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A CHARACTERIZATION OF COMPLETE
RIEMANNIAN MANIFOLDS MINIMALLY
IMMERSED IN THE UNIT SPHERE™

QING-MING CHENG

§1. Introduction

Let M” be an n-dimensional Riemannian manifold minimally immersed in the
unit sphere S"**(1) of dimension # + p. When M” is compact, Chern, do Carmo
and Kobayashi [1] proved that if the square |# “2 of length of the second

fundamental form 4 in M" is not more than Z——nI“E then either M" is totally

geodesic, or M" is the Veronese surface in 54(1) or M" is the Clifford torus
S*Wk/n) X S" W =B /n) in S"HD0 < k < ).

In this paper, we generalize the results due to Chern, do Carmo and
Kobayashi [1] to complete Riemannian manifolds.
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82. Preliminaries

Let M" be an n-dimensional Riemannian manifold which is minimally
immersed in the unit sphere S”7”(1) of dimension # + p. Then the second
fundamental form % of the immersion is given by (X, V) = V,¥V — VY and it
satisfies #(X, Y) = h(Y, X), where V and V denote the covariant differentia-
tions on S"**(1) and M" respectively, X and Y are vector fields on M”". We
choose a local field of orthonormal frames e, .. .,e,,, in Snﬂ)(l) such that, res-
tricted to M”, the vectors é,...,e, are tangent to M". We use the following con-
vention on the range of indices unless otherwised stated: A,B,C,--- =1,2,...,
n+pii, g, k- =123,...m;a, B8, =n+1,...,n+p We agree the
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repeated indices under a summation sign without indication are summed over the
respective range. With respect to the frame field of S"*”(1) chosen above, let

®y,...,W,,, be the dual frame. Then the structure equations of S"™?(1) are given
by

(2.1) dw, = 2 wyp N\ wg, Wyp + wgy = 0,

(2.2) dwg = 22 Wae N Wop — Wy N\ wp.

Restricting these forms to M”, we have the structure equations of the immersion:

(2.3) w, =0,

(2.4) Wi = Z BGw;,  hy, = hy,

(2.5) dw; = > w; N\ w;, W + w; = 0,

(2.6) dwy =2 wy Nwy; — Ry, 2,;= % Z R 0, N\ w,,
(2.7) Ry = (0,0, — 0,0,) + X (hihy, — hhy),

(2.8) AWy = 2 Woy N W5 — gy Do = %Z R i0; N w;,
(2.9) Rosii = Z (h?khllii - hfkh':f)-

Then, the second fundamental form % can be written as
(2.10) hie, e) = 2 hje,.

We denote the square of the length of & by | 7 ||2 Then || & ”2 is intrinsic and given
by || A ||2 = n(n — 1) — R, where R is the scalar curvature. If we define hzk by

(2.11) S hw, = dhl + Z Rw,, + Z Bw,, + 2 h g,

a

then, from (2.2), (2.3) and (2.4), we have hgk = Ry,
In this paper, we denote the image of the immersion by M" for simplicity.

Lemma 1 (cf. [2]). Let M " be a Riemannian manifold minimally immersed in
S™*(1). Then for any unit vector v on M",

(2.12) Ric(v, v) =2 ; L, - Ial?,

where Ric(v, v) denotes the Ricci curvature in the v divection.
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LemMmA 2 (cf. [3]). Let M" be a complete Riemannian manifold with Ricci curva-
ture bounded from below. Let f be a Cz—function bounded from above on M ", then for
all e > 0, there exists a point £ in M" such that at x,

(2.13) f(x) > supf— ¢,
(2.14) IVl <e,
(2.15) Af <e.

§3. Main results

THEOREM 1. Let M" be an n-dimensional complete Riemannian manifold mini-
mally immersed m the wnit sphere S™(1) of dimension n + p. Then either M" is
totally geodesic and M" is globally isometric to S"(1), or inf R < n(n — 1) —

" ___
2—=1/p

Proof. Following the computation in [1], we have

(3.1) LAl =S (h0* — Ky — Ly + nlla .

Because

(3.2) S WG, — B < 22 (WP (B,
1] k 7] ij

we get

(3.3) m=2x§mm@—m%mz
<2 TP =20l -2 (Z ;M
a*p iy if ij

(3.1) and (3.3) imply
(3.4) FalRE =1l [n= (2= £) 18],

D UinfRSnln—1) — T——nl—/p then Theorem 1 is true.

_on
2—1/p

n

2) If infR>nn—1) — , then R>n(n—1)—m.

We

have
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2 _ . n
(3.5) 12l =nn—1) R<—2_1/p.

Hence, || h “Z is bounded. According to Lemma 1, we know that the Ricci curvature
of M" is bounded from below. In fact, from (2.12) and (3.5), we have, for any unit
vector v,

Ric(v, v) > n;l n—=1hl) 2 (”_1)[1_ﬁ§]'

We define f= ||}, F= (f + @)"* (where @ > 0 is any positive constant
number). F is bounded because | I? is bounded.

dF =% (f + & 7"df,

aF =% [= 30+ 0™ arF + (4 07 4]
=L 20arF + 4G+ 0™ = J5 1= 21 aF I + 471,
Hence, FAF = — | dF | + 5 Af, namely,
(3.6) L 4f=FAF + | dF .

Applying the Lemma 2 to F, we have for all ¢ > 0, there exists a point x in M”
such that at x,

(3.7) laF@) || <e,

(3.8) AF(x) <e,

(3.9) F(x) > sup F —e.

(3.6), (3.7) and (3.8) imply

(3.10) LAf<E+Fe=ce+P (by F>0).

We take a sequence {¢,} such that g,,— 0 (m— ) and for all m, there exists a
point x, in M" such that (3.7), (3.8) and (3.9) hold good. Hence, enlen, +

F(z,)} — 0 m— o) because F is bounded.
On the other hand, from (3.9),
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F(z,) > sup F — ¢,
Since F is bounded, {F(z,)} is a bounded sequence, and we get
F(z,) — F,,
if necessary, we can choose subsequence. Hence,
Fy=zsupF.
According to the definition of supremum, we have
(3.11) , =sup F.
From the definition of F, we get
(3.12) f,) —f,=supf (by F,=supF).
From (3.4) and (3.10), we obtain

fln— @ — 1/p)f] S%Af<ez+eF,

flz,)n— @2 —1/p) flx,)] <+ ¢,Fx,) <c, +¢,F,
Let m— o0, we have ¢,,— 0, f(z,) — f,. Hence,
folln— 2 —=1/p) f] <0.

1) If f,=0, we have f= |lhﬂ2 = 0. Hence M" is totally geodesic, and we
know that M" is globally isometric to S"(1).
2y If f, > 0, we have

n
n—(2—1/p)f0£0, j;)Z—z*_—l/}‘,
that is, sup | 2 |} = ﬁ From (2.15),
. n
inffR<nn—1) — m

This completes the proof of Theorem 1.
THEOREM 2. Let M" be an n-dimensional complete Riemannian manifold mini-

mally immersed in the unit sphere S™° (1) of dimensionn + p. Ifn > 1, p > 1, then
either M" is totally geodesic and M" is globally isometric to S"(1), or M" is the
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n

Veronese surface in S*(1) orinf R < n(n — 1) — = 1/p

Proof. According to the proof of Theorem 1, we know

n
Ial*=0 or Sup||h||22m-

DI 2P =0, then M" is totally geodesic and M" is globally isometric to
S"(1) from Theorem 1.
2) I sup |l nlf = 2—_—;11*75 then we have

n

inf R=nn—1) —sup |2l <nln—1 a1/

When inf R < n(n — 1) — *2-%/7 we know that Theorem 2 holds.
When inf R = n(n — 1) — *Z# we have

sup | Al = 5#/1,

Hence,
2 n
Il < 5=

According to Lemma 1, we get, for any unit vector v in M",

Ric(v, v)Zn;1 ["_Z—nl/p]
z(n—1)[1—2—_—11/—p]>0 byp>1,n>1).

From Myers’ Theorem, we know that M"is compact. Main theorem, Corollary and
theorem 3 in [1] yield p = # = 2 and M”" is the Veronese surface in S*(1). This
completes the proof of Theorem 2.

THEOREM 3. Let M" be an n-dimensional connected complete Riemannian
manifold immersed in the unit spheve S™* (1) of dimension n + 1. If there is a point
P in M and a unit vector v such that Ric(v, v) (p) = 0, then either M" is totally
geodesic and M” is globally isometric to S"(1), or M" is locally the Clifford torus
S*WEk7n) x S W =k /n) in S" W) < k < m), orinf R < n(n — 2).
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Proof. According to Theorem 1, we know that either M” is totally geodesic
and M” is globally isometric to S"(1), or inff R<n(n—1) — n=nn — 2)
(from p = 1).

1) If M" is totally geodesic or inf R < n(n — 2), then Theorem 3 is true.

2) If inf R = n(n — 2), then sup | h ||2 = n. Hence, || h ||2 < 5. When | h ||Z get
its maximum in M", that is, there is a point p in M” such that || A(p) [|2 =sup | s l|2
we have | & “z =n from E. Hopf's Theorem. Theorem 2 of [1] implies that
Theorem 3 is true. When || ||2 < n, we will show that it is impossible. In fact, if
| # ”2 < m, we have

2
Ric(v, ) = (1 — 1)(1 - M) > 0.

n

This is a contradiction.
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