THE THEORY OF COMPOSITIONS (I): THE ORDERED FACTORIZATIONS OF n AND A CONJECTURE OF C. LONG

BY
GEORGE E. ANDREWS ${ }^{(1)}$

1. Introduction. Several years ago, C. Long wrote two papers ([3], [4]) that related to $F(n)$ the number of ordered factorizations of n. The second of these papers [4] was devoted entirely to a discussion of conjectured formula for $F(n)$. In this paper, Long's conjecture will be proved as

Theorem 3 (Long's Conjecture). If $1<n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{r}^{\alpha_{r}}$ is the prime factorization of n, then $F(n)$ is the number obtained if the polynomial

$$
2^{\alpha_{1}-1} \prod_{i=2}^{r}\left\{x_{1} x_{2} \cdots x_{i-1}+\left(1+x_{1}\right)\left(1+x_{2}\right) \cdots\left(1+x_{i-1}\right)\right\}^{\alpha_{i}}
$$

is fully expanded and then each x_{i}^{k} is replaced by $\binom{\alpha_{i}}{\alpha_{i+1}+\cdots+\alpha_{r}-k}$ for $1 \leq i \leq$ $r-1,0 \leq k \leq \alpha_{i+1}+\alpha_{i+2}+\cdots+\alpha_{r}$.

In Section 2 we shall prove analytically the following result which will be the essential key to the proof of Long's conjecture.
Theorem 1. If $1<n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{r}^{\alpha_{r}}$ is the prime factorization of n, then

$$
\begin{align*}
& F(n)=\frac{1}{2} \sum_{h_{1} \geq 0 \cdots h_{r} \geq 0}\binom{\alpha_{1}}{h_{1}}\binom{\alpha_{2}}{h_{2}} \cdots\binom{\alpha_{r}}{h_{r}} \tag{1.1}\\
& \times\binom{\alpha_{1}+h_{2}+\cdots+h_{r}}{h_{2}+\cdots+h_{r}}\binom{\alpha_{2}+h_{3}+\cdots+h_{r}}{h_{3}+\cdots+h_{r}} \cdots\binom{\alpha_{r-1}+h_{r}}{h_{r}}
\end{align*}
$$

In Section 3 we shall prove Theorem 1 combinatorially. Section 4 considers a refinement of Theorem 1 to $F(n ; \rho)$, the number of ordered factorizations of n with ρ factors. In Section 5, we prove Long's conjecture.
2. Analytic proof of Theorem 1. Let $g\left(\alpha_{1}, \ldots, \alpha_{r}\right)$ denote the right hand side of (1.1). Then by the binomial series

$$
\begin{align*}
G\left(t_{1}, t_{2}, \ldots, t_{r}\right) & \sum_{\alpha_{1} \geq 0 \cdots \alpha_{r} \geq 0} g\left(\alpha_{1}, \ldots, \alpha_{r}\right) t_{1}^{\alpha_{1}} \cdots t_{r}^{\alpha_{r}} \\
= & \frac{1}{2} \sum_{h_{1} \geq 0 \cdots h_{r} \geq 0}\binom{h_{1}+\cdots+h_{r}}{h_{1}}\binom{h_{2}+\cdots+h_{r}}{h_{2}} \cdots\binom{h_{r-1}+h_{r}}{h_{r-1}} t_{1}^{h_{1}} \cdots t_{r}^{h_{r}} \tag{2.1}\\
& \times\left(1-t_{1}\right)^{-h_{1}-h_{2} \cdots-h_{r}-1}\left(1-t_{2}\right)^{-h_{2}-\cdots-h_{r}-1} \cdots\left(1-t_{r}\right)^{-h_{r}-1} .
\end{align*}
$$

[^0]I claim now that for each j with $1 \leq j \leq r+1$

$$
\begin{align*}
G\left(t_{1}, \ldots,\right. & \left.t_{r}\right) \\
= & \frac{1}{2} \sum_{h_{j} \geq 0}^{\substack{i}}\binom{h_{j}+\cdots+h_{r}}{h_{j}} \cdots\binom{h_{r-1}+h_{r}}{h_{r-1}}\binom{h_{r}}{h_{r}} t_{j}^{h_{j}} \cdots t_{r}^{h_{j}}\left(1-t_{j}\right)^{-h_{j}-\cdots-h_{r}-1} . \tag{2.2}\\
& \quad \times\left(1-t_{j+1}\right)^{-h_{j+1} \cdots \cdots-h_{r}-1} \cdots\left(1-t_{r}\right)^{-h_{r}-1}\left\{2 \prod_{h=1}^{j-1}\left(1-t_{h}\right)-1\right\}^{-h_{j}-\cdots-h_{r}-1} .
\end{align*}
$$

We note that (2.2) is true for $j=1$ since in this case it is just (2.1) (the expression inside the curly brackets is equal to 1). Assuming (2.2) true for a fixed j; and noting that

$$
\begin{aligned}
\sum_{h_{j} \geq 0}\binom{h_{j}+\cdots+h_{r}}{h_{j}} t_{j}^{h_{j}}\left(1-t_{j}\right)^{-h_{j}}\left\{2 \prod_{h=1}^{j-1}\right. & \left.\left(1-t_{h}\right)-1^{-h_{j}}\right\} \\
& =\left(1-\frac{t_{j}}{\left(1-t_{j}\right)\left\{2 \prod_{h=1}^{j-1}\left(1-t_{h}\right)-1\right\}}\right)^{-h_{j+1}-\cdots-h_{r}-1}
\end{aligned}
$$

we derive

$$
\begin{aligned}
G\left(t_{1}, \ldots, t_{r}\right)= & \frac{1}{2} \sum_{\substack{h_{j+1} \geq 0 \\
h_{r} \geq 0}}\binom{h_{j+1}+\cdots+h_{r}}{h_{j}} \cdots\binom{h_{r-1}+h_{r}}{h_{r-1}}\binom{h_{r}}{h_{r}} t_{j+1}^{h_{j+1}} \cdots t_{r}^{h_{r}} \\
& \times\left(1-t_{j+1}\right)^{-h_{j+1}-\cdots-h_{r}-1} \cdots\left(1-t_{r}\right)^{-h_{r}-1}\left\{\begin{array}{c}
\left.2_{h=1}^{j}\left(1-t_{h}\right)-1\right\}^{-h_{j+1}-\cdots-h_{r}-1}
\end{array}, ~\right.
\end{aligned}
$$

which is just (2.5) with j replaced by $j+1$. Since the above process may be iterated as long as $j \leq r$, we see that the final application when $j=r$ produces

$$
\begin{align*}
G\left(t_{1}, \ldots, t_{r}\right)=\frac{1}{2}\left(2 \prod_{h=1}^{r}\right. & \left.\left(1-t_{h}\right)-1\right)^{-1} \\
& =\sum_{\alpha_{1} \geq 0 \cdots \alpha_{1} \geq 0} F\left(p_{1}^{\alpha_{1}} \cdots p_{r}^{\alpha_{r}}\right) t_{1}^{\alpha_{1}} \cdots t_{r}^{\alpha_{r}} \quad[5 ; \text { p. 156] } \tag{2.3}
\end{align*}
$$

3. Combinatorial proof of Theorem 1. Let \mathscr{P}_{j} denote the j-dimensional plane in R^{r} given by $X_{j+1}=X_{j+2}=\cdots=X_{r}=0$. We let $F_{r}\left(h_{1}, \ldots, h_{r} ; \alpha_{1}, \ldots, \alpha_{r}\right)$ denote the number of (monotone) lattice paths starting at the origin and ending somewhere in the parallelepiped $0 \leq x_{i} \leq \alpha_{i}\left(1 \leq i \leq \alpha_{i}\right)$ wherein exactly h_{j} edges are parallel to \mathscr{P}_{j} but not to \mathscr{P}_{j-1}. Such paths have two kinds of edges, (i) the h_{1} edges parallel to the x_{1}-axis, and (ii) the other $h_{2}+\cdots+h_{r}$ edges. Suppose for a path P the type (i) edges terminate on the hyperplanes $x_{1}=a_{i}\left(1 \leq i \leq h_{1}\right)$ and the type (ii) edges terminate on the hyperplanes $x_{1}=b_{j}\left(1 \leq j \leq h_{2}+\cdots+h_{r}\right)$. Then P is uniquely determined by its projection on the hyperplane $x_{1}=0$, together with the numbers a_{1} and b_{j}. Since the a_{i} are chosen from $\left\{1,2, \ldots, \alpha_{1}\right\}$ without repeats, while the b_{j} are chosen from $\left\{0,1, \ldots, \alpha_{1}\right\}$ with repeats, we see that

$$
\begin{align*}
& F_{r}\left(h_{1}, \ldots, h_{r} ; \alpha_{1}, \ldots, \alpha_{r}\right) \\
& \qquad=\binom{\alpha_{1}}{h_{1}}\binom{\alpha_{1}+h_{2}+\cdots+h_{r}}{h_{2}+\cdots+h_{r}} \cdot F_{r-1}\left(h_{2}, \ldots, h_{r} ; \alpha_{2}, \ldots, \alpha_{r}\right) \tag{3.1}
\end{align*}
$$

Iteration of (3.1) yields

$$
\begin{align*}
& F_{r}\left(h_{1}, \ldots, h_{r}, \alpha_{1}, \ldots, \alpha_{r}\right) \\
& \quad=\binom{\alpha_{1}}{h_{1}} \cdots\binom{\alpha_{r}}{h_{r}}\binom{\alpha_{1}+h_{2}+\cdots+h_{r}}{h_{2}+\cdots+h_{r}}\binom{\alpha_{2}+h_{3}+\cdots+h_{r}}{h_{3}+\cdots+h_{r}} \cdots\binom{\alpha_{r-1}+h_{r}}{h_{r}} . \tag{3.2}
\end{align*}
$$

Thus we see that

$$
\begin{aligned}
& F\left(p_{1}^{\alpha_{1}} \cdots p_{r}^{\alpha_{r}}\right) \\
& \quad=\frac{1}{2} \sum_{h_{1} \geq 0 \cdots h_{r} \geq 0}\binom{\alpha_{1}}{h_{1}} \cdots\binom{\alpha_{r}}{h_{r}}\binom{\alpha_{1}+h_{2}+\cdots+h_{r}}{h_{2}+\cdots+h_{r}}\binom{\alpha_{2}+h_{3}+\cdots+h_{r}}{h_{3}+\cdots+h_{r}} \cdots\binom{\alpha_{r-1}+h_{r}}{h_{r}},
\end{aligned}
$$ by the correspondence of the two lattice paths $\left\{\left(a_{1}, \ldots, a_{r}\right),\left(b_{1}, \ldots, b_{r}\right), \ldots\right.$, $\left.\left(z_{1}, \ldots, z_{r}\right)\right\}$ and $\left\{\left(a_{1}, \ldots, z_{r}\right),\left(b_{1}, \ldots, b_{r}\right), \ldots,\left(z_{1}, \ldots, z_{r}\right),\left(\alpha_{1}, \ldots, \alpha_{r}\right)\right\}$ with the ordered factorization of n :

$$
n=\left(p_{1}^{a_{1}} \cdots p_{r}^{a_{r}}\right)\left(p_{1}^{b_{1}-a_{1}} \cdots p_{r}^{b_{r}-a_{r}}\right) \cdots\left(p_{1}^{\alpha_{1}-z_{1}} \cdots p_{r}^{\alpha_{r}-z_{r}}\right)
$$

4. Refinement of Theorem 1.

Theorem 2. If $1<n=p_{1}^{\alpha_{1}} \cdots p_{r}^{\alpha_{r}}$ is the prime factorization of n, then

$$
\begin{aligned}
& F\left(p_{1}^{\alpha_{1}} \cdots p_{r}^{\alpha_{r}} ; \rho\right) \\
& \quad=\sum_{h_{2} \geq 0, \ldots, h_{r} \geq 0}\binom{\alpha_{1}-1}{\rho-1-h_{2}-\cdots-h_{r}}\binom{\alpha_{2}}{h_{2}} \cdots\binom{\alpha_{r}}{h_{r}}\binom{\alpha_{1}+h_{2}+\cdots+h_{r}}{h_{2}+\cdots+h_{r}} \cdots\binom{\alpha_{r-1}+h_{r}}{h_{r}} .
\end{aligned}
$$

Proof. The correspondence described at the end of Section 1 shows that

$$
\sum_{\substack{h_{1} \geq 0 \cdots h_{r} \geq 0 \\ h_{1}+\cdots+h_{r}=\rho}} F_{r}\left(h_{1}, \ldots, h_{r} ; \alpha_{1}, \ldots, \alpha_{r}\right)
$$

counts the number of ordered factorizations of n with either ρ or $\rho+1$ factors. Hence

$$
\begin{aligned}
& F\left(p_{1}^{\alpha_{1}} \cdots \rho_{r}^{\alpha_{r}} ; \rho\right) \\
& =\sum_{j=0}^{\rho-1}(-1)^{j} \sum_{\substack{h_{1} \geq 0 \cdots h_{r} \geq 0 \\
h_{1} \cdots \cdots h_{r}=\rho-1-j}} F_{r}\left(h_{1}, \ldots, h_{r} ; \alpha_{1}, \ldots, \alpha_{r}\right) \\
& =\sum_{j=0}^{\rho-1}(-1)^{j} \sum_{h_{2} \geq 0 \cdots h_{r} \geq 0}\binom{\alpha_{1}}{\rho-1-j-h_{2}-\cdots-h_{r}} \\
& \quad \times\binom{\alpha_{2}}{h_{2}} \cdots\binom{\alpha_{r}}{h_{r}}\binom{\alpha_{1}+h_{2}+\cdots+h_{r}}{h_{2}+\cdots+h_{r}} \cdots\binom{\alpha_{r-1}+h_{r}}{h_{1}} \\
& =\sum_{h_{2} \geq 0, \ldots, h_{r} \geq 0}\binom{\alpha_{1}-1}{\rho-1-h_{2}-\cdots-h_{r}}\binom{\alpha_{2}}{h_{2}} \cdots\binom{\alpha_{r}}{h_{r}}\binom{\alpha_{1}+h_{2}+\cdots+h_{r}}{h_{2}+\cdots+h_{r}} \cdots\binom{\alpha_{r-1}+h_{r}}{h_{r}}
\end{aligned}
$$

by [2: p. 95, eq. (48)].
5. Proof of Long's conjecture. Here we begin by formalizing the substitutions
described in Theorem 3. We define r linear operators L_{i} on the polynomial ring $R\left[x_{1}, \ldots, x_{r}\right]$:

$$
L_{i}: R\left[x_{1}, \ldots, x_{r}\right] \rightarrow R\left[x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{r}\right]
$$

where

$$
\begin{equation*}
L_{i}\left(x_{i}^{k}\right)=\binom{\alpha_{i}}{\alpha_{i+1}+\cdots+\alpha_{r}-k} \tag{5.1}
\end{equation*}
$$

Since $x_{i}^{0}, x_{i}, x_{i}^{2}, x_{i}^{3}, \ldots$ form a basis for $R\left[x_{1}, \ldots, x_{r}\right]$ over $R\left[x_{1}, \ldots, x_{i-1}\right.$, $\left.x_{i+1}, \ldots, x_{r}\right]$ we see that each L_{i} is well-defined on $R\left[x_{1}, \ldots, x_{r}\right]$.

Next we note that

$$
\begin{align*}
L_{i}\left(x_{i}^{C}\left(1+x_{i}\right)^{D}\right) & =L_{i}\left(\sum_{j=0}^{D}\binom{D}{j} x_{i}^{C+j}\right) \\
& =\sum_{j=0}^{D}\binom{D}{j}\binom{\alpha_{i}}{\alpha_{i+1}+\cdots+\alpha_{r}-C-j}=\binom{\alpha_{i}+D}{\alpha_{i+1}+\cdots+\alpha_{r}-C} \tag{5.2}
\end{align*}
$$

where the last line follows from Vandermonde's convolution [6; p. 9].
Now to prove Theorem 3, we are asked to evaluate

$$
\begin{aligned}
& L_{1} L_{2} \cdots L_{r-1}\left\{2^{\alpha_{1}-1} \prod_{i=2}^{r}\left(x_{1} x_{2} \cdots x_{i-1}+\left(1+x_{1}\right)\left(1+x_{2}\right) \cdots\left(1+x_{i-1}\right)\right)^{\alpha_{i}}\right\} \\
& =L_{1} L_{2} \cdots L_{r-1}\left\{2^{2^{\alpha_{1}-1}} \sum_{h_{2} \geq 0 \cdots h_{r} \geq 0}\binom{\alpha_{2}}{h_{2}} \cdots\binom{\alpha_{r}}{h_{r}} \prod_{j=2}^{r}\left\{x_{j-1}^{\left(\alpha_{j}-h_{j}\right)+\cdots+\left(\alpha_{r}-h_{r}\right)}\left(1+x_{j-1}\right)^{h_{j}+\cdots+h_{r}}\right\}\right\} \\
& =2^{\alpha_{1}-1} \sum_{\substack{h_{2} \geq 0 \\
\vdots \\
h_{r} \geq 0}}\binom{\alpha_{2}}{h_{2}} \cdots\binom{\alpha_{r}}{h_{r}} \prod_{j=2}^{r} L_{j-1}\left\{x_{j-1}^{\left(\alpha_{j}-h_{j}\right)+\cdots+\left(\alpha_{r}-h_{r}\right)}\left(1+x_{j-1}\right)^{\left.n_{j}+\cdots+h_{r}\right\}}\right. \\
& =2^{\alpha_{1}-1} \sum_{\substack{h_{2} \geq 0 \\
h_{r} \geq 0}}\binom{\alpha_{2}}{h_{2}} \cdots\binom{\alpha_{r}}{h_{r}}\binom{\alpha_{1}+h_{2}+\cdots+h_{r}}{h_{2}+\cdots+h_{r}}\binom{\alpha_{2}+h_{3}+\cdots+h_{r}}{h_{3}+\cdots+h_{r}} \cdots\binom{\alpha_{r-1}+h_{r}}{h_{r}} \\
& =\frac{1}{2} \sum_{h_{1} \geq 0}\binom{\alpha_{1}}{h_{1} \geq 0}\binom{\alpha_{2}}{h_{2}} \cdots\binom{\alpha_{r}}{h_{r}}\binom{\alpha_{1}+h_{2}+\cdots+h_{r}}{h_{2}+\cdots+h_{r}}\binom{\alpha_{2}+h_{3}+\cdots+h_{r}}{h_{3}+\cdots+h_{r}} \cdots\binom{\alpha_{r-1}+h_{r}}{h_{r}} \\
& =F\left(p_{1}^{\alpha_{1}} \cdots p_{r}^{\alpha_{r}}\right),
\end{aligned}
$$

and so Theorem 3 (Long's Conjecture) is established.
6. Conclusion. In [4; p. 335], Long states that, "What may be of considerable importance is that the conjectured method of solution (i.e. Theorem 3) suggests the existence of a transform method of solution which may be applicable to a reasonably large class of partial difference equations."

We point out here that two areas of combinatorics have already been explored by G. C. Rota [7] and G. C. Rota and J. Goldman [1], in which such transform techniques play a substiantial role.

The first relates to B_{n} the number of partitions of a set of n elements [7]. Rota [7] considers a linear operator L on $R[u]$ given by

$$
L(1)=1, \quad L(u(u-1) \cdots(u-k+1))=1 .
$$

He then notes that $L\left(u^{n}\right)=B_{n}$, and he is thus able to derive in an elegant manner a number of well-known properties of B_{n}. For example, he derives the exponential generating function for B_{n} as follows: if $v=e^{x}-1$, then

$$
\begin{aligned}
\sum_{n \geq 0} \frac{B_{n} x^{n}}{n!} & =\sum_{n \geq 0} \frac{L\left(u^{n}\right) x^{n}}{n!}=L\left(e^{u x}\right)=L\left((1+v)^{u}\right) \\
& =L \sum_{n \geq 0} \frac{u(u-1) \cdots(u-n+1)}{n!} v^{n}=\sum_{n \geq 0} \frac{v^{n}}{n!}=e^{v}=e^{e^{x}-1}
\end{aligned}
$$

The second area concerns the combinatorics of finite vector spaces. Here Rota and Goldman [1] consider G_{n} the number of subspaces of an n-dimensional vector space over the finite field $G F(q)$. They consider a linear operator L defined by

$$
L(1)=1, \quad L\left((x-1)(x-q) \cdots\left(x-q^{n-1}\right)\right)=1 .
$$

In this case $L\left(x^{n}\right)=G_{n}$. They then derive a number of results of combinatorial interest involving the Gaussian polynomials.

We close by pointing out that the function $F\left(p_{1}^{\alpha_{1}} \ldots p_{r}^{\alpha_{r}}\right)$ has arisen in a number of different contexts in number theory and combinatorics. Besides enumerating the compositions of the multipartite number $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}\right)$ and the ordered factorizations of n, MacMahon [5] showed that $F(n)$ enumerates the number of perfect partitions of $n-1$.

In [4], C. Long discusses the following problem: Let C be a set of integers. Two subsets A and B of C are said to be complementing subsets of C in case every $c \in C$ is uniquely represented in the sum

$$
C=A+B=\{x \mid x=a+b, a \in A, b \in B\} .
$$

Long shows that the number of pairs of complementing subsets of $\{0,1, \ldots, n-1\}$ is just $F(n)$.

It is hoped that the investigations undertaken in this paper provide some further insights concerning $F(n)$. In a future paper I hope to investigate Simon Newcomb's problem [5; p. 187] utilizing the techniques developed here.

References

1. J. Goldman and G. C. Rota, The number of subspaces of a vector space, in Recent Progress in Combinatories edited by W. Tutte, Academic Press, New York, 1969, pp. 75-83.
2. E. Landau, Elementary Number Theory, Chelsea, New York, 1958.
3. C. Long, Addition Theorems for sets of integers, Pacific J. Math., 23 (1967), 107-112.
4. C. Long, On a problem in partial difference equations, Can. Math. Bull., 13 (1970), 333-335.
5. P. A. MacMahon, Combinatory Analysis, Vol. 1, Cambridge University Press, Cambridge 1915 (Reprinted: Chelsea, New York, 1960).
6. J. Riordan, An Introduction to Combinatorial Analysis, John Wiley and Sons, New York, 1958.
7. G. C. Rota, The number of partitions of a set, Amer. Math. Monthly, 71 (1964), 498-504. The Pennsylvania State University University Park, Pennsylvania 16802

[^0]: Received by the editors January 18, 1974 and, in revised form, October 16, 1974.
 ${ }^{(1)}$ Partially supported by National Science Foundation Grant GP-23774.
 I would like to thank a most helpful referee; in particular, he helped greatly clarify and simplify Section 3.

