CMS
}ZSMC

http://dx.doi.org/10.4153/CMB-2017-046-0

Canad. Math. Bull. Vol. 61 (1), 2018 pp. 174-190 ]
© Canadian Mathematical Society 2017

A Factorization Result for Classical and
Similitude Groups

Alan Roche and C. Ryan Vinroot

Abstract. For most classical and similitude groups, we show that each element can be written as a
product of two transformations that preserve or almost preserve the underlying form and whose
squares are certain scalar maps. This generalizes work of Wonenburger and Vinroot. As an appli-
cation, we re-prove and slightly extend a well-known result of Mceglin, Vignéras, and Waldspurger
on the existence of automorphisms of p-adic classical groups that take each irreducible smooth rep-
resentation to its dual.

1 Introduction

For many classical groups G, we show that each element is a product of two involu-
tions. The involutions belong to a group G containing G such that [G:G] < 2. We
also prove a similar factorization for elements of the corresponding similitude groups.
Our methods apply to classical (and similitude groups) over arbitrary fields with the
exception of orthogonal groups (and the corresponding similitude groups) over fields
of even characteristic. Our interest in such factorizations stems from an application to
the representation theory of reductive groups over non-Archimedean local fields. We
are interested in involutary automorphisms of such groups that take each irreducible
smooth representation to its dual. Echoing [1], we call these dualizing involutions.
They do not always exist in our setting (we give an example in §9). They do exist,
however, for many classical p-adic groups by a result of Moeglin, Vignéras and Wald-
spurger [15, Chapter IV SII]. We re-prove this result and slightly extend its scope as
explained below.

To make more precise statements, we need to define the classical and similitude
groups we consider. Let E/F be a field extension with E = F or [E:F] = 2. We assume
in the quadratic case that E/F is a Galois extension. In all cases we write T for the
generator of Gal(E/F), so that 7 has order two when [E:F] = 2and 7 = 1when E = F.
Let V be a finite-dimensional vector space over E with a non-degenerate e-hermitian
form (-, -} (¢ = +1) which we take to be linear in the first variable. Thus

(au+Bv,w) =a(u,w)+ B(v,w) and (v,w)=et({w,v))
foralla, f € Eand u,v,w € V. It follows that ( -, - ) is 7-linear in the second variable:

(u, av + pw) = () (u, v) + 7(B){u, w).
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In the case char F = 2 and E = F we assume also that (v,v) = 0 for all v € V, that is,
(-, ) is symplectic.

We write U(V) for the isometry group (or unitary group) of (-, - ) and GU(V) for
the corresponding similitude group. That is,

U(V)={geAutg(V):(gv,gv') = (v,v'),Vv,v' e V},
GU(V) ={geAutg(V):(gv,gv') = f(v,v"), for some scalar 8, Vv,v' € V}.

Applying 7 to both sides of (gv, gv') = f{v,v") (g € GU(V)) gives 7(f) = B, so that
B € F*. For g € GU(V) with associated scalar f8, we often write y(g) = B. This is
the multiplier of g and the resulting homomorphism p: GU(V') — F* is the multiplier
map.

Definition 1.1  Let h € Autg(V'). We say that h is anti-unitary if (hv, hv') = (v/,v),
forallv,v' e V.

When E = F and char F # 2, the form (-, -) is orthogonal (¢ = 1) or symplectic
(e = -1). In the orthogonal case, an anti-unitary map is simply an orthogonal trans-
formation. In the symplectic case, an anti-unitary map is a skew-symplectic transfor-
mation: (hv, hv'} = —(v,v').

We also need the corresponding notion for similitude groups.

Definition 1.2 Let h € Autp( V). We say also that h is an anti-unitary similitude if,
for some scalar f3, (hv, hv') = f{v', v}, forallv,v' € V.

Thus an anti-unitary map is an anti-unitary similitude for which § = 1. As above,
the scalar associated with any anti-unitary similitude lies in F*. Furthermore, it is
straightforward to see that any anti-unitary map or similitude 4 is 7-linear in the sense
that h(av) = 7(a)h(v) for all « € E and v € V. In particular, a product of two anti-
unitary similitudes (respectively, maps) belongs to GU( V) (respectively, U(V)).

We can now state our factorization result.

Theorem A Let g € GU(V) with u(g) = 8. Then there is an anti-unitary involution
hy and an anti-unitary similitude h, with h3 = B such that g = hyh,. In particular, for
any g € U(V), there exist anti-unitary elements h; with h? = 1 (for i = 1,2) such that
g= hll’lz.

For example, Theorem A says that any orthogonal transformation is a product of
two orthogonal involutions and that any symplectic transformation is a product of two
skew-symplectic involutions. This was originally proved by Wonenburger [26] (under
the assumption char F # 2). While we ultimately obtain a new proof of her results,
we borrow heavily from her approach. In particular, the arguments in §4 below are
in essence those of [26] but rephrased in the language of modules. For E = F and
char F # 2, Theorem A in the case of similitude groups is due to Vinroot [24,125] (by
an adaptation of Wonenburger’s arguments).
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Our framework does not accommodate orthogonal groups in even characteristic
(defined as the stabilizers of suitably non-degenerate quadratic forms) or the corre-
sponding similitude groups. If F is perfect, then it follows readily from the work of
Gow [9] or Ellers and Nolte 7] that Theorem A continues to hold in this setting.

Suppose now that F is a non-Archimedean local field and that G is the group of
F-points of a reductive F-group. Let 7 be an irreducible smooth representation of G.
For any continuous automorphism « of G, we write 7% for the (smooth) representa-
tion of G given by n%(g) = n(*g) for g € G. We write n¥ for the smooth dual or
contragredient of 7.

Definition 1.3  Let be a continuous automorphism of G of order at most two. We
say that 1 is a dualizing involution of G if n* = n¥ for all irreducible smooth represen-
tations 7 of G.

We fix an anti-unitary involution h € Autg(V) and set ‘g = u(g)'hgh™ for g €
GU(V). Then ¢ defines a continuous automorphism of GU(V) of order two. Further
t|u(vy gives the automorphism g ~ hgh™ of U(V) which for simplicity we again
denote by 1. Our application of Theorem A hinges on the following consequence.

Corollary 1.4 For any g € GU(V), the elements 'g and g™* are conjugate by an
element of U(V).

Proof Let g€ GU(V) with u(g) = . By Theorem A, we have g = hyh; for an anti-
unitary involution h; and an anti-unitary similitude h, with h3 = . Thus h;' = f'h,
and g~! = B hyh;. Hence

(hlh)lg(hlh)_l = h]h(ﬁ_lh(hlhz)h_l)hhl = ﬂ_lhzhl = g_l.
That is, ‘g and ¢! are conjugate by hyh € U(V). ]

For the classical groups U(V), the corollary is part of [15) Chapter IV, Proposi-
tion 1.2] and the early part of our proof of Theorem A mirrors the treatment in [15]
(as well as [26]]).

Our main result is the following.

Theorem B The maps 1:U(V) - U(V) and 1:GU(V) — GU(V) are dualizing
involutions.

In the case of the classical groups U(V), this is essentially [15, Chapter IV, Théo-
réeme IL.1]. Given Harish-Chandra’s theory of characters [3,/11] as recalled in Section
Theorem B is an immediate consequence of the corollary.

The argument in [15] does not use characters. Instead it adapts a geometric method
used by Gelfand and Kazhdan to show that transpose-inverse is a dualizing involu-
tion of GL,(F) [8]. As with Theorem B, this property of transpose-inverse follows
immediately from the existence of characters. Indeed, by elementary linear algebra,
a square matrix is conjugate to its transpose. Thus if °%g = ¢! for g € G = GL,(F)
then, for any irreducible smooth representation 7 of G, the characters of 7% and 7" are
equal, whence 7% = 7¥. Tupan [23] found a clever and completely elementary proof
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of Gelfand and Kazhdan’s result. We report elsewhere [20] on a similarly elementary
proof of Theorem B that builds on Tupan’s approach.

Finally, let G be the isometry group of a non-degenerate hermitian or anti-hermi-
tian form over a p-adic quaternion algebra. By [14], there is no automorphism 6 of
G such that % is conjugate to ¢! for all g € G. Thus the corollary above is false in
this setting, which means surely that Theorem B does not extend to classical groups
over p-adic quaternion algebras. In this spirit, let D be a central finite-dimensional
division algebra over F. By a straightforward argument (taken from unpublished work
of Roche and Spallone), we show that the group GL,, (D) can admit an automorphism
that takes each irreducible smooth representation to its dual only in the known cases
D = F and when D is a quaternion algebra over F [16/18]. In particular, in contrast to
the case of connected reductive groups over the reals [1], dualizing involutions in our
sense do not always exist.

1.1 Organization

The proof of Theorem A takes up Sections 1 through 5. We record some special cases
and applications in Section 6. In Section 7 we briefly recall some character theory
and prove Theorem B. In Section 8 we show that the unit groups of finite-dimensional
central simple algebras over F do not admit dualizing involutions except in the two
cases noted above.

2 Proof of Theorem A: Initial Setup and First Reduction

We use the following notation throughout the proof. For R a ring with identity, we
write R* for the group of units of R. For any R-module M (which for us is always a
unital left R-module), we write anng M for the annihilator of M. That is, anng M =
{reR:rm=0,Ym € M}. For m € M, we also write anngm = {r € R : rm = 0}.
Thus anng M = N,,cpr anng m. Note that anng m is the kernel of the surjective R-
module homomorphism r — rm: R — Rm, so that R/ anng m = Rm as R-modules.

2.1 Let g € GU(V) with u(g) = B. The space V is a module over the polynomial ring
E[T]viaf(T)v = f(g)v. Let p = p(T) denote the minimal polynomial of g. We have
p =py* - pér for distinct monic irreducible elements ps, ..., p, € E[T] and positive
integers ey, ..., e,.
We set A = E[T]/(p). The ideal (p) is simply the annihilator of V as an E[T]-
module. In particular, V carries an induced A-module structure. The Chinese Re-
mainder Theorem gives a canonical isomorphism of E-algebras

E[T]/(p) 2 E[T]/(p1") ®--- @ E[T]/(p}")-

Thus A = A; @ --- ® A, for ideals A; in A with A; = E[T]/(p;") (i = L...,n).
Setting V; = A;V (i =1,...,n), we have

2.1 V=Vie---eV,.

Each V; is an E[T]-submodule and as such has annihilator (p;’). More concretely,
each V; is g-stable and the minimal polynomial of g on V; is p{’.
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2.2 As g is invertible, the E[T]-module structure on V extends to a module structure
over the ring of Laurent polynomials E[ T, T™!]. It follows that each V; in is an
E[T, T™']-submodule. We have anng[y 711V = pE[T,T"'] and anng[y 717 V; =
PpYE[T,T™], (i = 1,...,n). The inclusion E[T] ¢ E[T,T™"] induces canonical
E-algebra isomorphisms

E[T]/(p) =E[T,T"']/pE[T,T"'] and E[T]/(p{') = E[T,T"']/p{'E[T,T ],

for (i = 1,...,n). We use these to identify A with E[T, T™']/pE[T, T™'] and each
A; with E[T, T™']/p¢'E[T, T™].

The F-automorphism 7 of E extends to an involution ¥; a;T' ~ ¥, 7(a;)B T~
on E[T, T™'], which we continue to denote by 7. This satisfies the adjoint relation

(2.2) (v, fw) = (z(f)v,w), VYv,weV,VfeE[T,T™].

It follows that 7(pE[T, T™']) = pE[T, T™']. Hence thereisa u € E[T, T']* such
that 7(p) = up and thus 7 induces an involution on A.
Furthermore, fori =1,...,n,

(1) 7(pi) =uipifori'#i or  (2) 7(pi)=uipi,
with each u; € E[T, T™']*. In case (a) 7 induces an isomorphism A; = A; while in

case (b) it induces an involution on A;.

By 2.2),
(2.3) Vi L V; unless 7(py) = up; for some u € E[T, T™']*.

It follows that V = W @ --- @ W,,, where for a given W;, we have W; = V; ® Vi for
some i and i’ as in (1) above or W; = V; with i as in (2). In particular, each W is
an E[T, T™']-submodule and the restriction of (-, - ) to each W; is non-degenerate.
Thus g € GU(V') decomposesas g = g, ®--- @ g, with gj e GU(W;) for j=1,...,m.
It suffices to prove the result for each g;. This means we are reduced to two basic cases.
Case 1. The minimal polynomial of g is p§ p5 for some positive integer e and monic
irreducible polynomials p;, p, € E[ T] such that (p,) = up, forsomeu € E[T, T™']*.
We have A = A, & A, with

Ai = E[T]/(p) = E[T, T7')/ p{E[T, ™), (i=1,2).
The space V decomposes as V = V; @ V, where V; = A;V (i = 1,2). Moreover, by
(2.3), each V; is a totally isotropic subspace of V.
Case 2. The minimal polynomial of g is p® for some positive integer e and some monic

irreducible element p € E[T] such that 7(p) = up for some u € E[T, T"']*. In this
case, A = E[T]/(p®) = E[T, T']/p°E[T, T™'].

3 Proof of Theorem A: Case 1

3.1 AsV = V;®V, is non-degenerate and each V; is totally isotropic, it follows that (-, - )
induces an isomorphism between V; and the conjugate dual of V,. That is, if we write
V¥ for the vector space structure on V, obtained by twisting by 7 so that V;f = V;, as
abelian groups and scalar multiplication on V' is given by a.v = 7(a)v (for a € E and
v e V), thenv — (v,-): V; > Homg(Vy, E) is an isomorphism of E-vector spaces.
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Letey, ..., e, be any basis of V;. By the preceding paragraph, V, (or V) admits a
dual basis fi, ..., f, such that

1 ifi=j,
feis fi) = {0 if i # .

Thus, with respect to the basis ey, ..., en, fi,- .., [y, the matrix of (-, -} is given in
block form by
0 e€l,
=[r )

For any matrix a = [a;;] with entries in E, we set 7(a) = [7(a;;)] and write "a for
the transpose of a. Below we often view E-linear maps on V as (block) matrices with
respect to the basis ey, ..., ex, fi, ... fa.

Consider the F-linear map c: V — V given by

Daiei+ Y bifj— > er(a)ei+ . 7(b) f;.
i=1 j=1 i=1 j=1

Setting a = [Z:] and b = [:}1
map c is anti-unitary (that is, (c(v), c(v')) = (v/,v), for all v,’ € V) and ¢ = 1. Any
anti-unitary h; € Autg(V) can be written as h; = s;c with s; € U(V). Now hy = s;¢
is an involution if and only if s;°; = 1 where “; = cs;c”!. Similarly, an anti-unitary
similitude h, can be written as h, = cs, with s, € GU(V). Again k3 = f8 if and only if
$2°; = B with %, = cs,c 7", In this notation, we have hyh; = s;5, (as ¢ = 1). It follows
that Theorem A in Case 1 is equivalent to the following:

(+) if g € GU(V) with u(g) = B then g = s;5, for elements s; € U(V) and
s, € GU(V) such that s °s; =1and s; “s, = f.

], we can write ¢ in matrix form as [ ] [6:((;)) ] The

n

3.2 We now prove (*). Since g preserves V; and V,, we have g = [ o 2]. The condition
g€ GU(V) says "gJz(g) = pJ with B = u(g). A short matrix calculation shows that
this means b = 77(a), so that

_[a 0 ]
£ o Brr(a)t|

_ 0 d] _ 0 €ﬁTT(d2)_l
1= €TT(d1)_1 ol 2= d2 0 ?
for elements di, d, € GL,,(E). It is routine to check that "s;J7(s;) = J and "s,J7(s;) =
BJ. Thus s; € U(V) and s, € GU(V).
To calculate s;, note that for all column vectors [ ;] as above, we have

[x] KR [er(x)] ,i)[ 0 d1:| [ef(x)]
y (y) e'r(d))™ 0[] 7(y)
_ [ dit(y) ] KR [ef(dl)y] _ [ 0 eT(dl)] |:x:|
Tr(dy) r(x) T x Td;! 0 y|

We set
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That is,

A similar computation gives

¢ 0 pld;!
Sy = [e‘[(dz) 0 ] =et(sy).

By direct matrix calculations, the conditions s; “s; = 1and s, “s, = f8 are equivalent
to d,'d;' = I, and d,"d;"' = I,, i.e, d; and d, are symmetric. Since g = s;s; is
equivalent to a = d,d,, we are reduced to the following matrix statement:

(#")  For any (invertible) n x n matrix a (with entries in E), there exist (invertible)
symmetric n x n matrices d; and d, (with entries in E) such that a = d,d,.

Now any square matrix is conjugate by a symmetric matrix to its transpose [13} p.
76]. Thus d'ad = "a with d € GL,(E) symmetric. This means d'a = Tad™’, so
"(d'a) =Tad ™ = d'a. Therefore a = d - d'a expresses a as product of symmetric
matrices (with entries in E). This completes the proof of Theorem A in Case 1.

4 Proof of Theorem A: Case 2 and Second Reduction

In this case, the minimal polynomial of g is p® (for some positive integer e) where p is
irreducible and 7(p) = up forsome u € E[T, T™']*. Let A = E[T, T']/p°E[T, T™'].
Asanng[r,t-1] V = p°E[T, T™'], the space V is naturally an A-module and as such is
faithful, that is, ann4 V = {0}. Note that A is a local ring with unique maximal ideal
p = pE[T, T™']/p°E[T, T™']. More strongly, the ideals in A form a chain

A2p2--2p°72p° = {0}.

4.1 Asanny V = {0}, thereissomev € V such thatanng v = {0}. Below we will need to
consider the restriction of (-, - ) to the submodule Av generated by such an element
and will make use of the following non-degeneracy criterion.

Lemma 4.1 Letv € V withanng v = {0}; equivalently, anng[r r-1v = p°E[T, T™'].
The cyclic submodule Av is non-degenerate if and only if (p¢~'v,v) # {0}.

Proof (=) Suppose Av is non-degenerate. By hypothesis, p¢~'v # 0. Thus there
isan f € E[T, T™'] such that (p*'v, fv) # 0, so that (7(f)p*'v,v) # 0 and hence
(v 1v,v) £ {0},

(<) Suppose now that (p¢~'v,v) # {0}. We write rad Av for the radical of (-, -)
on restriction to Av. It is immediate that rad Av is an A-submodule. The map a ~
av: A — Av is an isomorphism of A-modules. It follows that rad Av = p“v for some
non-negative integer ¢ (as the only ideals in A are the powers of p). Our assump-
tion (p¢~'v,v) # {0} implies that ¢ > e — 1. Thus rad Av = {0}, that is, Av is non-
degenerate. ]
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4.2 Letx eV withanny x = {0} (equivalently, anngr 71 x = p°E[T, T™']) and set X =
Ax. Now p¢~'x # 0, so thereisa y € V with (p°'x, y) # 0. It follows that ann 4 y =
{0}. Assume that the subspace X is degenerate, so that y ¢ X (by Lemma. Setting
Y = Ay, we claim that if X n'Y # {0}, then Y is non-degenerate.

To prove this, let z € X N Y with z # 0. We have z = p°gx = p¢ g'y, for integers ¢
and ¢’ with 0 < c < e,0 < ¢’ < e and elements g, g’ € E[T] that are prime to p. Thus
anng[r)z = (p°7°) = (p*)andsoc=c.

Now there are elements a, b € E[T] such that ag + bp® = 1. Hence

p a(pgx) =p°lagx = p I (1-bp*)x =p'x (as p°x=0).

In addition, p*~“'az = p*~“la(p°g’y) = p*tag'y, so that p*'x = p*lag’y. As
(p*~'x,y) # 0, it follows that (p*~'ag’y, y) # 0. Therefore (p°~'y, y) # {0}. Hence,
by Lemma[4.1} Y = Ay is non-degenerate.

e—c e—c-1

laz = p

4.3 We now show that if V does not admit a non-degenerate cyclic submodule (generated
by an element v such that ann 4 v = {0}), then it must contain a non-degenerate non-
cyclic submodule of a very special kind.

Lemma 4.2 Suppose that for any v € V such that anng v = {0} the submodule
Av is degenerate. Then there exist x and y in V such that (p*'x, y) # {0}. We have
AxnAy = {0} and the submodule Ax & Ay is non-degenerate.

Proof As in Section we choose x and y in V such that anng x = {0} and
(p*~'x, y) # 0. We again set X = Ax and Y = Ay. By hypothesis, X and Y are degen-
erate, so Lemmagives (p®'x,x) = (p*~'y, y) = {0}. Further, by the argument in
Section[4.2] X n'Y = {0}. We need to show that X & Y is non-degenerate.

Any non-zero element z € X ® Y can be written as z = p°gx + pcl g’y for integers
cand ¢’ with 0 < ¢ < e,0 < ¢’ < e, and elements g, g’ € E[T] that are prime to p.
Switching the roles of x and y if necessary, we may assume that ¢’ < c.

To prove non-degeneracy of X @ Y, we will show that (p¢~"'x, z) # {0}. Writing
f for the image of f € E[T, T™!] under the canonical quotient map from E[T, T"'] to
A =E[T, T/ p® E[T, T™'], we have (p*~“'x,z) = (p*“'x,pgx + ﬁclg'y). Now
P pel=plandge A*, so (p¢lx, pgx) = (p°~'x, x) = {0}. Thus

e—c+c’-1

(0 2) = (0", 5 g ) = (p x,y) (usingg' e A")
S(p'x,y) (asc’<c,s0e—c+c’ —1<e-1)

7 {0}.

In particular, (p¢~“'x,z) # {0}, as claimed. [ |

4.4 'We have established that V contains an A-submodule of one of the following types:

(a) anon-degenerate A-submodule Av with annyg v = {0};
(b) anon-degenerate A-submodule as in Lemma[4.2}

Now if W is any non-degenerate A-submodule of V, then V = W@ W+ as A-modules.
Moreover, anng W+ = p¢ for some non-negative integer ¢ < e. If Theorem A holds
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for W and W+, then it also holds for V. Thus we can complete the proof in Case 2 by
induction on dimg V provided we can establish the result in the two special cases (a)
and (b).

5 Proof of Theorem A: Case 2(a)

5.1 'This is the cyclic case in which V = Av with ann 4 v = {0}. That is, the map
(5.1) armravA->V

is an isomorphism of A-modules. We will show that there is an anti-unitary involu-
tion t: V' — V such that, forall a € A,

(5.2) ta =1(a)t

as elements of EndrV. Now the element T € E[T], and so also its image in A, acts
on V via g € GU(V). Thus if we take a to be the image of T in A, then gives
tg = Bg't, or (tg)* = . Hence g = t - tg gives the requisite factorization.

5.2 To establish (5.2), we define £:V — V by t(av) = 7(a)v, for all a € A. Thus ¢ is
simply the involution 7 of A transported to V via the isomorphism (5.I). It is therefore
immediate that ¢ is an involution and that (5.2) holds. To check that ¢ is anti-unitary,

leta,b e A. By 2.2), (t(av), t(bv)) = (z(a)v, t(b)v) = (br(a)v,v) = (bv, av).
6 Proof of Theorem A: Case 2(b)

Wehave V = Ax®Ay with (p¢'x, y) # {0}. Further, Ax and Ay are both degenerate,
$0 Lemmagives (p*'x,x) = (p°'y, y) = {0}. This case requires a more elaborate
argument.

6.1 We observe first that the subspaces Ax and Ay are in duality via (-, - }. That is, the
map
(6.1) ay — (a'x — (a’'x,ay)): Ay — Homg(Ax, E)
is a bijection. More precisely, if as in Sectionwe write (Ay)* for the E-vector space
structure on Ay obtained by twisting by 7, then is an isomorphism of E-vector
spaces between (Ay)" and Homg (Ax, E).

To prove this, note that the kernel of the given map is an A-submodule and so

equals p©y for some non-negative integer c. Now (p*~'x, y) # {0} and hence ¢ > e-1.
As p® = {0}, the kernel must be trivial and thus is injective. Since dimp Ax =
dimg Ay(= dimg A), the map is also surjective.

6.2 The map ax — (y,7(a)x) = (ay, x) belongs to Homg (Ax, E). Thus by Section
there is a unique y € A such that
(6.2) (ay,x) = (ax,yy), VaeA.

We claim that y € A*. Indeed, (p¢~'x, y) # {0} and 7(p) = p, so (p* 'y, x) # {0}. It
follows that (p¢~'x, yy) # {0}, or equivalently (z(y)p°~'x, y) # {0}. As p¢ = {0}, we
see that 7(y) ¢ p. Therefore 7(y) € A*, whence also y € A*.

https://doi.org/10.4153/CMB-2017-046-0 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2017-046-0

A Factorization Result for Classical and Similitude Groups 183

6.3 We claim next that yz(y) = 1. Rewriting as (x,ayy) = (y, ax), we have

(x,ayy) = er({ax, y)) = er((ax,y™yy)) = ex((v(y)ax, yy)
=er({z(yay.x))  (by @)
= (x, 7y May), Vacd,

It follows that (ax, yy) = (ax, 7(y™') y), for all a € A. By bijectivity of (6.1), 7(y )y =
yy, whence 7(y™') =y, that is, y7(y) = 1.

6.4 Definet: Ax®@ Ay > Ax @ Ayby t(ax +by) = t(a)x + 7(b)yy, foralla,b € A. We
claim that ¢ is an anti-unitary involution such that, for all a € A,

(6.3) ta=r1(a)t

as elements of Endr(Ax @ Ay). Once this is established, we can complete the argu-
ment exactly as in Section That is, (tg)* = B, and thus as above g = ¢ - tg gives the
requisite factorization.

Applying ¢t twice, we obtain

ax + by s 7(a)x +17(b)yy

s ax + br(y)yy=ax+by (ast(y)y=1),

and so t is an involution.

The identity is immediate. In detail, for all a, a’, b’ € A,
ta(a’'x +b'y) =t(aa'x +ab'y) =t(a)r(a’)x + 7(a)r(b")yy
=1(a)t(a’x +b'y).

Finally, to show that ¢ is anti-unitary, it suffices to verify the following four identities
(forall a,b € A):

(6.4) (t(ax),t(bx)) = (bx, ax);
(6.5) (t(ay),t(by)) = (by,ay);
(6.6) (t(ax),t(by)) = (by, ax);
(6.7) (t(by), t(ax)) = (ax, by).

Applying 7 to both sides of gives (6.7), so it is enough to check (6.4)-(6.6). We
can verify (6.4) directly as in Section[5.2] The argument for (6.5) is similarly straight-
forward using y7(y) = 1. To check (6.6)), note

(t(ax). (by)) = (x(@)x, 7(b)yy) = (br(a)x.yy) = (br(a)y.x) (using (2))
= (by, ax).
This completes the proof of Case 2(b) and so concludes the proof of Theorem A. W

7 Some Examples and Applications

7.1 Suppose that E = F and € = -1, so that U(V) = Sp(V) and GU(V) = GSp(V).
Assume also that char(F) # 2. As noted in the introduction, Wonenburger [26]
proved Theorem A for the symplectic group Sp(V) and the case of the similitude
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group GSp(V') was treated in [24]. Assume now that char(F) = 2. Then the case of
symplectic groups was proved by Gow [9] and Ellers and Nolte [7]]. If F is perfect, the
similitude case follows readily (as every element of F is a square). The similitude case
for char(F) = 2 and F imperfect appears to be new.

7.2 Suppose now that [E:F] = 2and e = 1. Let V = E” and view the elements of V as
column vectors. Consider the non-degenerate hermitian form (-, -) on V given by
(x,y) = Tx7(y). Here, as in Section 2.1, 7(y) is obtained by applying the automor-
phism 7 to each coordinate of y. Similarly, for any matrix a = [a;;] with entries in E,
we set 7(a) = [7(a;;)]. We write U(#n) for the isometry group of (-, - ). Thus

U(n) ={geGL,(E): "g1(g) =1}.

The map x +> 7(x):V — V is an anti-unitary involution for (-, -). For any a €
M, (E) (viewed as an E-linear map on V via left multiplication), we have a = cac™ =
7(a). The calculation that gave (*) of Section 2.1 shows that Theorem A for U(n) is

equivalent to the statement:

(#x) if g € U(n), then g = 515, for elements s; € U(V) such thats; °s; = 1
fori=1,2.

Froms; °s; = lands; € U(n), weseethats;' = “s; = 7(s;) = "s;’. Thuseachs; € U(n)

is symmetric as an element of GL,(E). Hence g = "s,"s; = 5351 and s7'gs; = Tg.

In particular, we obtain the following unitary group version of a classical result in

linear algebra (used in Section that any matrix is conjugate to its transpose by a

symmetric matrix.

Corollary 71 Forany g € U(n), there exists a symmetric matrix s € U(n) such that
1_7
sgsT =Tg.

When E/F = C/R, Corollary[71|follows immediately from the fact that any unitary
matrix is unitarily diagonalizable. In the case that E/F is an extension of finite fields,
Corollarywas proved in [10, Lemma 5.2].

7.3 LetE = F = [, be a finite field with g elements with g odd and let € = 1, so that
GU(V) is a finite group of orthogonal similitudes. We restrict attention to the case
that dim(V') = 2m is even. In this setting there are two equivalence classes of non-
degenerate symmetric forms on V, giving two distinct finite orthogonal similitude
groups. We denote these groups by GO*(2m, F,;), and write O* (2m, F,) for the cor-
responding orthogonal groups. For U(V) = O*(2m,FF,), the element h; in Theo-
rem A can be chosen so that det(h;) = (-1)" (see [21, Lemma 4.7]). For use in later
work, we now extend this observation to the case GU(V') = GO*(2m,F,).

Proposition 7.2 Let G = GO*(2m,F,) with q odd and let g € G with u(g) = .
Then there exist hy, hy € G such that g = hihy, u(hy) =1, u(hy) = B, hi =1, h3 = B,
and det(hy) = (-1)™.

Proof The case y(g) = 1follows from [21, Lemma 4.7]. If (g) = B is a square in ¥,
say = y*, then g’ = y~' g satisfies u(g') = 1, so we may write g’ = hyh’ with h; and
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h’ orthogonal involutions, and det(h;) = (-1)™. We set h, = yh’, so that g = h1h,
satisfies the desired conditions.

We now assume that ¢(g) = 8 with  a non-square in 'y and proceed by consid-
ering Cases 1, 2(a), and 2(b) in the proof of Theorem A. In Case 1, wehave V = Vi@V,
where dim(V;) = dim(V,) = m. In this scenario, we have E = F and € = 1, and in
Section 2.2, the element s; satisfies det(s;) = (-1)™ since d; is symmetric. Taking
s1 = hy and s, = h; gives the desired factorization.

In Case 2, we use Shinoda’s description of conjugacy classes in GO*(2m, F,) [22,
§1]. In particular, Shinoda shows that Case 2(b) occurs if and only if the minimal
polynomial p(T)® of g on V has the form (T — 8)° with e = 2k — 1an odd positive
integer [22} (1.18.2)]. Note that Wonenburger [26, Remark I] mentions the parallel
exceptions in her setting, which occur in the case = 1.

We now apply some calculations made in [24}25]. Consider first Case 2(a), where
we have V = Av is cyclic, and the minimal polynomial for g on V is of the form p(T)*®
but not of the form (T2 — )1, In particular, it follows from the fact that 7(p) = up
for some u € F[T, T™']* that p(T) has even degree. We set 2m = e deg(p) = dim(V)
and define

P=span{(g' + g ) |0<i<m},
Q =span{(g' - Big ) |0<i<m}.

In [24} Proposition 3(i)] and in [25} Theorem 1], it was shown that V = P @ Q, and if
we define h; to have +1-eigenspace P and —1-eigenspace Q and h, = h; g, then we have
hy, hy € G with u(hy) =1, u(hy) = B, hf = 1, and h3 = f. Since dim(Q) = (-1)™ =
det(hy), this gives the desired factorization.

Finally, consider Case 2(b), where we have V = Ax @ Ay, and as mentioned above,
the minimal polynomial for g must be of the form (T2 — )**. In this case, we have
dim(V') = 2m where m = 4k — 2. Define

P, =span{(g' +p'g " )x|0<i<2k -1},
Q. =span{(g' - Big x| 0<i<2k -1},

and define P, and Q, analogously. Vinroot [24, Proposition 3 (i), (iii)], [25} The-
orem 1] showed that if P = P, ® Q, and Q = Q, ® P,, and we define h; to have
+1-eigenspace P and —1-eigenspace Q and h, = hyg, then we again have hy, hy € G
with pu(h1) = 1, u(hy) = B, hi =1, and h3 = B. Since dim(P,) = 2k and dim(Q,) =
2k — 2, then dim(Q) = 4k — 2 = m, so det(h;) = (-1)™. [ |

8 Proof of Theorem B

For the remainder of the paper, we take F to be a non-Archimedean local field. Recall
that h € Autg(V) is an anti-unitary involution and that ‘g = u(g) 'hgh™" for g €
GU(V). Thus ¢ is a continuous automorphism of GU( V) of order two. The restriction
t|u(vy gives the automorphism g +~ hgh™" of U(V'), which we again denote by 1. We
restate our main result.
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Theorem B The maps 1:U(V) - U(V) and :GU(V) - GU(V) are dualizing
involutions.

We recall some character theory in Section[8.1] Using this, we will see in Section
[8.2] that Theorem B follows almost immediately from Theorem A.

8.1 Let G be the F-points of a reductive algebraic F-group. As usual, we write C2°(G) for
the space of complex-valued functions on G that are locally constant and of compact
support. Let (7, V') be a smooth representation of G. For f € C°(G), the operator
n(f):V — Vis given by n(f)v = [, f(g)n(g)vdg, v € V, where the integral is
with respect to a Haar measure on G which we fix once and for all. Assume now
that (7, V) is irreducible. It is well known that (7, V') is then admissible [12], that
is, the space VX of K-fixed vectors has finite dimension for any open subgroup K of
G. It follows that the image of 7(f) has finite dimension and thus 7(f) has a well-
defined trace. The resulting linear functional f ~ trz(f):C2°(G) — C is called
the distribution character of n. It determines the irreducible representation 7 up to
equivalence [4} 2.20].

It is straightforward to check that trr¥ (f) = tr(f¥) where f¥(g) = f(g™") for
geG.

Let Gig denote the set of regular semisimple elements in G. By [3}/11], the distri-
bution character of 7 is represented by a locally constant function ®; on Gy called
the character of m. That is,

(5.1 wn(f) = [ f()0x()dg. feC(O).

Remark. Existence of ® is established in [11] for the F-points of arbitrary connected
reductive F-groups based on the submersion principle of its title. Harish-Chandra,
however, only gave a proof of the principle in characteristic zero with a comment that
a general proof was known. A full proof, due to G. Prasad, appears in |2} Appendix B].
Adler and Korman explained how to extend Harish-Chandra’s and Prasad’s arguments
to the F-points of non-connected reductive F-groups [3, §13]. A similarly general
treatment of characters appears in [5, Appendix].

By (8.1), the function ®, determines the distribution character of 7 and thus 7 is
determined up to equivalence by ®,. In the same way, ©, is constant on (regular
semisimple) conjugacy classes. From trV(f) = tra(fY) for f € CZ(G), we also
have ®,v(g) = ©,(g™") for g € Gyeg, again by (8.1).

8.2 Given a smooth representation 7 of G and a continuous automorphism « of G, we
write 7% for the smooth representation given by 7%(g) = n(“g) for g € G.
For any g € GU(V), we noted in the introduction that the elements ‘g and ¢! are
conjugate by an element of U(V'). To prove Theorem B, it suffices therefore to observe
the following.

Lemma 8.1 Let a be a continuous automorphism of G such that °g is conjugate to
g ! forany g € G. Then n* = n" for any irreducible smooth representation 7 of G.
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Proof The main detail to check is that a continuous automorphism y of G preserves
the Haar measure yg on G. We have ug oy = ¢, yg for some ¢, > 0. Writing
Aut.(G) for the group of continuous automorphisms of G and R}, for the multi-
plicative group of positive real numbers, the assignment y — ¢): Autc(G) — Rf; is
a homomorphism. Let K be a compact subgroup of G of maximal volume. (Note K
exists as G has a finite non-zero number of conjugacy classes of maximal compact
subgroups.) For any y € Aut.(G), we have ug(y(K)) = c,uc(K), so that ¢, < L
Similarly ¢+ = c;l < 1. Hence c, =1, as required.

In particular, « preserves the Haar measure on G. Thus, for any irreducible smooth

representation 7 of G,

(N = [ f@ndg= [ f(@n(g)dg. feCT(G).

That is, 7%(f) = 7(°f) for f € C=(G) where “f(g) = f(* g). It follows that
trn®(f) = trm(* f), so that

[ F@0m(e)dg= [ 1(*'9)0n(s) dg
- [ F(@en("g)dg. ¥ eCT(G).

Therefore, @« (g) = @,(*g) for g € Greg. As characters are constant on conjugacy
classes, it follows that ®,.(g) = ©,(g™") for g € Greg. Thus @« = O,y and 7% =
. [ |

8.3 Werecord a direct consequence of Theorem B, known to experts [17, p. 305]. Suppose
E = F, so that (-, - ) is orthogonal or symplectic. We change notation slightly and
write O(V) and GO(V) or Sp,, (F) and GSp,,(F) (where dimp V' = 2n) for the
resulting isometry and similitude groups. The center of each similitude group consists
of scalar transformations. Dividing by this center gives the corresponding projective
groups PGO(V') and PGSp,,, (F).

Corollary 8.2 (i)  Every irreducible smooth representation of O(V) is self-dual.

(i) If-1€ (F*)? then every irreducible smooth representation of Sp,,, (F) is self-dual.

(iii) For any irreducible smooth representation m of GO(V) or GSp,, (F), we have
2 ® wy oy where w, denotes the central character of m. In particular,
every irreducible smooth representation of PGO(V') or PGSp,, (F) is self-dual.

Proof Part (i) is immediate as h € O(V'), so 1:O(V) - O(V) is inner.

For part (ii), it suffices to note that 1(g) = hgh™ defines an inner automorphism
of Sp,,, (F) for any h € GSp,,(F) with u(h) = -1. Given i € F* with i* = -1, the
homothety i satisfies y(i) = i* = -1 and thus ih € Sp,, (F). Since 'g = (ih)g(ih)™
for g € Sp,,, (F), we see that 1 is inner.

For part (iii), observe that g — u(g)'g defines a dualizing involution of each
similitude group. ]
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9 Dualizing Involutions Do Not Always Exist

Let D be a central F-division algebra of dimension m* over F. Let n be a positive
integer and set G = GL,, (D). We show that G can admit an automorphism that takes
each irreducible smooth representation to its dual only in the known cases m =1
[8,/23] and m = 2 [16,[18]. Hence it is only in these two cases that G can admit an
automorphism 6 such that % is conjugate to g™! for all g € G, an observation also
made by Lin, Sun, and Tan [14, Remark (c) p. 83] ). Indeed, the two statements —
non-existence of automorphisms that take each irreducible smooth representation to
its dual and non-existence of automorphisms that invert each conjugacy class — must
surely be equivalent.

Proposition 9.1  Suppose there exists an automorphism 6 of G such that n° ~ ¥ for
all irreducible smooth representations m of G. Then D = F or D is a quaternion algebra
over F (equivalently, m = 1or 2).

We need a preliminary observation. Let o denote the valuation ring in F and pp
the unique maximal ideal in op.

Lemma 9.2  Any field automorphism of F preserves pg. In particular, field automor-
phisms of F are automatically continuous.

Proof Write g for the cardinality of the residue field o /pr and v for the normalized
valuation on F. The ideals p¥ (for k a positive integer) form a neighborhood basis of
0 € F. Thus an automorphism that preserves pr is continuous.

Writing p for the residual characteristic of F, the set 1 + pr can be characterized

algebraically as follows:
x € 1+ pp if and only if x admits an n-th root (i.e., there is a y € F* with

y" = x) for any n such that p + n.

Indeed, using Hensel's Lemma or simply that 1+ is a pro- p-group, one sees that each
element of 1 + pr admits an n-th root for any # such that p + n. In the other direction,
suppose x has this property. Then n divides vp(x) for infinitely many integers n,
whence vp(x) = 0, ie., x € 0. Let y be a (q — 1)-th root of x. Then y € o} and
the relation y7°! = x implies x € 1 + pg. It follows that any field automorphism of F
preserves 1+ pr and so also pg. [ |

Proof of Proposition[9.] We use the isomorphism x ~ x1,: F* - Z(G) to view
the central character w, of any smooth irreducible representation 7 of G as a smooth
character of F*.

Suppose first that D is not isomorphic to its opposite D°. We appeal to Dieudonné’s
description of the automorphism groups of general linear groups over division alge-
bras [6]. In the case at hand, this gives a homomorphism #:G - F*, an automor-
phism o of D acting on G via ?(a;;) = (“aij), and an element h € G such that

(9.1) % = n(g)hgh™, geG.
(See (|6, Theorems 1 and 3] for the case n > 3 and [|6, §12] for the case n = 2.)
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As % ~ 7V, we have w, 0 0 = w;! (for all smooth irreducible representations ).
It follows that %a = a™!, a € F*. Thus, by @), a' = 5#(a) °a, a € F*.

We have G/(G,G) ~ D*/(D*, D*) via Dieudonnés non-commutative determi-
nant Det. Furthermore, the reduced norm Nrd from D to F induces an isomor-
phism D*/(D*, D*) ~ F*. Thus there is a character #;: F* — F* such that n(g) =
11 (Nrd o Detg), for g € G. Using Deta = a”(D*,D*) and Nrda = a™, it follows
that a™! = 5;(a)™"a, a € F*. Taking a = @, a uniformizer in F, and applying v, we
obtain -1 = mnvp(11(@)) + ve(°@). By Lemmal[9.2} vp(°®) = 1, and hence m | 2.
Thus D = F or D is a quaternion algebra over F, which contradicts our assumption
that D is not isomorphic to D°. It follows that there is an isomorphism a: D — D°. If
a is F-linear, then D represents an element of order at most two in the Brauer group
of F. As the only such elements are the class of F and the class of the unique quater-
nion division algebra over F, the result follows. In general, however, we can only
say that « preserves the center F of D. By Lemma[9.2} it must also preserve oy. The
ring D contains a unique maximal op-order O consisting of the elements of D that
are integral over or. From this description, we see that a preserves 9. Thus « also
preserves the unique maximal (left or right) ideal q in O, and hence induces an auto-
morphism of the quotient /g, a finite field of order q. Let @p be a generator of g,
ie,q=®pO = Odp. Then, for D # F, there is a unique integer r with 1 < r < m and
(r,m) = 1such that

(9.2) @px@p = x? (mod q), x€9.

Moreover the congruence is independent of the choice of generator @p. (This all
follows, for example, from [19} 14.5].) Applying « to and rearranging (and using
the fact that O/q has order g™), we obtain

a(@p)xa(@p)=x1"" (modq), xeO.

Since (9.2) holds for all generators of ¢, we deduce that r = m — r or 2r = m, whence
r =1and m = 2. Thus D is a quaternion algebra over F and we have completed the
proof. ]
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