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A Factorization Result for Classical and
Similitude Groups

Alan Roche and C. Ryan Vinroot

Abstract. For most classical and similitude groups, we show that each element can be written as a
product of two transformations that preserve or almost preserve the underlying form and whose
squares are certain scalar maps. _is generalizes work ofWonenburger and Vinroot. As an appli-
cation, we re-prove and slightly extend a well-known result ofMœglin, Vignéras, andWaldspurger
on the existence of automorphisms of p-adic classical groups that take each irreducible smooth rep-
resentation to its dual.

1 Introduction

For many classical groups G, we show that each element is a product of two involu-
tions. _e involutions belong to a group G̃ containing G such that [G̃ ∶G] ≤ 2. We
also prove a similar factorization for elements of the corresponding similitude groups.
Our methods apply to classical (and similitude groups) over arbitrary ûelds with the
exception of orthogonal groups (and the corresponding similitude groups) over ûelds
of even characteristic. Our interest in such factorizations stems from an application to
the representation theory of reductive groups over non-Archimedean local ûelds. We
are interested in involutary automorphisms of such groups that take each irreducible
smooth representation to its dual. Echoing [1], we call these dualizing involutions.
_ey do not always exist in our setting (we give an example in §9). _ey do exist,
however, for many classical p-adic groups by a result ofMœglin, Vignéras andWald-
spurger [15, Chapter IV §II]. We re-prove this result and slightly extend its scope as
explained below.

To make more precise statements, we need to deûne the classical and similitude
groupswe consider. Let E/F be a ûeld extensionwith E = F or [E ∶F] = 2. We assume
in the quadratic case that E/F is a Galois extension. In all cases we write τ for the
generator ofGal(E/F), so that τ has order twowhen [E ∶F] = 2 and τ = 1when E = F.
Let V be a ûnite-dimensional vector space over E with a non-degenerate є-hermitian
form ⟨ ⋅ , ⋅ ⟩ (є = ±1) which we take to be linear in the ûrst variable. _us

⟨αu + βv ,w⟩ = α⟨u,w⟩ + β⟨v ,w⟩ and ⟨v ,w⟩ = є τ(⟨w , v⟩)

for all α, β ∈ E and u, v ,w ∈ V . It follows that ⟨ ⋅ , ⋅ ⟩ is τ-linear in the second variable:

⟨u, αv + βw⟩ = τ(α)⟨u, v⟩ + τ(β)⟨u,w⟩.
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A Factorization Result for Classical and Similitude Groups 175

In the case char F = 2 and E = F we assume also that ⟨v , v⟩ = 0 for all v ∈ V , that is,
⟨ ⋅ , ⋅ ⟩ is symplectic.

WewriteU(V) for the isometry group (or unitary group) of ⟨ ⋅ , ⋅ ⟩ andGU(V) for
the corresponding similitude group. _at is,

U(V) = {g ∈ AutE(V) ∶ ⟨gv , gv′⟩ = ⟨v , v′⟩,∀v , v′ ∈ V},

GU(V) = {g ∈ AutE(V) ∶ ⟨gv , gv′⟩ = β⟨v , v′⟩, for some scalar β,∀v , v′ ∈ V}.

Applying τ to both sides of ⟨gv , gv′⟩ = β⟨v , v′⟩ (g ∈ GU(V)) gives τ(β) = β, so that
β ∈ F×. For g ∈ GU(V) with associated scalar β, we o�en write µ(g) = β. _is is
themultiplier of g and the resulting homomorphism µ∶GU(V)→ F× is themultiplier
map.

Deûnition 1.1 Let h ∈ AutF(V). We say that h is anti-unitary if ⟨hv , hv′⟩ = ⟨v′ , v⟩,
for all v , v′ ∈ V .

When E = F and char F /= 2, the form ⟨ ⋅ , ⋅ ⟩ is orthogonal (є = 1) or symplectic
(є = −1). In the orthogonal case, an anti-unitary map is simply an orthogonal trans-
formation. In the symplectic case, an anti-unitarymap is a skew-symplectic transfor-
mation: ⟨hv , hv′⟩ = −⟨v , v′⟩.

We also need the corresponding notion for similitude groups.

Deûnition 1.2 Let h ∈ AutF(V). We say also that h is an anti-unitary similitude if,
for some scalar β, ⟨hv , hv′⟩ = β⟨v′ , v⟩, for all v , v′ ∈ V .

_us an anti-unitary map is an anti-unitary similitude for which β = 1. As above,
the scalar associated with any anti-unitary similitude lies in F×. Furthermore, it is
straightforward to see that any anti-unitarymap or similitude h is τ-linear in the sense
that h(αv) = τ(α)h(v) for all α ∈ E and v ∈ V . In particular, a product of two anti-
unitary similitudes (respectively,maps) belongs to GU(V) (respectively, U(V)).

We can now state our factorization result.

_eorem A Let g ∈ GU(V) with µ(g) = β. _en there is an anti-unitary involution
h1 and an anti-unitary similitude h2 with h2

2 = β such that g = h1h2. In particular, for
any g ∈ U(V), there exist anti-unitary elements h i with h2

i = 1 ( for i = 1, 2) such that
g = h1h2.

For example, _eorem A says that any orthogonal transformation is a product of
two orthogonal involutions and that any symplectic transformation is aproduct of two
skew-symplectic involutions. _iswas originally proved byWonenburger [26] (under
the assumption char F /= 2). While we ultimately obtain a new proof of her results,
we borrow heavily from her approach. In particular, the arguments in §4 below are
in essence those of [26] but rephrased in the language of modules. For E = F and
char F /= 2,_eorem A in the case of similitude groups is due to Vinroot [24, 25] (by
an adaptation ofWonenburger’s arguments).
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Our framework does not accommodate orthogonal groups in even characteristic
(deûned as the stabilizers of suitably non-degenerate quadratic forms) or the corre-
sponding similitude groups. If F is perfect, then it follows readily from the work of
Gow [9] or Ellers and Nolte [7] that _eorem A continues to hold in this setting.

Suppose now that F is a non-Archimedean local ûeld and that G is the group of
F-points of a reductive F-group. Let π be an irreducible smooth representation of G.
For any continuous automorphism α of G, we write πα for the (smooth) representa-
tion of G given by πα(g) = π(α g) for g ∈ G. We write π∨ for the smooth dual or
contragredient of π.

Deûnition 1.3 Let ι be a continuous automorphism of G of order at most two. We
say that ι is a dualizing involution of G if π ι ≅ π∨ for all irreducible smooth represen-
tations π of G.

We ûx an anti-unitary involution h ∈ AutF(V) and set ιg = µ(g)−1hgh−1 for g ∈
GU(V). _en ι deûnes a continuous automorphism ofGU(V) of order two. Further
ι∣U(V) gives the automorphism g ↦ hgh−1 of U(V) which for simplicity we again
denote by ι. Our application of_eorem A hinges on the following consequence.

Corollary 1.4 For any g ∈ GU(V), the elements ιg and g−1 are conjugate by an
element of U(V).

Proof Let g ∈ GU(V) with µ(g) = β. By _eorem A, we have g = h1h2 for an anti-
unitary involution h1 and an anti-unitary similitude h2 with h2

2 = β. _us h−1
2 = β−1h2

and g−1 = β−1h2h1. Hence

(h1h)ι g(h1h)−1 = h1h(β−1h(h1h2)h−1)hh1 = β−1h2h1 = g−1 .

_at is, ιg and g−1 are conjugate by h1h ∈ U(V).

For the classical groups U(V), the corollary is part of [15, Chapter IV, Proposi-
tion I.2] and the early part of our proof of _eorem A mirrors the treatment in [15]
(as well as [26]).

Our main result is the following.

_eorem B _e maps ι∶U(V) → U(V) and ι∶GU(V) → GU(V) are dualizing
involutions.

In the case of the classical groups U(V), this is essentially [15, Chapter IV, _éo-
rème II.1]. Given Harish-Chandra’s theory of characters [3, 11] as recalled in Section
8,_eorem B is an immediate consequence of the corollary.

_e argument in [15] does not use characters. Instead it adapts a geometricmethod
used by Gelfand and Kazhdan to show that transpose-inverse is a dualizing involu-
tion of GLn(F) [8]. As with _eorem B, this property of transpose-inverse follows
immediately from the existence of characters. Indeed, by elementary linear algebra,
a square matrix is conjugate to its transpose. _us if θg = ⊺g−1 for g ∈ G = GLn(F)
then, for any irreducible smooth representation π ofG, the characters of πθ and π∨ are
equal, whence πθ ≅ π∨. Tupan [23] found a clever and completely elementary proof
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of Gelfand and Kazhdan’s result. We report elsewhere [20] on a similarly elementary
proof of_eorem B that builds on Tupan’s approach.
Finally, let G be the isometry group of a non-degenerate hermitian or anti-hermi-

tian form over a p-adic quaternion algebra. By [14], there is no automorphism θ of
G such that θg is conjugate to g−1 for all g ∈ G. _us the corollary above is false in
this setting, which means surely that _eorem B does not extend to classical groups
over p-adic quaternion algebras. In this spirit, let D be a central ûnite-dimensional
division algebra over F. By a straightforward argument (taken fromunpublishedwork
ofRoche and Spallone),we show that the groupGLn(D) can admit an automorphism
that takes each irreducible smooth representation to its dual only in the known cases
D = F and when D is a quaternion algebra over F [16, 18]. In particular, in contrast to
the case of connected reductive groups over the reals [1], dualizing involutions in our
sense do not always exist.

1.1 Organization

_e proof of_eorem A takes up Sections 1 through 5. We record some special cases
and applications in Section 6. In Section 7 we brie�y recall some character theory
and prove_eorem B. In Section 8we show that the unit groups of ûnite-dimensional
central simple algebras over F do not admit dualizing involutions except in the two
cases noted above.

2 Proof of Theorem A: Initial Setup and First Reduction

We use the following notation throughout the proof. For R a ring with identity, we
write R× for the group of units of R. For any R-module M (which for us is always a
unital le� R-module), we write annR M for the annihilator of M. _at is, annR M =
{r ∈ R ∶ rm = 0,∀m ∈ M}. For m ∈ M, we also write annR m = {r ∈ R ∶ rm = 0}.
_us annR M = ⋂m∈M annR m. Note that annR m is the kernel of the surjective R-
module homomorphism r ↦ rm∶R → Rm, so that R/ annR m ≅ Rm as R-modules.

2.1 Let g ∈ GU(V) with µ(g) = β. _e space V is a module over the polynomial ring
E[T] via f (T)v = f (g)v. Let p = p(T) denote theminimal polynomial of g. We have
p = pe11 ⋅ ⋅ ⋅ penn for distinct monic irreducible elements p1 , . . . , pn ∈ E[T] and positive
integers e1 , . . . , en .

We set A = E[T]/(p). _e ideal (p) is simply the annihilator of V as an E[T]-
module. In particular, V carries an induced A-module structure. _e Chinese Re-
mainder _eorem gives a canonical isomorphism of E-algebras

E[T]/(p) ≅ E[T]/(pe11 )⊕ ⋅ ⋅ ⋅ ⊕ E[T]/(penn ).

_us A = A1 ⊕ ⋅ ⋅ ⋅ ⊕ An , for ideals Ai in A with Ai ≅ E[T]/(pe ii ) (i = 1, . . . , n).
Setting Vi = AiV (i = 1, . . . , n), we have

(2.1) V = V1 ⊕ ⋅ ⋅ ⋅ ⊕ Vn .

Each Vi is an E[T]-submodule and as such has annihilator (pe ii ). More concretely,
each Vi is g-stable and theminimal polynomial of g on Vi is pe ii .
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2.2 As g is invertible, the E[T]-module structure on V extends to a module structure
over the ring of Laurent polynomials E[T , T−1]. It follows that each Vi in (2.1) is an
E[T , T−1]-submodule. We have annE[T ,T−1] V = pE[T , T−1] and annE[T ,T−1] Vi =

pe ii E[T , T
−1], (i = 1, . . . , n). _e inclusion E[T] ⊂ E[T , T−1] induces canonical

E-algebra isomorphisms

E[T]/(p) ≅ E[T , T−1]/pE[T , T−1] and E[T]/(pe ii ) ≅ E[T , T−1]/pe ii E[T , T
−1],

for (i = 1, . . . , n). We use these to identify A with E[T , T−1]/pE[T , T−1] and each
Ai with E[T , T−1]/pe ii E[T , T

−1].
_e F-automorphism τ of E extends to an involution ∑i a iT i ↦ ∑i τ(a i)β iT−i

on E[T , T−1], which we continue to denote by τ. _is satisûes the adjoint relation

(2.2) ⟨v , fw⟩ = ⟨τ( f )v ,w⟩, ∀v ,w ∈ V ,∀ f ∈ E[T , T−1].

It follows that τ(pE[T , T−1]) = p E[T , T−1]. Hence there is a u ∈ E[T , T−1]× such
that τ(p) = up and thus τ induces an involution on A.
Furthermore, for i = 1, . . . , n,

(1) τ(p i) = u i p i′ for i′ /= i or (2) τ(p i) = u i p i ,

with each u i ∈ E[T , T−1]×. In case (a) τ induces an isomorphism Ai ≅ Ai′ while in
case (b) it induces an involution on Ai .
By (2.2),

(2.3) Vk ⊥ Vl unless τ(pk) = up l for some u ∈ E[T , T−1]× .

It follows that V = W1 ⊕ ⋅ ⋅ ⋅ ⊕Wm , where for a given Wj , we haveWj = Vi ⊕ Vi′ for
some i and i′ as in (1) above or Wj = Vi with i as in (2). In particular, each Wj is
an E[T , T−1]-submodule and the restriction of ⟨ ⋅ , ⋅ ⟩ to each Wj is non-degenerate.
_us g ∈ GU(V) decomposes as g = g1⊕⋅ ⋅ ⋅⊕ gm with g j ∈ GU(Wj) for j = 1, . . . ,m.
It suõces to prove the result for each g j . _ismeanswe are reduced to two basic cases.
Case 1. _e minimal polynomial of g is pe1 pe2 for some positive integer e and monic
irreduciblepolynomials p1 , p2 ∈ E[T] such that τ(p1) = up2 for someu ∈ E[T , T−1]×.
We haveA = A1 ⊕A2 with

Ai = E[T]/(pei ) = E[T , T−1]/ pei E[T , T−1], (i = 1, 2).

_e space V decomposes as V = V1 ⊕ V2 where Vi = AiV (i = 1, 2). Moreover, by
(2.3), each Vi is a totally isotropic subspace of V .
Case 2. _eminimal polynomial of g is pe for some positive integer e and somemonic
irreducible element p ∈ E[T] such that τ(p) = up for some u ∈ E[T , T−1]×. In this
case,A = E[T]/(pe) = E[T , T−1]/peE[T , T−1].

3 Proof of Theorem A: Case 1

3.1 As V = V1⊕V2 is non-degenerate and each Vi is totally isotropic, it follows that ⟨ ⋅ , ⋅ ⟩
induces an isomorphism between V1 and the conjugate dual of V2. _at is, if we write
V τ

2 for the vector space structure on V2 obtained by twisting by τ so that V τ
2 = V2 as

abelian groups and scalar multiplication on V τ
2 is given by a.v = τ(a)v (for a ∈ E and

v ∈ V2), then v ↦ ⟨v ,−⟩∶V1 → HomE(V τ
2 , E) is an isomorphism of E-vector spaces.
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Let e1 , . . . , en be any basis of V1. By the preceding paragraph, V2 (or V τ
2 ) admits a

dual basis f1 , . . . , fn such that

⟨e i , f j⟩ =
⎧⎪⎪
⎨
⎪⎪⎩

1 if i = j,
0 if i /= j.

_us, with respect to the basis e1 , . . . , en , f1 , . . . , fn , the matrix of ⟨ ⋅ , ⋅ ⟩ is given in
block form by

J = [
0 єIn
In 0 ] .

For any matrix a = [a i j] with entries in E, we set τ(a) = [τ(a i j)] and write ⊺a for
the transpose of a. Below we o�en view E-linear maps on V as (block) matrices with
respect to the basis e1 , . . . , en , f1 , . . . , fn .
Consider the F-linear map c∶V → V given by

n
∑
i=1
a i e i +

n
∑
j=1
b j f j

c
z→

n
∑
i=1

єτ(a i)e i +
n
∑
j=1

τ(b j) f j .

Setting a = [
a1
⋮
an

] and b = [
b1
⋮
bn

], we can write c in matrix form as [ ab ]
c
↦ [

єτ(a)
τ(b) ]. _e

map c is anti-unitary (that is, ⟨c(v), c(v′)⟩ = ⟨v′ , v⟩, for all v , v′ ∈ V ) and c2 = 1. Any
anti-unitary h1 ∈ AutF(V) can be written as h1 = s1c with s1 ∈ U(V). Now h1 = s1c
is an involution if and only if s1 cs1 = 1 where cs1 = cs1c−1. Similarly, an anti-unitary
similitude h2 can be written as h2 = cs2 with s2 ∈ GU(V). Again h2

2 = β if and only if
s2 cs2 = β with cs2 = cs2c−1. In this notation, we have h1h2 = s1s2 (as c2 = 1). It follows
that _eorem A in Case 1 is equivalent to the following:

(∗) if g ∈ GU(V) with µ(g) = β then g = s1s2 for elements s1 ∈ U(V) and
s2 ∈ GU(V) such that s1 c s1 = 1 and s2 c s2 = β.

3.2 We now prove (∗). Since g preserves V1 and V2, we have g = [ a 0
0 b ] . _e condition

g ∈ GU(V) says ⊺gJτ(g) = βJ with β = µ(g). A short matrix calculation shows that
this means b = β⊺τ(a)−1, so that

g = [
a 0
0 β⊺τ(a)−1] .

We set

s1 = [
0 d1

є⊺τ(d1)
−1 0 ] , s2 = [

0 єβ⊺τ(d2)
−1

d2 0 ] ,

for elements d1 , d2 ∈ GLn(E). It is routine to check that ⊺s1 Jτ(s1) = J and ⊺s2 Jτ(s2) =
βJ. _us s1 ∈ U(V) and s2 ∈ GU(V).

To calculate cs1, note that for all column vectors [ x
y ] as above, we have

[
x
y]

c
z→ [

єτ(x)
τ(y) ]

s1
z→ [

0 d1
є⊺τ(d1)

−1 0 ] [
єτ(x)
τ(y) ]

= [
d1τ(y)

⊺τ(d1)
−1τ(x)]

c
z→ [

єτ(d1)y
⊺d−1

1 x ] = [
0 єτ(d1)

⊺d−1
1 0 ] [

x
y] .
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_at is,

cs1 = [
0 єτ(d1)

⊺d −1
1 0 ] = єτ(s1).

A similar computation gives

cs2 = [
0 β⊺d−1

2
єτ(d2) 0 ] = єτ(s2).

By direct matrix calculations, the conditions s1 c s1 = 1 and s2 c s2 = β are equivalent
to d1

⊺d−1
1 = In and d2

⊺d−1
2 = In , i.e., d1 and d2 are symmetric. Since g = s1s2 is

equivalent to a = d1d2, we are reduced to the following matrix statement:

(∗′) For any (invertible) n×n matrix a (with entries in E), there exist (invertible)
symmetric n × n matrices d1 and d2 (with entries in E) such that a = d1d2.

Now any square matrix is conjugate by a symmetric matrix to its transpose [13, p.
76]. _us d−1ad = ⊺a with d ∈ GLn(E) symmetric. _is means d−1a = ⊺ad−1, so
⊺(d−1a) = ⊺ad−1 = d−1a. _erefore a = d ⋅ d−1a expresses a as product of symmetric
matrices (with entries in E). _is completes the proof of_eorem A in Case 1.

4 Proof of Theorem A: Case 2 and Second Reduction

In this case, theminimal polynomial of g is pe (for some positive integer e)where p is
irreducible and τ(p) = up for some u ∈ E[T , T−1]×. LetA = E[T , T−1]/peE[T , T−1].
As annE[T ,T−1] V = peE[T , T−1], the space V is naturally anA-module and as such is
faithful, that is, annA V = {0}. Note that A is a local ring with uniquemaximal ideal
p = pE[T , T−1]/peE[T , T−1]. More strongly, the ideals in A form a chain

A ⫌ p ⫌ ⋅ ⋅ ⋅ ⫌ pe−1 ⫌ pe = {0}.

4.1 As annA V = {0}, there is some v ∈ V such that annA v = {0}. Belowwewill need to
consider the restriction of ⟨ ⋅ , ⋅ ⟩ to the submodule Av generated by such an element
and will make use of the following non-degeneracy criterion.

Lemma 4.1 Let v ∈ V with annA v = {0}; equivalently, annE[T ,T−1] v = peE[T , T−1].
_e cyclic submoduleAv is non-degenerate if and only if ⟨pe−1v , v⟩ /= {0}.

Proof (⇒) Suppose Av is non-degenerate. By hypothesis, pe−1v /= 0. _us there
is an f ∈ E[T , T−1] such that ⟨pe−1v , f v⟩ /= 0, so that ⟨τ( f )pe−1v , v⟩ /= 0 and hence
⟨pe−1v , v⟩ /= {0}.

(⇐) Suppose now that ⟨pe−1v , v⟩ /= {0}. We write rad Av for the radical of ⟨ ⋅ , ⋅ ⟩
on restriction to Av. It is immediate that radAv is an A-submodule. _e map a ↦
av∶A → Av is an isomorphism of A-modules. It follows that radAv = pcv for some
non-negative integer c (as the only ideals in A are the powers of p). Our assump-
tion ⟨pe−1v , v⟩ /= {0} implies that c > e − 1. _us radAv = {0}, that is, Av is non-
degenerate.
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4.2 Let x ∈ V with annA x = {0} (equivalently, annE[T ,T−1] x = peE[T , T−1]) and set X =

Ax. Now pe−1x /= 0, so there is a y ∈ V with ⟨pe−1x , y⟩ /= 0. It follows that annA y =
{0}. Assume that the subspace X is degenerate, so that y ∉ X (by Lemma 4.1). Setting
Y = Ay, we claim that if X ∩ Y /= {0}, then Y is non-degenerate.

To prove this, let z ∈ X ∩ Y with z /= 0. We have z = pc gx = pc
′

g′y, for integers c
and c′ with 0 ≤ c < e, 0 ≤ c′ < e and elements g , g′ ∈ E[T] that are prime to p. _us
annE[T] z = (pe−c) = (pe−c

′

) and so c = c′.
Now there are elements a, b ∈ E[T] such that ag + bpe = 1. Hence

pe−c−1az = pe−c−1a(pc gx) = pe−1agx = pe−1(1 − bpe)x = pe−1x (as pex = 0).

In addition, pe−c−1az = pe−c−1a(pc g′y) = pe−1ag′y, so that pe−1x = pe−1ag′y. As
⟨pe−1x , y⟩ /= 0, it follows that ⟨pe−1ag′y, y⟩ /= 0. _erefore ⟨pe−1 y, y⟩ /= {0}. Hence,
by Lemma 4.1, Y = Ay is non-degenerate.

4.3 We now show that ifV does not admit a non-degenerate cyclic submodule (generated
by an element v such that annA v = {0}), then it must contain a non-degenerate non-
cyclic submodule of a very special kind.

Lemma 4.2 Suppose that for any v ∈ V such that annA v = {0} the submodule
Av is degenerate. _en there exist x and y in V such that ⟨pe−1x , y⟩ /= {0}. We have
Ax ∩Ay = {0} and the submoduleAx ⊕Ay is non-degenerate.

Proof As in Section 4.2, we choose x and y in V such that annA x = {0} and
⟨pe−1x , y⟩ /= 0. We again set X = Ax and Y = Ay. By hypothesis, X and Y are degen-
erate, so Lemma 4.1 gives ⟨pe−1x , x⟩ = ⟨pe−1 y, y⟩ = {0}. Further, by the argument in
Section 4.2, X ∩ Y = {0}. We need to show that X ⊕ Y is non-degenerate.
Any non-zero element z ∈ X ⊕ Y can be written as z = pc gx + pc

′

g′y for integers
c and c′ with 0 ≤ c < e, 0 ≤ c′ < e, and elements g , g′ ∈ E[T] that are prime to p.
Switching the roles of x and y if necessary, wemay assume that c′ ≤ c.

To prove non-degeneracy of X ⊕ Y , we will show that ⟨pe−c−1x , z⟩ /= {0}. Writing
f for the image of f ∈ E[T , T−1] under the canonical quotientmap from E[T , T−1] to
A = E[T , T−1]/ pe E[T , T−1], we have ⟨pe−c−1x , z⟩ = ⟨pe−c−1x , pc gx + pc

′

g′y⟩. Now
pc pe−c−1 = pe−1 and g ∈ A×, so ⟨pe−c−1x , pc gx⟩ = ⟨pe−1x , x⟩ = {0}. _us

⟨pe−c−1x , z⟩ = ⟨pe−c−1x , pc
′

g′y⟩ = ⟨pe−c+c
′
−1x , y⟩ (using g′ ∈ A×)

⊃ ⟨pe−1x , y⟩ (as c′ ≤ c, so e − c + c′ − 1 ≤ e − 1)
/= {0}.

In particular, ⟨pe−c−1x , z⟩ /= {0}, as claimed.

4.4 We have established that V contains an A-submodule of one of the following types:
(a) a non-degenerateA-submoduleAv with annA v = {0};
(b) a non-degenerateA-submodule as in Lemma 4.2.
Now ifW is anynon-degenerateA-submodule ofV , thenV =W⊕W⊥ asA-modules.
Moreover, annAW⊥ = pc for some non-negative integer c ≤ e. If _eorem A holds
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for W andW⊥, then it also holds for V . _us we can complete the proof in Case 2 by
induction on dimE V provided we can establish the result in the two special cases (a)
and (b).

5 Proof of Theorem A: Case 2(a)

5.1 _is is the cyclic case in which V = Av with annA v = {0}. _at is, themap

(5.1) a ↦ av∶A→ V
is an isomorphism of A-modules. We will show that there is an anti-unitary involu-
tion t∶V → V such that, for all a ∈ A,
(5.2) ta = τ(a)t
as elements of EndFV . Now the element T ∈ E[T], and so also its image in A, acts
on V via g ∈ GU(V). _us if we take a to be the image of T in A, then (5.2) gives
tg = βg−1 t, or (tg)2 = β. Hence g = t ⋅ tg gives the requisite factorization.

5.2 To establish (5.2), we deûne t∶V → V by t(av) = τ(a)v, for all a ∈ A. _us t is
simply the involution τ ofA transported toV via the isomorphism(5.1). It is therefore
immediate that t is an involution and that (5.2) holds. To check that t is anti-unitary,
let a, b ∈ A. By (2.2), ⟨t(av), t(bv)⟩ = ⟨τ(a)v , τ(b)v⟩ = ⟨bτ(a)v , v⟩ = ⟨bv , av⟩.

6 Proof of Theorem A: Case 2(b)

WehaveV = Ax⊕Aywith ⟨pe−1x , y⟩ /= {0}. Further,Ax andAy are bothdegenerate,
so Lemma 4.1 gives ⟨pe−1x , x⟩ = ⟨pe−1 y, y⟩ = {0}. _is case requires amore elaborate
argument.

6.1 We observe ûrst that the subspaces Ax and Ay are in duality via ⟨ ⋅ , ⋅ ⟩. _at is, the
map

(6.1) ay z→ (a′x z→ ⟨a′x , ay⟩)∶Ay Ð→ HomE(Ax , E)
is a bijection. More precisely, if as in Section 3.1wewrite (Ay)τ for the E-vector space
structure on Ay obtained by twisting by τ, then (6.1) is an isomorphism of E-vector
spaces between (Ay)τ andHomE(Ax , E).

To prove this, note that the kernel of the given map is an A-submodule and so
equals pc y for some non-negative integer c. Now ⟨pe−1x , y⟩ /= {0} and hence c > e−1.
As pe = {0}, the kernel must be trivial and thus (6.1) is injective. Since dimE Ax =
dimE Ay(= dimE A), themap is also surjective.

6.2 _e map ax ↦ ⟨y, τ(a)x⟩ = ⟨ay, x⟩ belongs to HomE(Ax , E). _us by Section 6.1,
there is a unique γ ∈ A such that

(6.2) ⟨ay, x⟩ = ⟨ax , γy⟩, ∀a ∈ A.

We claim that γ ∈ A×. Indeed, ⟨pe−1x , y⟩ /= {0} and τ(p) = p, so ⟨pe−1 y, x⟩ /= {0}. It
follows that ⟨pe−1x , γy⟩ /= {0}, or equivalently ⟨τ(γ)pe−1x , y⟩ /= {0}. As pe = {0}, we
see that τ(γ) ∉ p. _erefore τ(γ) ∈ A×, whence also γ ∈ A×.
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6.3 We claim next that γτ(γ) = 1. Rewriting (6.2) as ⟨x , aγy⟩ = ⟨y, ax⟩, we have

⟨x , aγy⟩ = єτ(⟨ax , y⟩) = єτ(⟨ax , γ−1γy⟩) = єτ(⟨τ(γ−1)ax , γy)
= єτ(⟨τ(γ−1ay, x⟩) (by (6.2))

= ⟨x , τ(γ−1)ay⟩, ∀a ∈ A.

It follows that ⟨ax , γy⟩ = ⟨ax , τ(γ−1)y⟩, for all a ∈ A. By bijectivity of (6.1), τ(γ−1)y =
γy, whence τ(γ−1) = γ, that is, γτ(γ) = 1.

6.4 Deûne t∶Ax ⊕Ay → Ax ⊕Ay by t(ax + by) = τ(a)x + τ(b)γy, for all a, b ∈ A. We
claim that t is an anti-unitary involution such that, for all a ∈ A,
(6.3) ta = τ(a)t
as elements of EndF(Ax ⊕Ay). Once this is established, we can complete the argu-
ment exactly as in Section 5. _at is, (tg)2 = β, and thus as above g = t ⋅ tg gives the
requisite factorization.
Applying t twice, we obtain

ax + by t
z→ τ(a)x + τ(b)γy

t
z→ ax + bτ(γ)γy = ax + by (as τ(γ)γ = 1),

and so t is an involution.
_e identity (6.3) is immediate. In detail, for all a, a′ , b′ ∈ A,

ta(a′x + b′y) = t(aa′x + ab′y) = τ(a)τ(a′)x + τ(a)τ(b′)γy
= τ(a)t(a′x + b′y).

Finally, to show that t is anti-unitary, it suõces to verify the following four identities
(for all a, b ∈ A):

⟨t(ax), t(bx)⟩ = ⟨bx , ax⟩;(6.4)
⟨t(ay), t(by)⟩ = ⟨by, ay⟩;(6.5)
⟨t(ax), t(by)⟩ = ⟨by, ax⟩;(6.6)
⟨t(by), t(ax)⟩ = ⟨ax , by⟩.(6.7)

Applying τ to both sides of (6.6) gives (6.7), so it is enough to check (6.4)–(6.6). We
can verify (6.4) directly as in Section 5.2. _e argument for (6.5) is similarly straight-
forward using γτ(γ) = 1. To check (6.6), note

⟨t(ax), t(by)⟩ = ⟨τ(a)x , τ(b)γy⟩ = ⟨bτ(a)x , γy⟩ = ⟨bτ(a)y, x⟩ (using (6.2))
= ⟨by, ax⟩.

_is completes the proof of Case 2(b) and so concludes the proof of_eorem A.

7 Some Examples and Applications

7.1 Suppose that E = F and є = −1, so that U(V) = Sp(V) and GU(V) = GSp(V).
Assume also that char(F) /= 2. As noted in the introduction, Wonenburger [26]
proved _eorem A for the symplectic group Sp(V) and the case of the similitude
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group GSp(V) was treated in [24]. Assume now that char(F) = 2. _en the case of
symplectic groupswas proved byGow [9] and Ellers andNolte [7]. If F is perfect, the
similitude case follows readily (as every element of F is a square). _e similitude case
for char(F) = 2 and F imperfect appears to be new.

7.2 Suppose now that [E ∶F] = 2 and є = 1. Let V = En and view the elements of V as
column vectors. Consider the non-degenerate hermitian form ⟨ ⋅ , ⋅ ⟩ on V given by
⟨x , y⟩ = ⊺xτ(y). Here, as in Section 2.1, τ(y) is obtained by applying the automor-
phism τ to each coordinate of y. Similarly, for any matrix a = [a i j] with entries in E,
we set τ(a) = [τ(a i j)]. We write U(n) for the isometry group of ⟨ ⋅ , ⋅ ⟩. _us

U(n) = {g ∈ GLn(E) ∶ ⊺g τ(g) = 1}.

_e map x c
↦ τ(x)∶V → V is an anti-unitary involution for ⟨ ⋅ , ⋅ ⟩. For any a ∈

Mn(E) (viewed as an E-linearmap onV via le�multiplication),we have ca = cac−1 =
τ(a). _e calculation that gave (∗) of Section 2.1 shows that _eorem A for U(n) is
equivalent to the statement:

(∗∗) if g ∈ U(n), then g = s1s2 for elements s i ∈ U(V) such that s i c s i = 1
for i = 1, 2.

From s i c s i = 1 and s i ∈ U(n),we see that s−1
i = c s i = τ(s i) = ⊺s−1

i . _us each s i ∈ U(n)
is symmetric as an element of GLn(E). Hence ⊺g = ⊺s2⊺s1 = s2s1 and s−1

1 g s1 = ⊺g.
In particular, we obtain the following unitary group version of a classical result in
linear algebra (used in Section 3.2) that any matrix is conjugate to its transpose by a
symmetricmatrix.

Corollary 7.1 For any g ∈ U(n), there exists a symmetricmatrix s ∈ U(n) such that
sgs−1 = ⊺g.

When E/F = C/R, Corollary 7.1 follows immediately from the fact that any unitary
matrix is unitarily diagonalizable. In the case that E/F is an extension of ûnite ûelds,
Corollary 7.1 was proved in [10, Lemma 5.2].

7.3 Let E = F = Fq be a ûnite ûeld with q elements with q odd and let є = 1, so that
GU(V) is a ûnite group of orthogonal similitudes. We restrict attention to the case
that dim(V) = 2m is even. In this setting there are two equivalence classes of non-
degenerate symmetric forms on V , giving two distinct ûnite orthogonal similitude
groups. We denote these groups byGO±(2m,Fq), andwriteO±(2m,Fq) for the cor-
responding orthogonal groups. For U(V) = O±(2m,Fq), the element h1 in _eo-
rem A can be chosen so that det(h1) = (−1)m (see [21, Lemma 4.7]). For use in later
work, we now extend this observation to the case GU(V) = GO±(2m,Fq).

Proposition 7.2 Let G = GO±(2m,Fq) with q odd and let g ∈ G with µ(g) = β.
_en there exist h1 , h2 ∈ G such that g = h1h2, µ(h1) = 1, µ(h2) = β, h2

1 = 1, h2
2 = β,

and det(h1) = (−1)m .

Proof _e case µ(g) = 1 follows from [21, Lemma 4.7]. If µ(g) = β is a square in Fq ,
say β = γ2, then g′ = γ−1g satisûes µ(g′) = 1, so we may write g′ = h1h′ with h1 and
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h′ orthogonal involutions, and det(h1) = (−1)m . We set h2 = γh′, so that g = h1h2
satisûes the desired conditions.

We now assume that µ(g) = β with β a non-square in Fq and proceed by consid-
eringCases 1, 2(a), and 2(b) in the proof of_eoremA. InCase 1,we haveV = V1⊕V2
where dim(V1) = dim(V2) = m. In this scenario, we have E = F and є = 1, and in
Section 2.2, the element s1 satisûes det(s1) = (−1)m since d1 is symmetric. Taking
s1 = h1 and s2 = h2 gives the desired factorization.

In Case 2, we use Shinoda’s description of conjugacy classes in GO±(2m,Fq) [22,
§1]. In particular, Shinoda shows that Case 2(b) occurs if and only if the minimal
polynomial p(T)e of g on V has the form (T2 − β)e with e = 2k − 1 an odd positive
integer [22, (1.18.2)]. Note that Wonenburger [26, Remark I] mentions the parallel
exceptions in her setting, which occur in the case β = 1.

We now apply some calculations made in [24,25]. Consider ûrst Case 2(a), where
we haveV = Av is cyclic, and theminimal polynomial for g onV is of the form p(T)e

but not of the form (T2 − β)2k−1. In particular, it follows from the fact that τ(p) = up
for some u ∈ F[T , T−1]× that p(T) has even degree. We set 2m = e deg(p) = dim(V)
and deûne

P = span{(g i + β i g−i)v ∣ 0 ≤ i < m},

Q = span{(g i − β i g−i)v ∣ 0 < i ≤ m}.

In [24, Proposition 3(i)] and in [25,_eorem 1], it was shown that V = P ⊕ Q, and if
we deûne h1 to have+1-eigenspace P and−1-eigenspaceQ and h2 = h1g, thenwe have
h1 , h2 ∈ G with µ(h1) = 1, µ(h2) = β, h2

1 = 1, and h2
2 = β. Since dim(Q) = (−1)m =

det(h1), this gives the desired factorization.
Finally, considerCase 2(b),wherewe haveV = Ax⊕Ay, and asmentioned above,

theminimal polynomial for g must be of the form (T2 − β)2k−1. In this case, we have
dim(V) = 2m where m = 4k − 2. Deûne

Px = span{(g i + β i g−i)x ∣ 0 ≤ i ≤ 2k − 1},

Qx = span{(g i − β i g−i)x ∣ 0 < i < 2k − 1},

and deûne Py and Qy analogously. Vinroot [24, Proposition 3 (i), (iii)], [25, _e-
orem 1] showed that if P = Px ⊕ Qy and Q = Qx ⊕ Py , and we deûne h1 to have
+1-eigenspace P and −1-eigenspace Q and h2 = h1g, then we again have h1 , h2 ∈ G
with µ(h1) = 1, µ(h2) = β, h2

1 = 1, and h2
2 = β. Since dim(Py) = 2k and dim(Qx) =

2k − 2, then dim(Q) = 4k − 2 = m, so det(h1) = (−1)m .

8 Proof of Theorem B

For the remainder of the paper, we take F to be a non-Archimedean local ûeld. Recall
that h ∈ AutF(V) is an anti-unitary involution and that ιg = µ(g)−1hgh−1 for g ∈
GU(V). _us ι is a continuous automorphismofGU(V) of order two. _e restriction
ι∣U(V) gives the automorphism g ↦ hgh−1 of U(V), which we again denote by ι. We
restate our main result.
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_eorem B _e maps ι∶U(V) → U(V) and ι∶GU(V) → GU(V) are dualizing
involutions.

We recall some character theory in Section 8.1. Using this, we will see in Section
8.2 that _eorem B follows almost immediately from _eorem A.

8.1 Let G be the F-points of a reductive algebraic F-group. As usual,wewrite C∞c (G) for
the space of complex-valued functions on G that are locally constant and of compact
support. Let (π,V) be a smooth representation of G. For f ∈ C∞c (G), the operator
π( f )∶V → V is given by π( f )v = ∫G f (g)π(g)v dg, v ∈ V , where the integral is
with respect to a Haar measure on G which we ûx once and for all. Assume now
that (π,V) is irreducible. It is well known that (π,V) is then admissible [12], that
is, the space VK of K-ûxed vectors has ûnite dimension for any open subgroup K of
G. It follows that the image of π( f ) has ûnite dimension and thus π( f ) has a well-
deûned trace. _e resulting linear functional f ↦ trπ( f )∶C∞c (G) → C is called
the distribution character of π. It determines the irreducible representation π up to
equivalence [4, 2.20].

It is straightforward to check that trπ∨( f ) = trπ( f ∨) where f ∨(g) = f (g−1) for
g ∈ G.

Let Greg denote the set of regular semisimple elements in G. By [3, 11], the distri-
bution character of π is represented by a locally constant function Θπ on Greg called
the character of π. _at is,

(8.1) trπ( f ) = ∫
G
f (g)Θπ(g) dg , f ∈ C∞c (G).

Remark. Existence ofΘπ is established in [11] for the F-points of arbitrary connected
reductive F-groups based on the submersion principle of its title. Harish-Chandra,
however, only gave a proof of the principle in characteristic zerowith a comment that
a general proofwas known. A full proof, due toG. Prasad, appears in [2, Appendix B].
Adler andKorman explainedhow to extendHarish-Chandra’s andPrasad’s arguments
to the F-points of non-connected reductive F-groups [3, §13]. A similarly general
treatment of characters appears in [5, Appendix].

By (8.1), the function Θπ determines the distribution character of π and thus π is
determined up to equivalence by Θπ . In the same way, Θπ is constant on (regular
semisimple) conjugacy classes. From trπ∨( f ) = trπ( f ∨) for f ∈ C∞c (G), we also
have Θπ∨(g) = Θπ(g−1) for g ∈ Greg, again by (8.1).

8.2 Given a smooth representation π of G and a continuous automorphism α of G, we
write πα for the smooth representation given by πα(g) = π(α g) for g ∈ G.
For any g ∈ GU(V), we noted in the introduction that the elements ιg and g−1 are

conjugate by an element ofU(V). To prove_eorem B, it suõces therefore to observe
the following.

Lemma 8.1 Let α be a continuous automorphism of G such that ag is conjugate to
g−1 for any g ∈ G. _en πα ≅ π∨ for any irreducible smooth representation π of G.
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Proof _emain detail to check is that a continuous automorphism γ ofG preserves
the Haar measure µG on G. We have µG ○ γ = cγ µG for some cγ > 0. Writing
Autc(G) for the group of continuous automorphisms of G and R×

pos for the multi-
plicative group of positive real numbers, the assignment γ ↦ cγ ∶Autc(G) → R×

pos is
a homomorphism. Let K be a compact subgroup of G of maximal volume. (Note K
exists as G has a ûnite non-zero number of conjugacy classes of maximal compact
subgroups.) For any γ ∈ Autc(G), we have µG(γ(K)) = cγµG(K), so that cγ ≤ 1.
Similarly cγ−1 = c−1

γ ≤ 1. Hence cγ = 1, as required.
In particular, α preserves theHaarmeasure onG. _us, for any irreducible smooth

representation π of G,

πα( f ) = ∫
G
f (g) π(α g) dg = ∫

G
f (α

−1
g)π(g) dg , f ∈ C∞c (G).

_at is, πα( f ) = π(α f ) for f ∈ C∞c (G) where α f (g) = f (α
−1
g). It follows that

trπα( f ) = trπ(α f ), so that

∫
G
f (g)Θπα(g) dg = ∫

G
f (α

−1
g)Θπ(g) dg

= ∫
G
f (g)Θπ(

α g) dg , ∀ f ∈ C∞c (G).

_erefore, Θπα(g) = Θπ(
α g) for g ∈ Greg. As characters are constant on conjugacy

classes, it follows that Θπα(g) = Θπ(g−1) for g ∈ Greg. _us Θπα = Θπ∨ and πα ≅
π∨.

8.3 We record a direct consequence of_eorem B, known to experts [17, p. 305]. Suppose
E = F, so that ⟨ ⋅ , ⋅ ⟩ is orthogonal or symplectic. We change notation slightly and
write O(V) and GO(V) or Sp2n(F) and GSp2n(F) (where dimF V = 2n) for the
resulting isometry and similitude groups. _e center of each similitude group consists
of scalar transformations. Dividing by this center gives the corresponding projective
groups PGO(V) and PGSp2n(F).

Corollary 8.2 (i) Every irreducible smooth representation of O(V) is self-dual.
(ii) If−1 ∈ (F×)2, then every irreducible smooth representation of Sp2n(F) is self-dual.
(iii) For any irreducible smooth representation π of GO(V) or GSp2n(F), we have

π∨ ≅ π ⊗ ωπ ○ µ−1 where ωπ denotes the central character of π. In particular,
every irreducible smooth representation of PGO(V) or PGSp2n(F) is self-dual.

Proof Part (i) is immediate as h ∈ O(V), so ι∶O(V)→ O(V) is inner.
For part (ii), it suõces to note that ι(g) = hgh−1 deûnes an inner automorphism

of Sp2n(F) for any h ∈ GSp2n(F) with µ(h) = −1. Given i ∈ F× with i2 = −1, the
homothety i satisûes µ(i) = i2 = −1 and thus ih ∈ Sp2n(F). Since ιg = (ih)g(ih)−1

for g ∈ Sp2n(F), we see that ι is inner.
For part (iii), observe that g ↦ µ(g)−1g deûnes a dualizing involution of each

similitude group.
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9 Dualizing Involutions Do Not Always Exist

Let D be a central F-division algebra of dimension m2 over F. Let n be a positive
integer and set G = GLn(D). We show that G can admit an automorphism that takes
each irreducible smooth representation to its dual only in the known cases m = 1
[8, 23] and m = 2 [16, 18]. Hence it is only in these two cases that G can admit an
automorphism θ such that θg is conjugate to g−1 for all g ∈ G, an observation also
made by Lin, Sun, and Tan [14, Remark (c) p. 83] ). Indeed, the two statements —
non-existence of automorphisms that take each irreducible smooth representation to
its dual and non-existence of automorphisms that invert each conjugacy class—must
surely be equivalent.

Proposition 9.1 Suppose there exists an automorphism θ of G such that πθ ≃ π∨ for
all irreducible smooth representations π of G. _en D = F or D is a quaternion algebra
over F (equivalently, m = 1 or 2).

We need a preliminary observation. Let oF denote the valuation ring in F and pF
the uniquemaximal ideal in oF .

Lemma 9.2 Any ûeld automorphism of F preserves pF . In particular, ûeld automor-
phisms of F are automatically continuous.

Proof Write q for the cardinality of the residue ûeld oF/pF and vF for thenormalized
valuation on F. _e ideals pk

F (for k a positive integer) form a neighborhood basis of
0 ∈ F. _us an automorphism that preserves pF is continuous.

Writing p for the residual characteristic of F, the set 1 + pF can be characterized
algebraically as follows:

x ∈ 1 + pF if and only if x admits an n-th root (i.e., there is a y ∈ F× with
yn = x) for any n such that p ∤ n.

Indeed, usingHensel’s Lemma or simply that 1+pF is a pro-p-group, one sees that each
element of 1+pF admits an n-th root for any n such that p ∤ n. In the other direction,
suppose x has this property. _en n divides vF(x) for inûnitely many integers n,
whence vF(x) = 0, i.e., x ∈ o×F . Let y be a (q − 1)-th root of x. _en y ∈ o×F and
the relation yq−1 = x implies x ∈ 1 + pF . It follows that any ûeld automorphism of F
preserves 1 + pF and so also pF .

Proof of Proposition 9.1 We use the isomorphism x ↦ x1n ∶ F× → Z(G) to view
the central character ωπ of any smooth irreducible representation π of G as a smooth
character of F×.

Suppose ûrst thatD is not isomorphic to its oppositeDo. We appeal toDieudonné’s
description of the automorphism groups of general linear groups over division alge-
bras [6]. In the case at hand, this gives a homomorphism η∶G → F×, an automor-
phism σ of D acting on G via σ(a i j) = (σa i j), and an element h ∈ G such that

(9.1) θg = η(g)hσ gh−1 , g ∈ G .

(See [6,_eorems 1 and 3] for the case n ≥ 3 and [6, §12] for the case n = 2.)

https://doi.org/10.4153/CMB-2017-046-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2017-046-0


A Factorization Result for Classical and Similitude Groups 189

As πθ ≃ π∨, we have ωπ ○ θ = ω−1
π (for all smooth irreducible representations π).

It follows that θa = a−1, a ∈ F×. _us, by (9.1), a−1 = η(a) σa, a ∈ F×.
We have G/(G ,G) ≃ D×/(D× ,D×) via Dieudonné’s non-commutative determi-

nant Det. Furthermore, the reduced norm Nrd from D to F induces an isomor-
phism D×/(D× ,D×) ≃ F×. _us there is a character η1∶ F× → F× such that η(g) =
η1(Nrd ○ Det g), for g ∈ G. Using Det a = an(D× ,D×) and Nrd a = am , it follows
that a−1 = η1(a)mn σa, a ∈ F×. Taking a = ϖ, a uniformizer in F, and applying vF , we
obtain −1 = mnvF(η1(ϖ)) + vF(σϖ). By Lemma 9.2, vF(σϖ) = 1, and hence m ∣ 2.
_us D = F or D is a quaternion algebra over F, which contradicts our assumption
that D is not isomorphic to Do. It follows that there is an isomorphism α∶D → Do. If
α is F-linear, then D represents an element of order at most two in the Brauer group
of F. As the only such elements are the class of F and the class of the unique quater-
nion division algebra over F, the result follows. In general, however, we can only
say that α preserves the center F of D. By Lemma 9.2, it must also preserve oF . _e
ring D contains a unique maximal oF-order O consisting of the elements of D that
are integral over oF . From this description, we see that α preserves O. _us α also
preserves the uniquemaximal (le� or right) ideal q inO, and hence induces an auto-
morphism of the quotient O/q, a ûnite ûeld of order qm . Let ϖD be a generator of q,
i.e., q = ϖDO = OϖD . _en, for D /= F, there is a unique integer r with 1 < r < m and
(r,m) = 1 such that

(9.2) ϖDxϖD−1 ≡ xqr
(mod q), x ∈O.

Moreover the congruence is independent of the choice of generator ϖD . (_is all
follows, for example, from [19, 14.5].) Applying α to (9.2) and rearranging (and using
the fact that O/q has order qm), we obtain

α(ϖD)xα(ϖD)−1 ≡ xqm−r
(mod q), x ∈O.

Since (9.2) holds for all generators of q, we deduce that r = m − r or 2r = m, whence
r = 1 and m = 2. _us D is a quaternion algebra over F and we have completed the
proof.
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