
BULL. AUSTRAL. MATH. SOC. 34C05, 34D20, 34DI0, 34A50

VOL. 7 ( 1972), 309-31 I.

Study of limit cycles of an

autonomous system of

differential equations

R.F. Matlak

The thesis concerns the system

(S) J| = a + bx + ay + dx2 + exy + fy2 , J| = xy ,

studied earlier by Cerkas [7] and I I'in [4].

In Part One of the thesis critical points of (S), both in the finite

(x, y)-plane and at infinity, are analysed, which leads to a

characterisation of these points and to criteria for the existence of two

saddles (anti-saddles) on either of the coordinate axes. As an application

of these, all possible configurations of singularities are found for the

system.

The cases of a strong (weak) focus or a centre are then examined in

greater detail. It is shown, with the aid of results of Coppel [2], that

(S) cannot have two weak foci nor a weak focus and a centre. Further,

using the process of Poincare and Liapunov, conditions are obtained for the

stability of the weak focus and for the generation of a limit cycle by

small perturbations which change a weak focus into a strong one.

The main result of the thesis is the following criterion for the

stability of a limit cycle of (S):

If Y = [<fi(t) , ty(t)) is a limit cycle of (S) about the strong

(weak) focus F = (0, n) , then y is stable (unstable) when
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is negative (positive).

Part Two concerns two systems related to (S).

The first is a numerical example of a system derived by employing the

method of Poincare and Liapunov. It is shown that the system possesses a

unique limit cycle. The calculations have been carried out with the aid of

the Runge-Kutta method.

The second system, studied by Kukles and Sahova [5], is of the form

(T) J| = -y + dx2 + exy + fy2 , & = x .

Using the method of characteristic exponents and an appropriate topographic

system, a new proof is given of the known result that (T) has no limit

cycles.

Two results which arose from the work for this thesis appeared in [3]

and [6].
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