CryoET of Single Particle CryoEM Grids Reveals Widespread Particle Adsorption to the Air-Water Interface, Which May be Reduced with New Plunging Techniques

Alex J. Noble, Venkata P. Dandey, Hui Wei, Julia Brasch, Jillian Chase, Priyamvada Acharya, Yong Zi Tan, Zhening Zhang, Laura Y. Kim, Giovanna Scapin, Micah Rapp, Edward T. Eng, William J. Rice, Anchi Cheng, Carl J. Negro, Lawrence Shapiro, Peter D. Kwong, David Jeruzalmi, Amédée des Georges, Clinton S. Potter, and Bridget Carragher

1. National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, NY USA.
2. Department of Biochemistry and Molecular Biophysics, Columbia University, NY USA.
3. Department of Chemistry and Biochemistry, City College of New York, NY USA.
4. Ph.D. Programs in Biochemistry, The Graduate Center of the City University of New York, NY USA.
5. Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, MD USA.
6. Department of Structural Chemistry and Chemical Biotechnology, Merck & Co., Inc., NY USA.
7. Ph.D. Programs in Biology, The Graduate Center of the City University of New York, NY USA.
8. Ph.D. Programs in Chemistry, The Graduate Center of the City University of New York, NY USA.
9. Advanced Science Research Center at the Graduate Center of the City University of New York, NY USA.

Single particle cryo-electron microscopy (cryoEM) has commonly been performed with the assumption that the protein particles were suspended safely between the air-water interfaces at the time of vitrification. Studies of dozens of single particle cryoEM samples on grids by cryo-electron tomography (cryoET) has revealed that the vast majority of particles are adsorbed to the air-water interfaces at the time of vitrification (Figure 1) [1].

Particle adsorption to the air-water interfaces may potentially cause particle preferred orientation, conformational changes, and particle degradation [1]. While particle adsorption to the air-water interfaces may be physically avoided using substrates [2, 3], an alternative method for reducing or possibly eliminating air-water interface interactions is to decrease the time between sample-to-grid application and plunge freezing sufficiently so as to limit the extent of particle diffusion to the air-water interfaces and reduce the amount of equilibration of particles adsorbed to the air-water interfaces.

Here we present three single particle specimen (apo ferritin, hemagglutinin, and insulin receptor) prepared using Spotiton with varying sample application to plunge freezing times (spot-to-plunge times) (Figure 2). With a spot-to-plunge time of 400 ms, apo ferritin, a protein complex with high symmetry, preferentially adsorbs to the air-water interfaces (Figure 2a), with few particles remaining non-adsorbed. This preferential adsorption is reduced significantly with a spot-to-plunge time of 100 ms (Figure 2b).

Both hemagglutinin and insulin receptor, at both long and short spot-to-plunge times, remain preferentially adsorbed to the air-water interfaces prior to vitrification. When hemagglutinin and insulin receptor are prepared with long spot-to-plunge times (800 and 600 ms, respectively), they both present a limited number of preferred orientations (Figure 3c). However, with spot-to-plunge times of 100 and 200 ms, respectively, a significant reduction in preferred orientations was seen (Figure 3d). With these three samples we show the potential for reducing and potentially eliminating air-water interactions.
References:

[4] This work was supported by grants from the Simons Foundation (SF349247), NIH (GM103310, OD019994-01, R01-MH1148175, R01 GM084162, VRC intramural funding), NIMHD (5G12MD007603-30), A*STAR and the Agouron Institute [F00316].

<table>
<thead>
<tr>
<th>Sample Name</th>
<th>Example cross-sectional schematic diagram</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 kDa Kinase</td>
<td>Neural Receptor</td>
<td>IDE</td>
<td>Apoferitin (0.5 mg/mL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemagglutinin</td>
<td>Protein with Bound Lipids (glycosylated)</td>
<td>G6PD</td>
<td>Apoferitin with 0.5 mM TCEP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIV-1 Trimer Complex 1</td>
<td>Protein with Bound Lipids (glycosylated)</td>
<td>G6PD</td>
<td>Protein with DNA Strands with Carbon Over Holes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIV-1 Trimer Complex 2</td>
<td>Lipo-protein</td>
<td>G6PD + 0.8% D2O (2.5 mg/mL)</td>
<td>T355 Proteasome</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stick-like Protein 1</td>
<td>GPCR</td>
<td>Double Helix-helix Leader</td>
<td>T208 Proteasome</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stick-like Protein 2</td>
<td>Rabbit Muscle Actin (1 mg/mL)</td>
<td>Apoferitin</td>
<td>T355 Proteasome</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neural Receptor</td>
<td>Protein in Nanoliters (0.55 mg/mL)</td>
<td>Apoferitin (1.25 mg/mL)</td>
<td>Mdm Proteasome</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1. Single particle cryoEM grids plunged with a sample application to freeze time on the order of 1 second. The vast majority of particles are adsorbed to an air-water interface.

Figure 2. Effects of longer and shorter spot-to-plunge times using Spotiton. Cross-sections of tomograms of apoferritin grids prepared with a spot-to-plunge time of 400 ms (a) and 100 ms (b). The preparation in (b) resulted in more than an order of magnitude greater number of non-adsorbed particles than in (a). Long spot-to-plunge times of hemagglutinin and insulin receptor (c) resulted in limited number of preferred orientations, while shorter times (d) resulted in many more orientations (red boxes).