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Abstract

The convergence properties of a very general class of adaptive recursive
algorithms for the identification of discrete-time linear signal models are
studied for the stochastic case using martingale convergence theorems. The
class of algorithms specializes to a number of known output error algorithms
(also called model reference adaptive schemes) and equation error schemes
including extended (and standard) least squares schemes. They also specialize
to novel adaptive Kalman filters, adaptive predictors and adaptive regulator
algorithms. An algorithm is derived for identification of uniquely para-
meterized multivariable linear systems.

A passivity condition (positive real condition in the time invariant model
case) emerges as the crucial condition ensuring convergence in the noise-free
cases. The passivity condition and persistently exciting conditions on the
noise and state estimates are then shown to guarantee almost sure convergence
results for the more general adaptive schemes.

Of significance is that, apart from the stability assumptions inherent in the
passivity condition, there are no stability assumptions required as in an
alternative theory using convergence of ordinary differential equations.

1. Introduction

Consider a signal model with states xk, a noise disturbance {vk} and unknown
parameters 6 driven by a known input sequence {vk}. The adaptive estimation
task is to determine from the (possibly vector) measurement sequence {zk}, state
estimates xk and parameter estimates @k.

The task of simultaneously estimating parameters 6 and states xk to minimize
an index such as the conditional error variance is usually too formidable to attempt
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[2] Multivariable adaptive estimators 177

even for simple model structures, and so there is strong motivation to derive
sub-optimal schemes which work reasonably well. The following class of signal
models lends itself to a very reasonable sub-optimal scheme.

Consider the class of signal models such that the unknown parameters 9 can be
readily estimated perhaps in some optimal fashion, on the assumption that the
states are observable (known) and, likewise, state estimates (possibly optimal
in some sense) can be achieved given knowledge of the model parameters. Let us
denote such parameter and state estimates as @k/x where A'denotes {xo>*i' ...,xh},
and xk/e respectively.

Now a frequently used and very reasonable sub-optimal estimation scheme for
simultaneous estimation of 9 and xk is to implement the two estimation algorithms
just referred to but coupled as now described. In estimating 9, xk is replaced by
an estimate of xk from the state estimator, and in estimating xk, 9 is replaced by
an estimate of 9 from the parameter estimation. A suitable notation for these
estimates is ^ki±

 an<^ xyg, or more simply @k and xk.
Many schemes for adaptive estimation in the engineering literature including

"equation-error" or "series-parallel" schemes and "output-error" or "parallel"
schemes have the general structure of the above sub-optimal arrangement. Examples
of such schemes are given in [1-10], with the extended least squares algorithm
[1,7,8] and its sub-optimal stochastic approximation derivatives [2] being perhaps
the archetype of the "equation-error" methods, and the model reference adaptive
schemes of [5] and the related instrumental variable algorithms [9,10] being
examples of the output error approach.

Analysis results for the various algorithms of [1-10] have been limited in [1-10]
to the noise-free case, and when noise is present, to answering questions of whether
or not bias exists in the estimates. It is clearly desirable to determine conditions in
the stochastic case for the almost sure convergence of xk to xk/e as k^co, and
also of 9k to 9 as k-*co for the case of uniquely parameterized models. This is
particularly so in view of the fact that, for certain signal models, the adaptive
algorithms diverge. Perhaps the most important role for a convergence analysis
is to give some deeper explanation as to why the adaptive schemes designed using
"engineering intuition" in fact work so well in practice.

In this paper, we first introduce a broad class of signal models including uniquely
parameterized models for which suboptimal estimators as described above can be
implemented. The class of estimators can be specialized to either "equation
error" algorithms such as the extended least squares algorithm or to "parallel"
algorithms much like the model-reference adaptive schemes of [5]. Also they can
be viewed or re-organized as novel adaptive filters (for example, Kalman filters),
predictors, and regulators with attractive convergence properties. Next, convergence
analysis results are given via martingale convergence theorems for the stochastic
case. A key convergence condition is that a certain system readily derived from the
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178 J. B. Moore and G. Ledwich [3]

signal model be strictly passive (or strictly positive real in the time-invariant model
case). For consistent parameter estimation in uniquely parameterized models, very
reasonable persistently exciting conditions are examined. These conditions are
usually satisfied for sufficiently rich excitation signals and adequately modelled
stochastic processes, and correspond to the persistently exciting conditions required
for the almost sure convergence of least squares estimation algorithms.

A number of aspects of this paper bear some relationship to earlier work in the
literature. For example, the continuous time signal models of [6] are specifically
designed to have outputs which are bilinear in the model states and unknown
parameters as in this paper. However, the signal models, estimators and con-
vergence theory in [6] are deterministic and make no connection to the more
realistic task of identification in a stochastic environment. In fact the algorithms
do not converge to yield the true parameter estimates in the stochastic case. The
model-reference adaptive algorithms of [5] are less general than those presented
here but they do have good convergence properties in the stochastic case. The
strong convergence results of [5] are limited to the deterministic situation. However,
as one would expect, restrictions on the models required to achieve convergence in
the deterministic case (passivity restrictions) are also required in the stochastic
case here.

One pleasing result of this paper, and possibly unexpected, is that for convergence
in the stochastic case no additional restrictions of the deterministic part of the
signal model need be imposed. The only additional conditions required in the
stochastic case are those of the type familiar in stochastic least squares theory [15].

The Lyapunov function approach of [6] and the hyperstability approach of [5]
for the noise-free cases are built on here using martingale convergence theorems
for the stochastic case. This approach was first explored by the authors in a
conference paper [11] where somewhat weaker and less general results are reported
than in the present paper. An alternative approach to using martingale convergence
theorems is via ordinary differential equations [12], which is explored in [13,14]. t
The advantage of the approach using martingales is that, given the very accessible
martingale convergence theorems, the derivations differ very little from the straight-
forward derivations of the deterministic theory. In contrast, the ordinary differential
equation approach is based on extensive and highly technical derivations. Of
perhaps more current interest however is the fact that the theory of this paper
does not require the asymptotic stability assumptions in addition to the passivity
conditions of [12-14].

t Since the first draft of the present paper, viz. [11] was presented as a conference paper,
[13] has been independently written, based on [12]. Both [14] and the present paper have
benefited from this earlier work. The authors wish to acknowledge benefit received from
discussions with L. Ljung in revising the present paper.
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In Section 2, for a broad class of signal models, associated adaptive estimators
are introduced which specialize to known and novel adaptive algorithms. In
Section 3, almost sure convergence analysis conditions are given for the stochastic
case and in Section 4 specializations and extensions of the results to cover extended
least squares, adaptive Kalman filtering, linear system identification and adaptive
predictors are briefly discussed. In Section 5, discussions of the results and more
specific comparisons with earlier work are presented.

2. Signal models and estimation algorithms

Here with the aim of carrying out a performance analysis we restrict attention
to adaptive estimation schemes where we can write down state estimation error
(xk = xk—xk) equations coupled to parameter error (9k= 9— @k) equations.
In particular we consider the model state equations as

yk = O'(xk+vk),

where 6 is used here to denote a matrix with unknown elements. The matrices
F, G1 and G2 are possibly time varying but for convenience the subscript k is
deleted. The vector inputs vk and outputs zk are observable (known) while the
state xk and the noise disturbance vk are not. (The model is selected so that it can
specialize to an innovations model and thus the notation vk which is frequently
used to denote an innovations sequence.) Manipulations simplify the model
equations as

xk+i = f

where

G = G1-Gz and fk(vk,zk) =f(vk,z

We introduce the assumption that with !Fk denoting the a-algebra generated by
v1,v2,...,vk, the noise term vk satisfies E[vk\tFk_^\ = 0 with £[i 'i :vf t |^_1]<l.
This assumption is certainly satisfied when vk is zero mean, independently distri-
buted, and bounded uniformly above in its covariance.

For the analysis to follow, it is only required that yk be a bilinear function of
the elements of 9 and [x'k v'k], but for simplicity of presentation, only the special
case yk = 9'{xk + vk) is considered.

The signal model described above is so chosen that its inverse is readily con-
structed. The state estimation equations assuming 9 is known are then simply the
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state equations of the inverse of the signal model as follows

= Fxk/g + Gvkig +fk(vk, zk),

= z>c-yk/e> 9 hie = h/e = 6'(xk/e+vk).

We now consider the adaptive estimator in which 6 is replaced by some estimate

xk+i = F

Vk = Zk~ h, 9 k =

The state estimation error equations are now readily derived from a subtraction of
the above sets of equations. Using the notation xk = xk — xk> Sk=6—9k,
>Pk = xk + vk, then

Zk+1 = (F-G9')xk-G(-qk), qk = -6'Ak. (2.1)

Notice that in deriving (2.1), the possibly nonlinear and unbounded function
/ ( . , .) cancels out, and (2.1) is a linear state error equation driven by qk = — O'k>pk.

The parameter estimator equation is taken to be

Pk1 = " i W - i + <A* <A*> Pk1 > 0, <xk > 1. • (2.2)

The parameter estimation error equations are (2.2) together with

ek = (i-pk+kt'k) h-x-PkUx'ke+vk). (2.3)

REMARKS. 1. In the case xk is known (that is, xk = xk, xk = 0), the equations
are the standard least squares parameter estimation equations. An alternative
expression for Pk is given from the matrix inversion lemma as

2. In practice square root versions of the algorithms (2.2) are used to avoid
numerical difficulties (Pk becoming 0) as Pk becomes singular or approaches zero.
Also as Pk becomes closer to a singular matrix it is frequently intentionally made
more positive than it otherwise would be by the addition of si for some e>0 to
allow the algorithm to track slowly varying 6 and to avoid the possibility of
round-off error causing Pk to be non-positive definite at some k. The theory of
this paper will assume that e = 0.

3. If in the above parameter estimator equation, the matrix Pk is replaced by the
scalar {tr [P^1]}'1 then the recurrence relations for tr [Pk

x] are scalar and relatively
simple to implement. They are a stochastic approximation algorithm. Other
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readily implementable schemes set Pk = P a positive definite matrix or perhaps
Pk = P/(a-1 + ip'lcPi/jk). Again, other schemes are more sophisticated adding
memory terms consisting of >pk-iv'k^ for i=\,2,...,M in calculating @k [5].
Another possibility explored in [11] is to set yk=Q'k-i(xk+vk) rather than
9k—®k(%k+vk)- Reference to these variations on the parameter estimation
equations will be made in the body of the paper.

3. Convergence analysis

The estimation error equations (2.1), (2.3) upon manipulations! can be re-
organized as in Fig. 3.1, namely as a feedback system with input (—qk) and output
pk and a feedback system with input (pk + vk) and output qk. There is added and

TRANSPOSE

L -w
DELAY

TRANSPOSE

-akpk-l*l(
J

" k - 1

FEED FORWARD
(STRICTLY PASSIVE)

FEEDBACK
(PASSIVE)

Fig. 3.1. Estimation error equations as two passive systems back to back.

t First premultiply both sides of (2.3) by ak P*"1 Pk
x, noting that ( / - Pk ijjk tj)t) = PkPk~

1 oq1

from (2.2), then apply^ the definition pk = yk+Jk{—qk)- The remaining manipulations with
the definition qk =—®'k tpk are immediate.
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182 J. B. Moore and G. Ledwich [7]

subtracted a feedthrough term Jkqk which of course does not affect the equations
for 6k and xk but is designed to ensure that the feedback system is passive.
(Definitions follow.) An assumption that the feedforward system, given in terms of
[F, G, 9,J], is strictly passive then allows us to study the convergence ofpk,qk and
xk, dk to zero as k ->-oo.

Let us now examine the passivity properties of the linear feedback system (3.2)
using the fact that a linear system with state equations xk+1 = Akxk+Bkuk,
yk = Ckxk+ Dkuk inputs uk and outputs yk is known [5] to be passive if for some
sequence of positive definite matrices Qk and all xk, uk and k

x'k+iQk+iXk+1~x'kQkxk-y'kuk-ukyk^O.

Conditions for the passivity of (3.2) are given in the following lemma.

LEMMA 3.1. Consider the feedback system of Fig. 3.1 where Pk is calculated via the
least squares recursion (2.2), then this system is passive with Jk < \I.

PROOF. For the time-varying linear system (3.2) the left-hand side of (3.3) mildly
generalized to handle matrix states yields

Sk = tr{5'k(«k+1Pk)-i Sk- flViOfc^-i)-1 K-i}

8k-28'kfafk 9kJk}

Since the second term is non-positive, we have from manipulation of the first
term using (3.3) and the properties of the trace operation that

sk^-tr{S'k[\- o ^ y p?] ek+4>'k ek{i- u) 8' >pk}. (3. i)

When Jk < | and afc+1 ̂  1 then 8k < 0, and the feedback system is passive as claimed
in the lemma. This completes the proof of the lemma.

The feedforward system (3.1) has input (-qk), output pk and states xk. With this
system strictly passive, the desired asymptotic stability of the noise-free estimation
error equations are immediate via the stability theorems of [17, see also 5]. Strict
passivity of this feedforward system implies that there exists a Qk = Q'k > 0 such
that for all k and some

Afc = x'k+i Qh+iXk+i-x'kQkXk+P'kak+<lkPk^ -r\x'kxk+q'kqk). (3.2)

For the stochastic case when vk^0, before giving the convergence results let us
list the assumptions which will be referred to but defer comments on these until
later.
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List of assumptions

(i) The feedforward system of Fig. 3.1 in terms of the signal model parameters
{F, G, 8} is strictly passive with Jk = £/.

(ii) The feedback system of Fig. 3.1 is passive with J =\l (guaranteed for the
parameter update algorithm of Lemma 3.1).

(iii) The noise conditions E[vk\^k_^\ = 0, £Kvf c | J V x K 1 are satisfied,
(iv) For some /?^0, 0<y< 1,

lim £ i-{?+fi> tt Pi 4>i < M < oo w.p. 1.
fc-woi=0

(v) For some

]imkiy+fi)otk+1Pk = 0 w.p. 1.
fc-wo

(vi) <p'k<l>k<Mk-1 for all k and some M>0. Also

lim fl (F+ G0\ = 0, lim sup's II f Iff (F+ G0'\] G, II < co
fc^oo i=0 fc-»oo i=01| Li=i+1 J II

(satisfied in the time-invariant model case when |Amax(.F+G0')|<l which is
guaranteed by (i)).

THEOREM 3.1. Consider the adaptive estimation algorithms of Section 2 with
estimation error equations depicted in the feedback arrangement of Fig. 3.1. Then
with (i)-(iv) satisfied (except possibly for subsequences {klt k2,.. •} with (ki+1 — k^s-co
as kf-^oo), as k^-co

(k-l)-Wxk->0, (k-l)r/Wqk + 0, (k-l)-W(J>k-yk)^0 (3.3)

in mean square. With conditions (i)-(v) holding but relaxing the strict passivity in (i)
to simply passivity, then as k^-co, almost surely

8k->6 (3.4)

and with (vi) also holding (3.3) holds almost surely.

PROOF. (Here given only for the case /$ = 0.) Consider VkW defined from

yk\6 = K Qkxk+Xx{($k_x- 0)(«k+1Pk)-H6k-1-8)}, (3.5)

where @k, cxk, Pk are defined as earlier and are calculated without knowledge of
6. With this definition, addition of (3.1) and (3.2) yields for [x'k-q'k]¥=0.

Afcie+ Sfcie = Vk+ve- Vm-v'kqme-q'Mevk.
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184 J. B. Moore and G. Ledwich [9]

Taking conditional expectations with respect to the cr-algebra J ^ . j , noting that
*fc, >Pk> pk> K-x and thus Vm belong to ^k_x and that E[vk | J^_J = 0, then
manipulations show that

E\Yk+*eWk-x\ = ^ + ^ [ ^ + S w | ^ _ 1 ] + 2 ( l / r ;P f c ^ )£K^ |^_ 1 ] . (3.6)

(The intermediate result Elq'^v,,]^^] = (ipkPkipk)E[v'kvk\^
r
k_1] is derived by

substituting §k]0 from (2.3) into q'k\gvk = ^'kSkWvk and taking conditional ex-
pectations.)

Now with the passivity conditions AMe^0, S w < 0 and the bound

(3.6) yields the inequality

k>pk. (3.7)

To study the convergence properties of Vm, let us under (iv) define for some scalar
0 < y < l

Sm = k-y Vm + 2M- 2^i-y # Pi ̂  (3.8)

and observe using (3.7) that for k~^0

1=0

i=0

Moreover, taking expectations yields that E[Sk+lw] < E[SkW] and thus

With finite initial conditions, then S^e<oo and E[Sk]e]<oo. Thus since

Sm, Sm>0 and E[Sm]<co

for all k, SkW is a positive super martingale (w.p.l.) on J^. and converges almost
surely [16]. We conclude that

lim sup k~y VkW < oo, w.p.l.
k-*co

from which

iimsuPtr{(0fc-ey[k-y(ock+1pkyi]0k-ey}<co, w.p.i.
k-KO
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Condition (v) yields immediately (3.4) as required. The bound on ipk of (vi) implies
qk^-0 almost surely as k->co and applications of the Toeplitz Lemma to the
non-recursive expression for xk readily obtained from Fig. 3.1 yields that xk->0
almost surely as k^-co under the remaining conditions of (vi).

Taking expectations of both sides of (3.6), we have

or with y > 0

(* + \)-y E[vk+W] ^ k-y E[vkW] - k-y E[ | Afcie | ]+2E[k-y +'k pk

Recursive application of this inequality for A: = 1,2,...,« yields

Taking limits as n-^-oo, we see that unless

lim £ E[ | Afcie | ] k-y < oo, w.p.l.
n-»oo i = l

then the upper bound for (n + l)~7 E[Vn+vg] would be negative (at least with (iv)
satisfied) violating the non-negativity constraint on E[Vk+ll9].

We conclude that with (i)-(iv), E[Am->0 as k->oo (except possibly for sub-
sequences {k^k^,...} where ki+1—k^co as k^co), and in turn from (3.2) that
(3.3) is satisfied as desired. Note that yk—yk = 0' xk—qk.

REMARKS. 1. For the case when F, G, J, 6 are constant the transfer function of
the feedforward system in Fig. 3.1 is W(z) =J-9'[zI-(F-Gd')]-\ Now W{z) is
strictly passive, equivalently strictly positive real if and only if (i) W{z) is real for
real z, (ii) W(z) has no poles in | z | > l , (iii) W(e^a) + W{e-1<°)>0 for all real o>.

2. For the case when xk = 0 for all k, as in standard least squares, then
Afc = 2p'kqk = — 2qkJkqk^0 and the passivity of W{z) is assured. The results
reduced to those given in [15b].

3. For the case vk = 0, E[Vk+Vie\^
r
k_-i\ < Vm, and so Vk converges. It immediately

follows that Afc->-0. Thus (3.3) holds almost surely under (i) and (ii) and with
the additional condition (v), then (3.4) holds almost surely.

4. The restriction /3 = 0 in the above proof can be relaxed. We simply apply
the theorem for the case j3 = 0 to a modified signal model where the output is
now z£ = (k— \)~Pnzk and the results interpreted to yield the theorem for the
case/?>0.

5. The above convergence results tell us that for some signal models (those
with an associated passivity condition satisfied) convergence can be achieved.
Studies elsewhere reported in [12,13] give some evidence that the passivity
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condition is virtually a necessary condition for convergence. It appears that if the
passivity condition fails then the algorithm diverges or vacillates between appearing
to converge over a significant time period and then appearing to diverge for a short
time period.

6. The passivity condition is automatically satisfied when G = 0, or when
G = G2 — G1 is sufficiently small. To gain some insight into when G may be small,
recall that when Gx = 0, G2 is the Kalman gain of the conditional estimator.
The Kalman gain is known to be small when the output measurement noise in the
usual state space signal model is large. We conclude that for signal models with
Gt = 0 and for sufficiently high measurement noise, then the passivity condition is
satisfied. Also we could comment that in the high noise case, the persistently
exciting conditions are more likely to be satisfied.

7. Notwithstanding the above remarks, it should be noted that in general the
passivity condition does depend on 6 which is of course unknown, but if 6 belongs
to a known compact set, then of course it can be checked (albeit tediously) over
this set.

8. For the output-error algorithm on which G2 = 0, it may be that the passivity
condition is not satisfied for the parameter update algorithms studied in this paper,
but it will be satisfied for ones involving the memory terms tfik^i5k_i for
/ = 1,2, ...,M as studied in [5].

9. The real power of the theory is that it does give us a tangible explanation as
to why extended least squares and related algorithms work so well most of the time
but for unusual models violating the passivity condition they fail. We see that when
an algorithm fails, it is probably not simply a matter of poor initial conditions.
The word "probably" is used here to cover cases when the signals may not be
sufficiently rich or the numerical calculations ill-conditioned in some way not
explored in the theory here. Future theoretical work on these algorithms could well
yield robustness and finite-time results.

10. Condition (iv) is not as simple as one would like, being hard to verify and
current research efforts are to replace the condition by one which simply requires
that P^ = 0, at least to ensure that Qk^-<x> w.p.l. However, even in the standard
least squares case when xk = 0 for all k, it is not yet shown that such a condition is
all that is needed to prove that 6k-+co.p.l.

Of course, condition (iv) is satisfied for arbitrary /?+y>0 when <p'kPk>pk^-0
as l/k. Such a situation arises when \\ik is derived from an asymptotically stable
signal model and is sufficiently rich in the sense that \i[Pk]->0 as \/k for all /. Note,
however, that there is an implied restriction that k~{y+^ ip'Pk <fik itself be bounded,
for otherwise as when <pk is gaussian there is a finite probability, perhaps negligibly
small, that the bound (iv) is exceeded. In other words, there is this hidden restriction
that the noise term k~{if+^) Pkv\ be bounded. The condition (iv) is of course satisfied
for arbitrary /? + y> 1 since from (2.2) we have that tp'kPkiftk^l. A more precise
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explanation of the class of systems for which (iv) is satisfied is beyond the scope
of this paper.

11. The theory of [13] provides for almost sure convergence in (3.3) rather than
mean squares convergence here. Note, however, that in the unique parameterized
model case when (3.4) holds, then under (vi) there is also almost sure convergence
of in (3.3).

12. A theory along the lines given above for the case /? = 0 can be worked out
for stochastic approximation versions, at the expense of a few additional compli-
cations not discussed here.

13. Observe that when jS + y> 1, then (iv) is satisfied since i / ^ P ^ ^ 1 for all i
and (v) is satisfied when i/jk is derived from a system with all modes unstable
forcing Pk to approach zero exponentially [15]. Thus we can violate the stablity
restrictions of [13] requiring tpk to be derived from an asymptotically stable system
and still achieve convergence. Results can be obtained for the mixed stable/
unstable mode case but these are not explored here because of space limitation.
Actually the results of [13] can also be weakened to avoid this stability restriction as
discussed in a later paper.

4. Useful specializations and generalizations

In this section, a number of useful signal models and adaptive estimation
algorithms, which are specializations of the more general case discussed so far,
are now described. Convergence conditions for these cases are particularly simple
ones. We assume throughout this Section that the least squares parameter update
scheme (2.2) is employed.

An output error algorithm

Consider the signal model

zk = yk+vk (yk zero mean and white)

or

yk
 = B'xk, zk — yk+vk,

B' = [-a1-a2...-ak':b1b2...bm], x'k = [yk-Xyk-2...yk-n:vk_1vk_2...vk_n].
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An output error algorithm or parallel algorithm for this model akin to those of
[3,5] and others is simply

h = K
where, of course, x'k = [yk-1--yk-nvk_1...vk_m\. This is clearly a specialization
of the scheme of Section 2, and the feedforward system of Fig. 3.1, which is
required to be passive, simplifies as

W(z) = \I- 6'[zl- (F-

where A(z) = 1 + ax zrx +... an z~n, and

F =

]-1 G = A-\z) - \1,

0

In-X

0

0

0

0

0

0

0

0

0

/

0

0

0

0 .

G —
J \J —

- 1

0

0

0

A novel adaptive Kalman filter

Consider the state space signal model

= Axk+Buk, zk = Cxk+wk (scalar),

uk ] \ \ Q S

JH-L- * = o

with states xk, noise driving terms uk, wk, known parameters [A, B, C] but unknown
noise covariance matrices [Q,R,S]. Then the conditional minimum variance
one-step-ahead predictor has the structure indicated in Fig. 4.1 (a) where
W(z) = Cizl—A)-1 and the steady state Kalman gain K is unknown. An alternative
structure is given in Figure 4. l(b) since W(z) K = KW{z) (a scalar transfer function).

It is clear from Fig. 4.1 that only the second structure of Fig. 4.1(b) is suitable
to be made adaptive along the lines taken in Section 2. Figure 4.2 depicts such an
adaptive scheme. Notice that we have not in the first instance worked with the state
space signal model above or the signal model of Section 2 for that matter.

For the scheme of Fig. 4.2, the convergence condition that the feedforward
system of Fig. 3.1 be passive simplifies to requiring that

W{z) = \1- d'[zl- (F- G6')]-1 G
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F=A, G = -C, ff = K'.

189

For the case of vector measurements no longer is W(z)K = K'W(z). However,
the appropriate re-organization is possible as illustrated in the following example.
Let

W{z) = , K =

zk —

(a)

^ M

KALMAN

K

GAIN

» - KNOWN

STATES ESTIMATES

Vk-1, K
DYNAMICS

z k / k - l , K

zk HZ

(b)

K N O W N ( F , G )

k/k-l,K

Fig. 4.1. Alternative structures of the Kalman one-step-ahead predictor.

- »
PARAMETER

UPDATE

• » - zk/k-l,k

Kk W(z) xk/k-l,K

«lp. 4.2. Adaptive one-step-ahead predictor.
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and Kiy Now W(z)K= 6'p W(z) for

[15]

0

0

0

0

A;n 0

'12 0

K,22

0

0

0

0

0

An

^ 2 2 J

Here 9p is partially specified and a further re-arrangement allows use of the
alternative output equation yk = %'k 6k for

Xk —

where

W 11 0 1

0 w-

V21

0

11

V21 J

V21

0 W.21

0

vk-

Here H>i} denotes the operation corresponding to wi3(z). Clearly, identification of
8 gives directly the Kalman gain. (More precisely, a least squares index for the
vector measurement case weighted by the innovations covariance or a sampled
asymptotic approximation to this gives the Kalman gain.) The complete details
are readily worked out.

We believe the scheme described above is the first description of a Kalman
filter with an adaptive Kalman gain where precise on-line convergence results
are given.

Extended least squares

Consider the signal model
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with vk zero mean and white. These equations can be re-expressed as zk = d'xk + vk

where

X'k = [Zfc-l • • • Zh-n '• Vk-l • • • vk-m '• vk-l • • • vn-pl

The extended least squares estimator is

zk = v'k xk> °k = "fc-l + Pk xk(zk ~ °'k-l xk)> Pk-1 — Pk-1 + xk x'k

where

x'k = tzfc-l • • • zkn- :- vk-l • • • vk-m '• h-\ • • • H-p\ a n d h = zi~U

Again this is a specialization of the scheme of Section 2 and the feedforward
system of Fig. 3.1 required to be passive by the convergence theory simplifies as

W(z) = \I- B'[zI-{F-

where C{z) = 1 + q z~x +... cp z~p,

0 0 0 0 0 0

/„_! 0 0 0 0

0 0 0 0 0

0

0

0

0

0

0

4.-1
0

0

0

0

0

0

0

0 0

0

0

0

0

0

0

, G =

0

0

0

0

1

0

Novel self-tuning predictor

It is almost trivial to convert a one-step-ahead Kalman filter into an A -̂step-
ahead predictor since with xk+1 = Fxk+Gwk, xk+n/k = FNxk/k. However, if only
an estimate of F, viz. F, is available from an adaptive Kalman filter, then there
may be considerable errors in calculating an approximate prediction using F% and
there is considerable computational effort involved. An alternative approach to
adaptive prediction is given in [19]. This we build upon here to obtain a novel
predictor so that the convergence analysis for self-tuning filters can be applied
directly. In this way good convergence properties are assured.

Consider the predictor of Fig. (4.3) re-organized as the feedback structure of
Fig. 4.3(b). The feedforward sub-system can be viewed as an arrangement as in
Fig. 4.4 with a known linear dynamical system W and an unknown parameter
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matrix 8'. Self-tuning versions of these can be constructed but there is at present
no convergence analysis. Consider the non-minimal re-organization of Fig. 4.5(a)
with a known block W consisting of an A -̂delay and the block W and the unknown
parameters 6'. This re-organization can now be made adaptive as indicated in
Fig. 4.5(b) and it can be seen that such an adaptive prediction is a specialization
of the adaptive schemes of Section 2 with augmentation to achieve the desired
sub-optimal iV-step-ahead prediction estimate zs

k+N/k. The augmentations do not

N-STEP AHEAD
PREDICTOR

zk+N/k

(a)

N-STEP AHEAD
PREDICTOR

J n z ^ I
(b)

N-DELAY

Fig. 4.3. Predictor re-organized as a feedback structure.

KNOWN
DYNAMICS UNKNOWN

xk+N/k,0
'—^ ff

N-DELAY

zk+N/k,0

Fig. 4.4. N-step-ahead predictor conditioned on 6.

affect the convergence analysis. The derivations of the passivity conditions in terms
of the parameter 8 and W is straightforward.

Multivariable linear system identification

The schemes previously described under the heading "An output error algorithm"
and "Extended least squares" are for scalar output system identification. A
natural question to ask is to what extent can the ideas be extended to cover the
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multivariable case. Of course, one can immediately replace all the scalar parameters
at, bit q by matrices At, Bu Q, and 8 is then a matrix rather than a vector. The
catch is that the models are not uniquely parameterized. There may be situations
where it is important to work with a uniquely parameterized model so that @k has

N-DELAY r 8'

(a)

(b)

Fig. 4.5. (a) Conditional optimal predictor, (b) Self-tuning version of optimal predictor.

some significance and the difficulties sometimes associated with non-unique
parameterization are avoided. (One such difficulty is that the matrix Pk perhaps
approaches a singular but non-zero matrix giving numerical problems.)

Consider the uniquely parameterized model for zk an w-vector

n

where at are scalar and Q matrices. In [20], least squares ideas have been applied
G
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by re-organizing this equation in terms of an unknown parameter vector <f> as

<f>' = [9'\c'1c'2...c'ml 6'=[aia2...anl

6' = [C1C2...Cp] = [c1c2...cm]',

X'k = [X'kDk], Dk = b\oCkdiag[x'k,xk,...,xk],

X'k = t Z fc- l Zfc-2 • • • Zk-p]> X'k = lv'k-l V'k-2 • • • v'k-p\-

Note that here yk is a bilinear function of 6 and xk (and zj. The feedforward
system required to be passive by the convergence theory in this case is

where C(z) = / + Qz" 1 + C2z~2+...Cpz~v.
The adaptive estimation algorithms for estimating 8 require inefficient manipu-

lation of the sparse matrix Xk.
Here we present a novel formulation of the problem to achieve novel faster

algorithms without the need to manipulate sparse matrices. First note the
reorganization

zk=x'ke+B'Xk+vk.

Mild variations of the extended least squares derivations lead to the "recursions"

1 xk -^fc-

= K-l - Sk %k(X'k ^fc-l + ®'k xk - zk\

Observe that truly recursive calculationst can be obtained by substituting for Bk

to yield

t We are indebted to a student, Mr. T. H. Dinh, for this observation and the remarks to
follow.
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Of course we require that the inverses exist. From our simulation experience
we do not see this as a significant limitation. As an example of the computational
efficiency of these algorithms, for a fourth-order system with four outputs, the
number of multiplications required in these faster algorithms is reduced by a factor
of 13. There is a greater reduction with higher order systems.

5. Conclusions and discussions

1. The signal model and adaptive estimation schemes considered in the paper
have been shown to specialize to a number of useful estimation schemes such as
novel adaptive Kalman filters, novel adaptive predictors and novel adaptive
parameter identifiers in uniquely parameterized multivariable signal models, as
well as to the more familiar ARMA parameter identifiers and extended least
squares identification schemes. They can also be mildly modified to treat the model
reference identification schemes [4,5] and the algorithms using instrumental
variables [9,10].

2. The convergence conditions for parameter identification in the stochastic
case consist of some reasonable restrictions on the noise, noise-free convergence
conditions, and additional conditions which are but mildly more restrictive than
simply requiring that the matrix Pk (a coefficient matrix in the parameter update
equations) approaches zero as k-*co. Such restrictions are also required in the
alternative ordinary differential equation (ODE) approach of [14], but in addition
[14] includes stability restrictions. The ODE approach of [14] appeals to theorems
which are not so simple in derivation as the martingale convergence theorem
referred to in this paper.

The noise-free convergence condition, noted above, is that a system directly
related to the signal model be passive (or positive real). That such a condition is
required was first observed in [5]. There is also evidence that the condition is a
necessary one [13,14].

3. Continuous-time versions of the results in this paper are readily worked out.
There is very little variation required in the technique. It appears that the ideas of
[12-14] can also be extended to the continuous time case.

4. The less general estimation schemes of the earlier paper [11] are for very
closely related parameter update algorithms. The noise-free convergence conditions
in [11] are not as clear as in this paper and the convergence analysis of [11],
although using the martingale convergence approach, yields weaker convergence
results than in the present paper.
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5. The adaptive schemes of this paper can be applied to yield adaptive controller
designs for both minimum variance regulators and optimal state feedback
regulators.
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