^CF; or Lo e /_CF; .
1 L ci L

(6.2) LEMMA. f~(F) n Ln ?w:s t/ze countable intersection property.

Proof. Suppose on the contrary tha t L e f-(T) n Lo, n = 1S29...

and ^ L = 0 . By the coiontability condit ion, there ex i s t L1 e Lo
ft Yl ci

such that U L' = Y and for each n e U there exist L e Ln such that
« an 2

Ln n L = & • c l e a r ly- X = U f (L'J , and since F has the countable

intersection property there exists an m e El such that f (L1) n ¥ ̂  0 .
m

This implies that L' ef (F) , and contradicts the fact that £ e fT(f) since
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•• X •
(6.3) LEMMA, if L is a normal base on X , every prime L-filter F is

contained in a unique L-ultrafilter on X .

Proof. Suppose F is contained in distinct L-ultrafilters F.-, Fo •

Then there exist F. e F. such that Fn n Fo = 0 • Since L is normal,

there exist F', Fl e L such that, F. n Fj = 0, F^ n F^ = 0 and

F' u F' = X . Since F is prime, either F' or F' must be in F a

contradiction, since F. n Fl = 0, i = 1,2.

By Lemma 2.10 of Gagrat and Naimpally [I/], there exists a prime

L,-filter F' <z f (f) n L_ . By the above Lemma (6.2) , Fr has the

countable intersection property. It follows from the proof of Proposition

2 [29], that F' is contained in a filter F" e vg . It follows from

Lemma 6.3 that F" is unique. Since f^Cf) n i-0 has the finite inter-

section property there exists an L,-ultrafilter G containing

fv(V) n Lo . Since G must also contain F' , we have G = F" . Thus we

have a well defined map g from f-Cv-} •*• v, .

(6.4) LEMMA, g is continuous.

Proof. A basic neighbourhood of F" e \)p is \>(Lp)-L* where

L e '•o"'*" • Then L n F = 0 for some F e F" . Since Lp is normal,

there exist F', L' e Lo such that F r\ F' = 0, L n L' = 0 and

L' u F' = Y . Clearly F1 / f^T) and so L1 e fz(F) .

Claim. glfz(v2) - FJ] c v2 - L* where F'* = {o e f^Vj): F' e a) .

Note that F'k is a closed set in 1Y n /j-Cv̂ J , and f^Cf) e f (vj) - F'A .

Suppose G e v^ and f (G) e f^Uj) - *"* • Then F' c f^(G) and

F' u £' = T implies L' e f (G) . If G" is the unique element of v0
Li U

containing fJG) n L2 , then L' e G" and so L e G" . Thus G" e v, - L*

and the proof is complete.
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The above lemmas and remarks yield the following theorem:

(6.5) THEOREM. A necessary and sufficient condition that a continuous

function f: X •*• Y has a continuous extension f: v -*• v2 is that f is

proximally continuous with respect to the LO-proximities induced by
6o on V V2 '

(6.6) THEOREM. The category of realaompact spaces and continuous functions
is an epireflective subcategory of the category of Tihonov spaces with
normal bases satisfying the countdbility condition, and proximally
continuous maps. The epireflection of (X,U is \>(L) .
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