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Study of limit cycles of an

autonomous system of

differential equations

R.F. Matlak

The thesis concerns the system
dz _ 2 2 di_
(S) dt_a+bx+cy+dr+exy+fy 9dt_xya

studied earlier by Cerkas [1] end Il'in [4].

In Part One of the thesis critical points of (s), both in the finite
(x, y)-plane and at infinity, are analysed, which leads to a
characterisation of these points and to criteria for the existence of two
saddles (anti-saddles) on either of the coordinate axes. As an application
of these, all possible configurations of singularities are found for the

system.

The cases of a strong (weak) focus or a centre are then examined in
greater detail. It. is shown, with the aid of results of Coppel [2], that
(S) cannot have two week foci nor a weak focus and a centre. Further,
using the process of Poincaré and Liapunov, conditions are obtained for the
stability of the weak focus and for the generation of a limit cycle by

small perturbations which change a weak focus into a strong one.

The main result of the thesis is the following criterion for the

stebility of a limit cycle of (S):

If vy = (¢(t), w(t)) is a limit cycle of (S) about the strong
(weak) focus F = (0, n) , then Y is stable (unstable) when
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f [b+e(sigan)expy(t) 1t
.

is negative (positive).
Part Two concerns two systems related to (S).

The first is a numerical example of a system derived by employing the
method of Poincaré and Liapunov., It is shown that the system possesses a
unique limit cycle. The calculations have been carried out with the aid of

the Runge-Kutta method.

The second system, studied by Kukles and 3ahova [5], is of the form

dx 2 2
(T) Je Syt At texy + fy %% =x.

Using the method of characteristic exponents and an appropriate topographic
system, a new proof is given of the known result that (T) has no limit

cycles.

Two results which arose from the work for this thesis appeared in [3]
and [6].
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