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Abstract

Studies agree on a significant global mean sea level rise in the 20th century and its recent 21st century acceleration in
the satellite record. At regional scale, the evolution of sea level probability distributions is often assumed to be
dominated by changes in the mean. However, a quantification of changes in distributional shapes in a changing
climate is currentlymissing. To this end, we propose a novel framework quantifying significant changes in probability
distributions from time series data. The framework first quantifies linear trends in quantiles through quantile
regression. Quantile slopes are then projected onto a set of four orthogonal polynomials quantifying how such
changes can be explained by independent shifts in the first four statistical moments. The framework proposed is
theoretically founded, general, and can be applied to any climate observable with close-to-linear changes in
distributions. We focus on observations and a coupled climate model (GFDL-CM4). In the historical period, trends
in coastal daily sea level have been driven mainly by changes in the mean and can therefore be explained by a shift of
the distribution with no change in shape. In the modeled world, robust changes in higher order moments emerge with
increasing CO2 concentration. Such changes are driven in part by ocean circulation alone and get amplified by sea
level pressure fluctuations, with possible consequences for sea level extremes attribution studies.

Impact statement

Changes in coastal sea level are driven by natural and anthropogenic climate change, with potentially catastrophic
consequences for coastal communities. While past studies focused mostly on changes in the mean sea level and
extremes, there is less consensus regarding changes in shapes of sea level probability distribution. We fill this void by
proposing a new statistical framework to study changes in probability distributions from time series data. The
framework can be applied to any climate time series. In the historical period, coastal sea level changes have been
driven mainly by a shift in the mean. Changes in shapes of sea level probability distributions could emerge with
increasing CO2 concentrations, with possible consequences for sea level extremes attribution studies.

1. Introduction

Regional and global sea levels are affected by both natural climate variations and anthropogenic climate
change, with possible repercussions on densely populated coastal communities of great concern.
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Anthropogenic global warming recently motivated a number of studies characterizing rates and causes
of sea level rise since the early 20th century. A reconstruction of global sea level trends since 1900 has
been recently proposed by Dangendorf et al. (2019) and Frederikse et al. (2020). Both studies show a
robust increase inmean sea level with trends of 1:6±0:4 and 1:56±0:33mm/year over the periods 1900–
2015 and 1900–2018, respectively. Such global trends are not constant over time and marked by an
acceleration over the recent three decades, as quantified by the 3:1±0:3 mm/year trend measured by
altimetry since 1993 (WCRP Global Sea Level Budget Group, 2018. This acceleration has been mainly
ascribed to an increase in ocean heat uptake driven by changes in Southern Hemisphere westerlies, as
well as increased mass loss over Greenland (Dangendorf et al., 2019; Frederikse et al., 2020; Fox-
Kemper et al., 2021).

Globally, the causes of trends in sea level since 1900 are reasonably well understood, with the largest
contribution coming from glaciers (52%), followed by ocean thermal expansion (32%) and Greenland ice
sheet mass loss (29%) plus a negative contribution coming from the land water storage (Frederikse et al.,
2020). Regionally, on the other hand, sea level can be strongly affected by local variability in patterns of
ocean circulation and water masses such as those caused by fluctuations in winds, ocean heating, and
moisture fluxes (Han et al., 2017; Hamlington et al., 2020). Such dynamical changes can potentially mask
sea level trends in regions dominated by large multidecadal variability. A known example is the observed
large trend in sea level in the western Pacific ocean since 1990, mainly reflecting phases of the Pacific
decadal oscillation (PDO) (Merrifield et al., 2012; Zhang and Church, 2012; Han et al., 2017). Changes
not linked to ocean and atmosphere dynamics also play a role. An example is the vertical land movement
in some areas as a consequence of glacial isostatic adjustment (GIA) since the last ice age, causing
relatively large differences in long-term trends across basins (Tamisiea, 2011; Caron et al., 2018; Wang
et al., 2021). Notwithstanding the large number of possible contributions, the sea level budget at tide
gauges since 1958 has been recently closed inWang et al. (2021). The authors identified sterodynamic sea
level change as the main contributors to sea level rise in many locations, and GIA in few others (Wang
et al., 2021) (as detailed inGregory et al., 2019, sterodynamic changes arise from changes in ocean density
and ocean circulation).

Trends in sea level at long time scales also impact changes in weather-like extremes. Recently, many
studies have focused on quantification of current and future changes in sea level extremes driven by
storms, tides, and waves (Buchanan et al., 2017; Wahl et al., 2017; Rasmussen et al., 2018; Sweet et al.,
2020; Tebaldi et al., 2021). Such studies aim to characterize tails of sea level distributions in recent periods
or in future scenarios via extreme value theory (EVT) (Coles, 2001) and often quantify changes in
extremes solely as a function of changes in distributional mean (Tebaldi et al., 2021). A shift in the mean
sea level is in fact recognized to be the primary driver of changes in tails of the distributions (Vousdoukas
et al., 2018; Sreeraj et al., 2022. Few studies also explored extreme value analysis by considering changes
in the median and width of the fitted generalized extreme value distributions. Examples range from the
work of Wong et al. (2022), where the authors explored nonstationarity of extreme value statistics
covarying with different climate variables, to Lee et al. (2017) quantifying links between frequencies of
sea level extremes and global mean temperature. Similarly, Grinsted et al. (2013) investigated relation-
ships between changes in extreme value analysis in storm surges and different predictors, from the PDO
pattern to quasi-biennial oscillation among others.

While recent studies have focused on trends in the mean sea level or on large extremes through EVT,
there has been less work quantifying how shapes of sea level probability distributions have been changing
in the observational record and how they may change in a warming climate. This is no easy task, as
quantifying trends in distributions and their significance under internal climate variability is not a well-
defined problem and many measures could be adopted. Le Cozannet et al. (2019) studied changes in sea
level distributions in climate models projections focusing on changes in the cumulative distribution
functions. Another option would be to directly estimate changes in moments. A useful, comprehensive
methodology was recently proposed by McKinnon et al. (2016) where the authors proposed a unified
framework to study both linear changes in quantiles and moments of summer temperature time series.
Changes in quantiles can be quantified through the quantile regression approach used by Koenker and
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Bassett (1978) andKoenker andHallock (2001). Temporal changes in quantiles of the distributions can be
further summarized through projections onto few polynomials linking changes in quantiles to changes in
statistical moments. McKinnon et al. (2016) empirically showed that Legendre polynomials may be
suitable functions for this purpose.

Motivated by quantifying changes in sea level rise and inspired by McKinnon et al. (2016), here we
propose an alternative/complementary route to study temporal changes in probability distributions by
building uponMcKinnon et al. (2016) in twoways. First, based on the work of Cornish and Fisher (1937),
we provide a general, analytical relationship between time changes in quantiles and the first fourmoments
of a distribution. This analytical relationship allows us to build a theoretically founded methodology to
explore changes in distributions. We show how the framework allows us to diagnose time changes in
distributions as sums of independent shifts in the first four statistical moments. Second, we study the
significance of such changes in the presence of internal climate variability by accounting for multiple
testings (Benjamini and Hochberg, 1995). This approach limits the number of false positives in the
inference step to obtain trustworthy results even in the presence of a large number of significance tests
(James et al., 2013). Importantly, such linear framework is shown to work well even in case of weak
nonlinearities, with few examples shown later with synthetic data in Section 3.4 and in Appendices F
and G.

We apply the proposed framework to daily tide gauges data in the 1970–2017 period, for which many
locations have reliable data, and in a few locations with longer records. We therefore quantify changes in
sea level distributions and assess their significance under the internal variability of the system.

Observational results are then complemented by output from the GFDL-CM4 climate model (Held
et al., 2019. We first focus on the historical experiment and compare it with observations. We then
investigate a transient experiment with 1%CO2 increase per year, starting from a preindustrial global CO2

concentration and extending up to quadrupling after 140 years. Crucially, the modeled trends can be
further decomposed into different sea level components. We therefore explore sea level rise as a result of
ocean circulation only and when fluctuations in the atmospheric pressure at the sea surface (i.e., sea level
pressure [SLP]) are included.

The paper is organized as follows. In Section 2, we present the data and the sea level decomposition
adopted in this study. Section 3 presents the framework to study shifts in distributions. Results are
presented in Section 4, and Section 5 concludes the paper.

2. Datasets

2.1. Observational tide gauge record

We focus on local observations of daily sea level from tide gauge data provided by the University of
Hawaii Sea Level Center (Caldwell et al., 2018) (https://uhslc.soest.hawaii.edu/). We first consider the
period 1970–2017 and keep only tide gauges with less than 20%missing values. Data gaps are not filled.
This step reduces the number of time series considered from 116 to 94. The time range 1970–2017 was
chosen as a compromise between retaining high-quality, daily sea level observations and sampling a large
portion of coastal areas (e.g., many tide gauges records in Japan do not start before 1969). We then
investigate distributional shifts for tide gauges with more than 80 years of data and less than 20% of
missing values, which amounts to 28 available tide gauges. Such long periods translate in a more robust
statistical inference of changes in quantiles. For all tide gauges, the daily climatology is removed from
each record by subtracting to each day its average over the whole period of interest. Details on the tide
gauges preprocessing are further discussed in Appendix A. Start and end recording dates of tide gauges
with records longer than 80 years are presented in Appendix B.

2.2. GFDL-CM4 climate model: Strengths and limitations

We consider outputs from the GFDL-CM4model (Held et al., 2019). The ocean component is theMOM6
ocean model (Adcroft et al., 2019) with horizontal grid spacing of 0.25° and 75 vertical layers. With this
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grid spacing, the model cannot resolve many coastal bays and harbors. Nonetheless, the horizontal grid
spacing of 0.25° allows to realistically represent the sloping of continental shelves and its sharp deepening
at the boundaries with the open oceans. Such important feature cannot be represented in traditional 1°
coupled models. Accurate representation of coastal geometry is key to trustworthy simulations of storm
surges and coastal sea level as discussed in Yin et al. (2020).

The atmospheric/land component is the AM4model (Zhao, 2018a,b) with a horizontal grid spacing of
roughly 1° and 33 vertical layers. Despite its relatively coarse grid spacing, the model simulates the
physical characteristics of tropical cyclones reasonably well, allowing one to study their frequency and
changes under different forcings (Zhao, 2018a). However, strong hurricanes (i.e., category 4 and 5) are not
simulated, hence their impact on sea level extremes cannot be assessed in our study (Zhao, 2018a; Yin
et al., 2020).

A drawback in CM4 is themissing contribution to sea level rise caused bymelting of land ice due to the
lack of an ice sheet model, similarly to most coupled models in the Coupled Model Intercomparison
Project-phase 6 (CMIP6) (Eyring et al., 2016). Tides are not simulated and the associated tide surges
(Rego and Li, 2018), driven by constructive interactions of tides and storm surges, are absent from CM4.
Climate-unrelated factors such as GIA and terrestrial water storage, both relevant to sea level (mean)
trends (Wang et al., 2021), are also not simulated by this model. As shown byWinton et al. (2020), CM4 is
a high climate sensitivity model, and so it is likely too sensitive to anthropogenic forcing. A thorough
investigation of CM4-model biases in terms of sea level variability was presented in Yin et al. (2020).
Despite some of its limitations, the authors showed that the GFDL-CM4 model can serve as a useful
framework to explore changes in sea level statistics under different forcing scenarios. It thus directly
serves our interests in the present study.

The focus here is on two simulations. First, we consider one historical experiment in CM4, from
1970 to 2014 with external forcings consistent with observations. Second, we focus on an idealized
experiment with a 1% CO2 increase per year (hereafter “1pctCO2”). This experiment simulates the
climate system under a 1% increase of CO2 per year for 150 years, from preindustrial global CO2

concentrations up to quadrupling at year 140.We assume that the anthropogenic signal of sea level rise
emerges during the first 50 years of the simulation (as shown by Yin et al., 2020 for the US east coast)
and focus only on the last 100 years. The 1pctCO2 experiment is especially useful since under an
incremental, yearly increase in CO2 concentration, sea level statistics are expected to change almost
linearly (at least in the last 100 years). This linear change allows us to leverage the framework
proposed in Section 3 and to explore the emergence of changes in distributional shapes in coastal sea
levels.

The model output is remapped to a uniform 0.5° grid and only grid cells in the latitudinal range
�60 ° ,60 °½ � are considered. In both simulations, outputs are daily averages. We focus only on coastal
locations, accounting for 6,318 time series in each case.

2.3. Sea level decomposition

FollowingGill andNiiler (1973), Yin et al. (2010), andGriffies andGreatbatch (2012), we decompose the
sea level time tendency in a hydrostatic and Boussinesq ocean according to the following sea level budget

Δη =
ΔPb

ρ0g
�ΔPa

ρ0g
� 1
ρ0

Z η

�H
Δρdz, (1)

where Δ refers to a temporal increment relative to an initial time. Variables η,Pb,Pa, and ρ, respectively,
represent the sea level, bottom, and surface pressure and density at time t and longitude, latitude, vertical
position x,y,zð Þ. We make the Boussinesq approximation, which accounts for the constant reference
density ρ0 (e.g., Section 2.4 of Vallis, 2017).

In Eq. (1), Pb is the ocean bottom pressure, so that ΔPb= ρ0gð Þ measures the change in sea level
associated with changes in water column mass. Changes in water column mass arise from the
convergence of mass via ocean currents as well as water crossing the ocean free surface via

e16-4 Fabrizio Falasca et al.

https://doi.org/10.1017/eds.2023.10 Published online by Cambridge University Press

https://doi.org/10.1017/eds.2023.10


precipitation, evaporation, river runoff, and sea ice formation/melt. The SLP, Pa, is caused by
atmospheric and sea ice loading. The contribution from Pa is referred to as the inverse barometer
(e.g., Ponte, 2006), whereby increases in Pa lead to a decrease in sea level. The final term in the budget
(1) is the local steric effect, which is measured by the depth integral of changes to in situ ocean density.
For example, a decrease in column integrated density, such as through ocean warming or freshening,
leads to a sea level rise from local steric expansion.

Changes from bottom pressure and the local steric effect are associated with ocean dynamics and
ocean density and are referred to as sterodynamic sea level changes (Gregory et al., 2019). Following
the CMIP6 convention detailed in Appendix H of Griffies et al. (2016), the sea level diagnostic “zos”
measures the regional sterodynamic changes by setting the global mean to zero at each diagnostic time
step, with Griffies et al. (2016) referring to zos as the dynamic sea level. There have been many studies
of changes to the global mean sea level (e.g., Bittermann et al., 2017; Le Bars et al., 2017; Frederikse
et al., 2020; Palmer et al., 2021; among many others), with Yin et al. (2020) discussing the global
thermosteric sea level rise in the CM4 model used here. When comparing models to observations, the
global thermosteric sea level must be added to the dynamic sea level at every location in the ocean.
However, our interest concerns changes in higher order moments that are independent of changes in the
global mean sea level. Therefore, we focus our analysis on the dynamic sea level and inverse
barometer only.

We furthermore focus on the anomaly patterns of the inverse barometer (i.e, we remove the daily
climatology). Note that the inverse barometer contribution is not explicitly simulated by CMIP5
models. We thus diagnose this term offline by saving the SLP from the atmospheric model. As for tide
gauges, we remove the climatological daily cycle from all fields before performing our analysis.

3. Methodology

In this work, we aim to quantify linear changes in sea level distributions in the observational records and
climate model output. The methodology is general and can be potentially applied to any climate
observable with close-to-linear changes in distributions.

Given a sea level time series, we apply quantile regression to measure linear trends in quantiles
(Koenker andBassett, 1978; Portnoy andKoenker, 1997; Koenker andHallock, 2001).We then introduce
a set of orthogonal functions and project the quantile slopes onto such functions, in order to quantify how
changes in quantiles are driven by changes in the first four statistical moments. Crucially, slopes in the
proposed polynomials are orthogonal to each other by construction, allowing us to decouple different
sources of distributional changes. Here, we present the three main steps in the framework: (a) quantile
regression, (b) projection onto polynomials, and (c) statistical significance test. A schematic of the
proposed framework is presented in Figure 1.

3.1. Quantile regression

A quantile function QX pð Þ,p∈ 0,1½ �, of a random variable X returns a value x such that p×100ð Þ% of the
values are less than x. For example, the 0.95 quantile QX 0:95ð Þ is a real number x such that 95% of
the values of the random variable, X, are smaller than x. QX pð Þ,p∈ 0,1½ � is the inverse F�1

X pð Þ of the
cumulative distribution function FX xð Þ=P X ≤ xð Þ= p, representing the probability p that X would take a
value less than or equal to x. In what follows, we simplify the notation and refer to QX pð Þ as qp and to
cumulative functions as F xð Þ.

Quantile regression allows us to estimate temporal changes in the conditionalmedian (i.e., q0:5) or any
other quantile of a time-dependent distribution (Koenker and Bassett, 1978; Koenker and Hallock, 2001).
Here, we focus on the case of linear regression. For each quantile, qp, we need to fit two parameters: an
intercept β0 qp

� �
and a slope β1 qp

� �
(see Figure 1). Differently from linear regression for which we

minimize the mean square error, the quantile regression process places asymmetric weights on positive
and negative residuals (Koenker and Hallock, 2001).
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Figure 1. Schematic of the proposed framework illustrated using a synthetic time series.We generate a time
series t1,s1ð Þ, t2,s2ð Þ,…f g sampled from a time-dependent Beta distribution P s, tð Þ (see Section 3.4).
Temporal changes in statistical moments are computed analytically a priori and are chosen to come solely
from the variance (secondmoment) and kurtosis (fourthmoment). Step (a): we apply quantile regression for
the range of quantiles qp, with p∈ 0:05,0:95½ � every dp= 0:05 for a total of 19 slopes. In panel (a), we show
the quantile regression for p= 0:95,0:5 and 0.05. Note that q= q pð Þ and qp is used only for convenience.
Step (b):we project the 19quantile slopes onto a set of fourorthogonal polynomials (see panel b.3). Step (c):
we quantify the statistical significance of coefficients dmi

dt quantifying how independent changes in moments
explain changes in quantiles computed in step (a) (dmi

dt ; with i∈ 1,4½ � representing changes in mean,
variance, skewness, and kurtosis, respectively). Note that in Section 3.3 we refer to dmi

dt as ai to simplify the
notation. Significant changes at the 95% level come for this synthetic time series solely from the second and
fourth moments, as known from analytical results. Additional synthetic tests are presented in Section 3.4.
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Formally, given n observations at times ti, written as t1,s1ð Þ, t2,s2ð Þ,…f g, and the assumption of linear
relationship for each quantile qp tð Þ,p∈ 0,1½ �, then the goal is to minimize the following cost function:

argmin
β0 qpð Þ,β1 qpð Þ∈ℝ

Xn
i = 1

ρp si�β0 qp
� ��β1 qp

� �
ti

� �
, (2)

where the “check function” ρp uð Þ= pmax u,0ð Þþ 1�pð Þmax �u,0ð Þ, with p∈ 0,1½ �, assigns asym-
metric weights to residuals. For a given time series, we apply quantile regression for the range of
quantiles qp with p∈ 0:05,0:95½ � every dp= 0:05 for a total of 19 slopes (as done in McKinnon et al.,
2016). This number of slope was found to be sufficient to discover the right changes in moments, as
shown later on in the next section. An example of quantile regression for p= 0:95,0:5 and 0:05 is
shown in Figure 1a.

In practice, quantile regression studies depend on the existence of very fast algorithms (Chernozhukov
et al., 2022). Portnoy and Koenker (1997) proposed a precise and time-efficient minimization method
based on the Frisch–Newton algorithm. However, the computation time is still rather long in the case of
multiple quantile regressions and bootstrap inference. To this end, very recently Chernozhukov et al.
(2022) showed that the computation of many quantile regressions can be (vastly) accelerated by
exploiting nearby quantile solutions. Thismethodwas essential for the completion of our work, especially
when analyzing the climate model outputs, which included 12,636 time series each with 36,500 time
steps. The algorithm can be found in the quantile regression package “quantreg” implemented in R as
“quantile regression fitting via interior point methods” (i.e., method pfnb) (Koenker, 2022). In the case of
sea level, each quantile qp has dimensionality of qp

� �
= length½ �, so that the slopes have dimensions of

β1 qp
� �� �

= length
time

� �
.

3.2. Linking changes in quantiles to changes in statistical moments

The quantile regression step allows us to quantify slopes in N quantiles. This quantification can come at
the expense of interpretability, especially when N is large and when analyzing more than one time series.
To facilitate analysis and interpretation, we quantify how changes in quantiles of a distribution are driven
by changes in the mean, variance, skewness, and kurtosis, therefore defining a single framework to study
changes in quantiles and moments. All throughout the paper, we refer to the mean, variance, skewness,
and kurtosis as m1,m2,m3,m4ð Þ for practical convenience and report their mathematical expression in
Appendix C. A possible way to link changes in quantile to changes in moments was proposed in
McKinnon et al. (2016). The authors empirically derived a set of polynomials by observing how quantiles
of a distribution change when changing its moments one at a time. The lack of orthogonality of such
functions motivated the authors to adopt Legendre polynomials, which are orthogonal by construction
and share similar shapes to the derived functions. Inspired by McKinnon et al. (2016), here we approach
the problem from a theoretical point of view.We take advantage of the work of Cornish and Fisher (1937)
and define a unified framework useful to study and explore temporal changes in both quantiles and
moments of a distribution.

3.2.1. Stationary process
The starting point of our derivation is the Cornish–Fisher expansion (Cornish and Fisher, 1937; Wallace,
1958; Fisher and Cornish, 1960; Hill and Davis, 1968). Cornish and Fisher (1937) derived an asymptotic
expansion expressing any quantile of a distribution as a function of its cumulants.1 Studies often focus on
a modified version written in terms of the first four distributional moments. Furthermore, in practical

1 Cumulants are quantities providing an alternative to moments of a distribution. A description based on cumulants often
simplifies theoretical studies in statistics and probability theory. In this paper, we focus on moments of the distribution and refer the
interested reader to Cornish and Fisher (1937) and Kendall and Stuart (1969) for more details on cumulants.
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applications higher ordermoments show large sensitivity to sampling fluctuations, and Bekki et al. (2009)
showed that a fourth-order truncation often allows for very accurate estimations of quantiles.

Given a stationary distribution with mean m1, variance m2, skewness m3, and excess kurtosis m4

parameters, the following asymptotic relation holds (Cornish and Fisher, 1937; Bekki et al., 2009):

qp �m1þ ffiffiffiffiffiffi
m2

p
w; w = zpþ z2p�1

� �m3

6
þ z3p�3zp
� �m4

24
� 2z3p�5zp
� �m2

3

36
, (3)

where qp is the quantile of the “true” distribution and zp is the quantile of a standard normal N 0,1ð Þ at
p∈ 0,1½ �.2 In other words, zp is the inverse F�1 pð Þ of the cumulative distribution

F xð Þ= 2πð Þ�1=2R x
�∞ exp �υ2=2ð Þdυ of a Gaussian distribution with zero mean and unit variance. Import-

antly, qp,m1, and
ffiffiffiffiffiffi
m2

p
have the same dimension, whereas zp,m3, andm4 are nondimensional. A synthetic

and a first climate-related test are discussed in Appendix D.
In the case of a normal distributions, m3 =m4 = 0 and the expansion (3) reduces to qp =m1þ ffiffiffiffiffiffi

m2
p

zp.
The inclusion of the third and fourth moments, m3 and m4, allows us to approximate any quantile of a
nonnormal distribution as a function of a normal (Gaussian) distribution. This formula is a powerful tool
as it can provide asymptotic estimations of arbitrarily large quantiles, otherwise difficult from data alone.
It is useful for distributions that do not show large differences from a normal distribution with the domain
of validity further discussed by Maillard (2012) and Amédée-Manesme et al. (2019).

3.2.2. Nonstationary process
Here, we aim to understand and quantify how temporal changes in individual quantiles are driven by
changes in statistical moments. In theory, each quantile qp is time dependent through all moments of the
distribution. Here, we consider dependence only up to the first four moments:

qp tð Þ= qp m1 tð Þ,m2 tð Þ,m3 tð Þ,m4 tð Þð Þ: (4)

Here, m1,m2,m3, and m4 refer to the mean, variance, skewness, and excess kurtosis. We focus on linear
changes in time and therefore write

dqp
dt

=
∂qp
∂m1

dm1

dt
þ ∂qp
∂m2

dm2

dt
þ ∂qp
∂m3

dm3

dt
þ ∂qp
∂m4

dm4

dt
=
X4
i = 1

∂qp
∂mi

dmi

dt
: (5)

Each term
∂qp
∂mi

in Eq. (5) can be further evaluated by differentiating Eq. (3):

∂qp
∂m1

= 1

∂qp
∂m2

=
1
2

1ffiffiffiffiffiffi
m2

p zpþ1
6

z2p�1
� �

m3� 1
36

2z3p�5zp
� �

m2
3þ

1
24

z3p�3zp
� �

m4

	 

∂qp
∂m3

=
ffiffiffiffiffiffi
m2

p 1
6

z2p�1
� �

� 1
18

2z3p�5zp
� �

m3

	 

∂qp
∂m4

=
ffiffiffiffiffiffi
m2

p
24

z3p�3zp
� �

:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

(6)

We assume relatively small deviation fromGaussian behavior and focus only on first-order changes in Eq. (6).
This is a reasonable assumption as the dynamics of many climate observables often show a strong Gaussian
component, especiallywhen focusing on anomalies (after removing climatologies). In case of (relatively) large
deviation fromGaussianity, the framework is still useful at first order as suggested by tests inAppendixD.1. In
other words, we evaluate Eq. (6) locally at the pointm∗ = m1 = 0,m2 = 1,m3 = 0,m4 = 0ð Þ to describe changes

2We remind the reader that qp =QX pð Þ is the quantile function of a random variable X . We write qp to simplify the notation. The
function zp is the quantile function of a standard normalN 0,1ð Þ. In Python, zp is given by scipy.stats.norm.ppf(p, loc = 0, scale = 1).
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in the neighborhoodof aGaussian distribution.Therefore,we relate the slopesβ1 qp
� �

computed in thequantile
regression step in Eq. (2) to changes in moments as:

β1 qp
� �� dqp

dt

����
m∗

=
X4
i = 1

dmi

dt

∂qp
∂mi

�����
m∗

=
X4
i = 1

dmi

dt
bi pð Þ: (7)

Here, the set of polynomials, bi pð Þ, are defined by evaluating the terms
∂qp
∂mi

; i∈ 1,4½ � in Eq. (6) in the point
m∗ = m1 = 0,m2 = 1,m3 = 0,m4 = 0ð Þ:

b1 pð Þ= ∂qp
∂m1

���
m∗

= 1

b2 pð Þ= ∂qp
∂m2

���
m∗

=
zp
2

b3 pð Þ= ∂qp
∂m3

���
m∗

=
1
6

z2p�1
� �

b4 pð Þ= ∂qp
∂m4

���
m∗

=
1
24

z3p�3zp
� �

:

8>>>>>>>>>><
>>>>>>>>>>:

(8)

Such functions are scaled Hermite polynomials of the function zp and defined in the range p∈ 0,1½ �. The
polynomials in Eq. (8) satisfy Z 1

0
bi pð Þbj pð Þdp= 0 if i≠ j, (9)

and so they are orthogonal to each other. We depict these four functions in Figure 1b.3

Eq. (7) allows us to examine how time changes in distributional quantiles are driven by time
changes in the first four moments. We note that apart from b1 pð Þ, all polynomials in Eq. (8) differ from
the ones in McKinnon et al. (2016). As an example, an important difference is in the b2 pð Þ function,
quantifying changes in variance. In the case of a drifting Gaussian distribution, b2 pð Þ quantifies the
exact link between changes in moments and quantiles. In the “bulk” of the distribution, the function
b2 pð Þ derived in Eq. (8) gives negative(positive) corrections to the correspondent function in McKin-
non et al. (2016) for p greater (smaller) than p= 0:5. Furthermore, b2 pð Þ shows how changes in
variance also drive changes in distributional tails, with quantiles diverging to þ∞ �∞ð Þ when
p! 1ð Þ0.

The slopes β1 qp
� �

appearing in Eq. (7) can be efficiently estimated through the quantile regression step
as shown in Eq. (2). The polynomials bi pð Þ have been derived in Eq. (8) and follow from Cornish and
Fisher (1937). Therefore, changes in moments, dmi

dt , can be computed as the least-squares solution of
Eq. (7). An example is shown in Figure 1b for a Beta distribution with changes coming exclusively from
variance and kurtosis (i.e.,m2 andm4).

dm1
dt is equivalent to a linear regression. We refer to the coefficients

dmi
dt as changes (or slopes) in moments. However, such inferred changes are orthogonal to each other, and
this property may not be the case for changes in the true moments. The orthogonality constraint offers a
useful and interpretable way to decompose independent sources of shifts in a distribution.

In the case of sea level, the dimensionality in changes in moments dmi
dt ; i∈ 1,4½ � is as follows:

dm1
dt

� �
= length

time

� �
, dm2

dt

� �
= length2

time

h i
, dm3

dt

� �
= 1

time

� �
, dm4

dt = 1
time

� �
.

3We also tested the impact of further rescaling the polynomials to define an orthonormal rather than just orthogonal set. In the
orthonormal case, all synthetic tests give the same results in terms of statistical significance but do not capture the relative scaling
between changes in moments.
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3.3. Statistical significance

The significance test is performed via the bootstrapping methodology (Chernick et al., 2011). For a
given dataset (i.e., model’s output or tide gauges), we consider the j-th time series, xj tð Þ, and estimate
the statistical significance of each coefficient ai =

dmi
dt , i∈ 1,4½ �. We do so by permuting (with replace-

ment) xj tð Þ B times and recomputing the slopes in moments ai at each iteration. We choose a value of
B= 1000 and show the sensitivity of such a choice for one time series in Figure F2 (results do not
change on average for randomly chosen time series). This method allows to construct a distribution
approximating the null distribution under the null hypothesis of stationarity. For this resampling
approach, we use block-bootstrapping, with blocks of one season to satisfy the assumption of
statistical independence required in the bootstrapping test (Chernick et al., 2011). The robustness
on this choice of block size is mentioned in Section 4 and detailed in Appendix B. The specific block-
bootstrapping considered is the moving block-bootstrapping that allows for overlapping blocks as
described in Künsch (1989).

We consider the following two significance tests.

1. When dealing with one or few time series, we consider a two-tailed test and deem slopes as
significant at level α if in the 1� α

2

� �
% (or α

2%) of the upper (or lower) tails of the bootstrapped
distribution. We choose α= 0:05 (i.e., 95% significance level).

2. When considering many time series, we face a multiple testing problem and more and more false
positives are expected in the statistical inference (James et al., 2013. To control the ratio of false
positives, we adopt the false discovery rate (FDR) test proposed by Benjamini and Hochberg
(1995). For a given time series xj tð Þ and a corresponding slope ai, i∈ 1,4½ �, we compute a p-value
pi. We perform this computation for allM time series in the dataset under investigation. We then
rank allM p-values in the ascending order and keep only the firstm<M so that pm is the largest p-
value such that pm<ϕ

m
M, where ϕ is the FDR. Note that the FDR is usually denoted by the letter

“q”. Here, we use ϕ to avoid confusions with quantiles q in the quantile regression step. In plain
words, a FDR of 10%would imply that nomore than 10% of the rejected null hypotheses are false
positives. This method has been shown to be an efficient test to control on average the ratio of
false positives arising from multiple testing (Benjamini and Hochberg, 1995) and found appli-
cations in climate science (Ventura et al., 2004; Wilks, 2006; Fountalis et al., 2018; Runge et al.,
2019).

In our case, this step requires to approximate a p-value from a bootstrapped distribution. Given the j-th
time series xj tð Þ and a slope ai = dmi

dt , i∈ 1,4½ �, we denote a∗1i ,a∗2i ,…,a∗Bi as the B bootstrapped slopes. We

define the correspondent p-value of ai as pi =

PB

b= 1
1∣a∗b

i
∣ ≥ ∣ai ∣

B , where 1∣a∗bi ∣ ≥ ∣ai∣ = 1 if ∣a∗bi ∣ ≥ ∣ai∣ and zero

otherwise (James et al., 2013).

3.4. Synthetic tests

In this section, we test the proposed framework on two time-dependent distributions with known changes
in moments. We consider two time-dependent processes sampled from a Gaussian and Beta distribution
and display tests in Figure 2.

• We define a time-dependent Gaussian process P x, tð Þ= 1ffiffiffiffiffiffiffi
2πbt

p e
x�atð Þ2
2bt defined over x∈ℝ with mean

m1 = at and variance m2 = bt. a,b∈ℝ and t represents the time vector. We choose a= b= 5. In this
case, we expect distributional changes to be driven exclusively by the mean and variance.

• We consider a stationary Beta distribution P xð Þ= xα�1 1�xð Þβ�1

B α,βð Þ defined over x∈ 0,1½ �. Here,

B α,βð Þ= Γ αð ÞΓ βð Þ
Γ αþβð Þ , with Γ being the Gamma function (Davis, 1959). Therefore, P xð Þ depends on

two parameters, α and β, controlling the “thickness” of the tails of the distribution. A larger α (β)
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implies negative (positive) skewness; the distribution is symmetric if α = β. The mean, variance,
skewness, and kurtosis read as:

m1 =
α

αþβ

m2 =
αβ

αþβð Þ2 1þαþβð Þ
m3 =

2 β�αð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þαþβ

pffiffiffi
α

p ffiffiffi
β

p
2þαþβð Þ

m4 =
3 1þαþβð Þ αβ αþβ�6ð Þþ2 αþβð Þ2

� �
αβ 2þαþβð Þ 3þαþβð Þ :

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(10)

We then introduce a “drift” in this distribution by prescribing α = at and β = bt and choose a= 1 and
b = 2. This defines a process with constant mean but time-dependent variance, skewness, and
kurtosis. For these parameters, the exact moments are then

m1,m2,m3,m4ð Þ= 1
3 ,

2
9þ27t ,

ffiffiffiffiffiffiffi
2þ6t

p
2þ3t ,3� 3

2þ3t

� �
.

In both cases,we create a time-dependent process t1,s1ð Þ, t2,s2ð Þ,…f g in the temporal range t ∈ 1,3½ �. In
this temporal range, changes can be weakly nonlinear but still far from strong nonlinearities. Specifically, at
each time step dt = 10�4 we random sample from the two distributions P s, tð Þ. We then apply the proposed
framework to (a) estimate quantile slopesβ1 qp

� �
and (b) compute the respective changes inmoments dmi

dt . By
random sampling at each dt, consecutive time steps are independent by definition and block sizes in the
boostrapping procedure are equal to 1 time step. Results for the Gaussian and Beta distributions cases are
shown in Figure 2. The method correctly identifies the statistical moments driving changes in the
distributions.We note that the proposed linear framework is still valid in the presence ofweak nonlinearities
such as for m2,m3, and m4 for the process sampled from the Beta distribution.

Tests for a process with prescribed changes in only the variance,m2, and kurtosis,m4, are shown in the
schematic in Figure 1.

Figure 2. Testing the methodology on time series t1,s1ð Þ, t2,s2ð Þ,…f g sampled from time-dependent
Gaussian and Beta distributions P s, tð Þ. (a) Time series sampled from a time-dependent Gaussian
distribution. (b) Linear quantile slopes for the time series shown in panel (a). The slopes β1 qp

� �
are

computed for p∈ 0:05,0:95½ � every dp= 0:05 and indicated as blue dots. The black dashed line indicates
the projection onto polynomials as defined in Eq. (7). Green “check” marks indicate statistically
significant (95% confidence level) changes in moments; red “crosses” indicate nonsignificant changes.
(c) Time series sampled from a time-dependent Beta distribution. (d) Same as panel (b) but for the case of
the Beta distribution. In both cases, the method identifies the statistical moments driving changes in the
distributions.
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4. Results

4.1. Changes in coastal sea level distributions from tide gauges

Changes in sea level distributions measured by tide gauges for the period 1970–2017 are summarized in
Figure 3 and Table 1. The statistical significance test used is the FDR (see Section 3.3) with ϕ= 0:05. The
p-values are computed from the block-bootstrapped distributions (Section 3.3), and a sensitivity analysis
on the chosen block-size is shown in Appendix E.

The main significant changes in the observed coastal sea level distributions come from a shift in the
mean. Contributions coming from higher order moments are less significant and sporadic (see Table 1).
Among the 92 tide gauges with significant changes in the mean, the average slope is 2.08 mm/year (see
Table 1). However, if only the positive significant slopes are considered (78 of the 92 tide gauges), then the
slope increases to 2.92 mm/year.

Drivers of mean changes in tide gauges have been discussed in Wang et al. (2021), where the authors
identified stereodynamic sea level changes (i.e., changes driven by currents, temperature, and salinity) as
the main contributors of the observed trends. Large trends in the US east coast mainly come from the
combined effect of sterodynamic andGIA contributions. Downward sea level trends are drivenmainly by
GIA (e.g., Baltic Sea [Weisse et al., 2021]), terrestrial water storage, or mass loss of land ice (e.g., Alaska
coastline).

Figure 3.Projection onto mean, variance, skewness, and kurtosis polynomials for the period 1970–2017.
Statistically significant changes are marked with filled “circles,” whereas insignificant changes are
marked with “X”s. Statistical significance is computed using the FDR test with threshold ϕ= 0:05.

Table 1. Percentage of significant coefficients for the FDR test.

Mean (%) Variance (%) Skewness (%) Kurtosis (%)

Period 1970–2017

FDR (ϕ= 0:05) 92(97:9) 4(4:3) 1(2:1) 0(0:0) Out of 94

Records ≥ 80 years

FDR (ϕ= 0:05) 27 (96:4) 2 (7:1) 0 (0:0) 0 (0:0) Out of 28

Note. All figures report results obtained with the FDR test with a threshold ϕ= 0:05 (see Section 3.3).
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We further analyze tide gauges with (a) more than 80 years of data and (b) less than 20% of missing
values, with results presented in Figure 4 and Table 1. The record spanned in such locations is reported in
Appendix B. The significance test adopted is FDR.Also in this case, we observe significant changes in the
distributional mean but not in higher order moments. As an exception, two records from Panama
(i.e., Cristobal andBalboa) show a significant change in variance. Such changes can be partially explained
by very large anomalous El Niño and La Niña events since 1980, as shown in Appendix E.

We conclude that, independently of the period analyzed, changes in tide gauge measured coastal sea
level distributions can be characterized by a shift in the mean with no statistically significant change in
shape.

4.2. GFDL-CM4 climate model

We quantify changes in sea level distributions in the historical experiment with CM4, focusing on the
dynamic sea level plus inverse barometer (i.e., ηdynþηib) during the period 1970–2014. Results are shown
in Figure 5 and significant changes are reported in Table 2. In this period, roughly 43% of the coastal area
experiences significant changes in the mean sea level. Among such changes, positive sea level rise is
detected mainly along the US east coast, North and East Africa, as well as Europe and Oceania. Negative
trends are simulated along coastlines in East Asia, western North America, and almost the whole South
American coast. Importantly, GFDL-CM4 does not exhibit changes in the shapes of distributions in the
historical period, which agrees with our tide gauge analysis (Table 2).

We next explore changes in statistics in the last 100 years of the 1pctCO2 experiment with results given
in Figure 6 and Table 2. To investigate the main physical drivers of distributional shifts, we first analyze
the dynamic sea level ηdyn (Figure 6, left column) and then consider the effect of the inverse barometer,
that is, η = ηdynþηib (Figure 6, right column). We observe that in both cases a large number of coastal
locations experience a significant change in the mean of the distribution (Figure 6a,b). The fraction of
significant changes is slightly lower when the inverse barometer effect is included (� 67% vs�79%) but
still much larger than the 43% found in the historical experiment. One difference with the historical
experiment is the emergence of mean sea level changes in the South and South-East part of Africa,
Indonesia, and India. Additionally, many negative trends in mean sea level found in the historical

Figure 4. Projection onto mean, variance, skewness, and kurtosis functions. All tide gauges considered
have a record longer than 80 years and less than 20% ofmissing data. Statistically significant changes are
marked with filled “circles,” whereas insignificant changes are marked with “X”s. Statistical
significance is computed using the FDR test with threshold ϕ= 0:05 for themean, variance, skewness, and
kurtosis slopes. The starting and ending date for each tide gauge is shown in Appendix B.
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experiment switch sign, especially in the North-West America, East Asia (i.e., Sea of Japan, East and
South China sea) and East Africa.

Amajor differencewith both the observational dataset (Section 4.1) and theCM4historical experiment
is the emergence of changes in higher order moments in the 1pctCO2 experiment. This emergence shows
that changes in shapes of daily sea level distributions are indeed possible, at least in simulations as CO2

increases.We detect coherent positive significant changes in variance along the Japan coast (Figure 6c,d).
In addition, when also the inverse barometer is included, we see the emergence of positive changes in
variance in part of Indonesia and in North- and South-East Africa and East India (Figure 6d). Adding the
inverse barometer component always implies a larger fraction of significant changes in second, third, and
fourth moments. This result holds for shifts in variance and it is muchmore evident in the case of third and
fourth moments as shown in Table 2. Spatially coherent changes in skewness include positive trends
around North Indonesia and in the Philippines and Northern Europe (Figure 6f). Interestingly, we also
detect many significant negative changes in skewness, mainly in Japan coasts, North East US, virtually all
coasts in the Mediterranean Sea and North East Africa (Figure 6f).

Figure 5. Projection onto mean, variance, skewness and kurtosis functions for the GFDL-CM4 historical
experiment. We consider the dynamic sea level and inverse barometer (i.e., ηdynþηib) contributions in the
period 1970–2014. Statistical significance is computed using the FDR test with threshold ϕ= 0:05,
respectively, for the mean, variance, skewness, and kurtosis slopes. The global thermosteric contribution
is not included in the analysis. Only statistical significant slopes are reported.

Table 2. Percentage of significant coefficients for GFDL-CM4 historical and 1pctCO2 experiments.

Mean (%) Variance (%) Skewness (%) Kurtosis (%)

Period 1970–2014

ηdynþηib
� �

; FDR (ϕ= 0:05) 2702(42:8) 5(0:1) 11(0:2) 11(0:2) Out of 6,318

1% CO2 yearly increase

ηdyn
� �

; FDR (ϕ= 0:05) 4939(78:8) 293(4:6) 315(5:0) 18(0:3) Out of 6,318

ηdynþηib
� �

; FDR (ϕ= 0:05) 4260(67:4) 632(10:0) 914(14:5) 394(6:2) Out of 6,318

Note. For the historical experiment, we consider the dynamic sea level and inverse barometer (i.e., ηdynþηib) contributions in the period 1970–2014. For the
1pctCO2 experiment, we show results both for the dynamic sea level and inverse barometer (i.e., ηdynþηib) and dynamic sea level only (i.e., ηdyn). Statistical
significance is computed using the FDR test with threshold ϕ= 0:05.
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Future work will further address possible causes of such higher order changes. Hereafter, we focus
mainly on drivers of shifts in kurtosis and on large, spatially coherent changes in the Mediterranean sea
and in Northern Europe.

Shifts in the kurtosis functions are negligible in the dynamic sea level contributions and detected only
when the inverse barometer is included (Table 2). The largest, spatially coherent domain with changes in
kurtosis is found in the Mediterranean, as shown in Figure 6h. This area is marked by significant
(negative) changes in both skewness and kurtosis functions. To further explore such distributional shifts,
we considered the time series with largest changes in kurtosis in the Mediterranean and analyzed it
separately. Results are shown in Appendix G. The histograms for the first and last 40 years of data (see
Figure G1c,d) show a decrease in skewness from�0:06 to�0:37 and an excess kurtosis from 0.83 to 0.03
(closer to the Gaussian case of 0).

Such changes in skewness and kurtosis in the Mediterranean come solely from changes in SLP
anomalies (see Figure 6g,h). This result indicates a drop in frequency of (large) negative SLP anomalies
(see Eq. 1) and points to a large decrease in frequency of hurricanes in the Mediterranean, the so-called

Figure 6. Projection onto mean, variance, skewness, and kurtosis functions for the GFDL-CM4
experiment with 1%CO2 yearly increase for 100 years. (a,c,e,g) Dynamic sea level only (i.e., ηdyn). (b,d,f,
h) Dynamic sea level and inverse barometer contributions (i.e., ηdynþηib). Statistical significance is
computed using the FDR test with threshold ϕ= 0:05 respectively for the mean, variance, skewness, and
kurtosis slopes. The global thermosteric contribution is not included in the analysis. Only statistical
significant slopes are reported.
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“medicanes,” as recently suggested inGonzález-Alemán et al. (2019).We note that while the frequency of
medicanes is projected to decrease, the strongest medicanes are expected to intensify (González-Alemán
et al., 2019).

Changes in kurtosis are present in regions outside theMediterranean sea. Themajority of such changes
are (a) found to be negative and (b) coming only from the inverse barometer effect (Figure 6h). This
possibly points out to changes in the statistics of intense convective systems. This seems to be large in
agreement with Priestley and Catto (2022) where the authors quantified a robust decrease in cyclone
numbers, independent of the season, in CMIP6 models projections. On the other hand, the strongest
cyclones are projected to have higher intensities (mean SLP and vorticity) and larger tropospheric wind
speed (with changes dependent on different seasons and hemispheres) (Priestley and Catto, 2022).

A large number of coastal location experience positive changes in skewness inNorthern Europe (North
sea and Baltic sea). Such changes are already present in the dynamic sea level field, ηdyn, and show no
qualitative changes when the inverse barometer is included. Positive changes in skewness in the dynamic
sea level field possibly indicate a shift to larger frequency of storm surges. This is in agreement with
Gaslikova et al. (2013), where the authors studied changes in North sea storm surges in future climate
scenarios (i.e., 1961–2100 period) by comparing changes in the 99th percentiles of water levels in 30-year
windows. Gaslikova et al. (2013) used a hydrodynamical model and quantified a (small) increase in
frequency of such extreme events, consistent with an increase in frequency of intense westerly winds. An
increase in frequency of positive large sea level rise anomalies (positive slopes in skewness) in that region
is then consistent with such increase in wind forcing. Importantly, such anthropogenic signals are
superimposed on large, decadal oscillations leading to uncertainties coming from the system’s internal
variability.

Spatially coherent changes in extreme sea levels over the Mediterranean sea and Northern Europe can
be in part linked to projected changes in atmospheric storm track activity and cyclone intensities over
Europe as shown by Pinto et al. (2007). The authors analyzed ensembles of climate change projections
and identified particularly strong reductions of cyclone intensities in subtropical areas such as in the
Mediterranean sea and a large increase in extreme surface winds in Great Britain, North, and Baltic seas.
Importantly, the role of internal variability was shown to be important and large differences were
identified among ensemble members (Pinto et al., 2007). Such changes were found to mostly hold in
the new generation of climate models, and Priestley and Catto (2022) quantified a decrease in cyclone
activity over the Mediterranean in CMIP6 future projections, together with changes in the North Atlantic
storm track.

5. Conclusions

An in-depth assessment of changes in shapes of sea level distributions in observations and in climate
simulations has not been addressed in the current literature. In fact, a large focus in the last Intergovern-
mental Panel on Climate Change report has been on changes in themean of the distributions (Fox-Kemper
et al., 2021). Furthermore, changes in sea level extremes through EVT are often quantified solely as a
function of changes in the distributional mean (Tebaldi et al., 2021). This motivated us to address the
following questions regarding changes in sea level probability distributions:

• Are changes in higher order moments in observations (a) significant but small compared to the shift
in the mean or (b) consistent with the climate system’s internal variability?

• Howdo shapes of sea level distribution evolve under CO2 forcing at centennial time scales, at least in
a climate model framework? Which sea level component (i.e., sterodynamic and inverse barometer
effects) is responsible for such changes?

Our work addressed and answered these questions from a novel statistical point of view by exploring
changes in sea level distributions in tide gauges and in the GFDL-CM4 model.
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To achieve these goals, we introduced a novel and general statistical framework to study changes in
both quantiles and moments of a distribution and quantify their significance under the system’s internal
variability. Importantly, shifts in moments are captured by suitable orthogonal functions, therefore
capturing independent sources of distributional changes. The framework is inspired by the methodology
proposed in McKinnon et al. (2016) but differs in terms of polynomials and statistical tests. Here, the
choice of polynomials follows from the rigorous theoretical work of Cornish and Fisher (1937) and Fisher
and Cornish (1960). Their theory allows us to derive a precise formalism to investigate changes in both
quantiles and moments. Additionally, the recent work of Chernozhukov et al. (2022) allows for very fast
computation of quantile regression, thus making the methodology feasible even when dealing with
thousands of time series eachwith tens of thousands of time steps, as commonly foundwith climatemodel
applications. In the case of a drifting Gaussian distribution, the first and second polynomials quantify the
exact link between changes in moments and quantiles. The third and fourth polynomials adjust for non-
Gaussian behavior. Future work may consider the Cornish–Fisher expansion for asymptotic estimates of
very large quantiles otherwise difficult (or impossible) to do from data alone, therefore providing a useful
alternative to EVT.

The statistical significance test adopts the FDRproposed byBenjamini andHochberg (1995), therefore
controlling against multiple testing. The bootstrapping methodology is robust under the sample size
B= 1000. In general, even for sample sizes as small as B = 100 we can still obtain meaningful results, as
shown for one time series in Figure F2. However, as in any other resampling test, a larger number of
samples (i.e., B= 5000) would probably be preferred and here avoided because of long run time (same as
in McKinnon et al., 2016). The methodology is linear but still relevant in the case of weak nonlinearities,
with an example shown for the Beta distribution in Section 3.4. Strongly nonlinear trends in the mean of
the distribution will not be detected by this linear framework, but such nonlinearities would result in
significant changes in higher order moments. The underlying physical mechanisms leading to changes in
sea level distributions can be nonlinear, such as for a weakening Atlantic meridional overturning
circulation (AMOC) commonly found in climate model projections (Weijer et al., 2020). For example,
in theGFDL-CM4 climatemodel simulation considered here, theAMOC strength weakened by roughly a
factor of two after 100 years of enhanced CO2 forcing (see Figure 13b of Yin et al., 2020). Even so,
statistical properties of the sea level distribution retained a close to linear behavior, thus allowing for the
methodology developed in this paper to remain useful.

We applied the above statistical framework to coastal daily sea level measured by tide gauges. Nearly
every record shows a significant change in the mean of the distribution for the period 1970–2017. In
contrast, we detect no significant change in higher order moments for the same period, with this
conclusion robust to sampling only tide gauges with more than 80 years of data. We conclude that
changes in coastal sea level in the historical period exhibited just a shift in the mean, with no significant
change in the shape of the probability distribution. Likewise, no changes in higher order statistical
moments are found in the GFDL-CM4 historical simulation. Hence, changes in the simulated coastal sea
level arise mainly by changes in the mean, which agrees with the tide gauges. We note that multidecadal
oscillations could in principle impact statistical attribution in some locations when focusing on “short”
datasets. However, the same conclusions are obtained for tide gauges with 47 years (period 1970–2017)
and more than 80 years of data. Conclusions on observations are therefore robust on the chosen period.

We then considered a CM4 experiment with 1%/year CO2 forcing, thus allowing us to quantify
changes in sea level in a warming (modeled) world. In this experiment, we find (a) a large increase in
significant changes in the mean of the distribution compared to the historical run and (b) the emergence of
changes in higher order moments.

Interestingly, changes in the second and third moments are already present in the dynamic-sea-level-
only analysis. These changes are therefore driven solely by the evolution of ocean circulation, caused by
changes in water column mass and local steric effects. Such changes get amplified when SLP
fluctuations are included, accounting for the inverse barometer effect (Ponte, 2006). Shifts in kurtosis
are for the most part negative and possibly consistent with results of Priestley and Catto (2022) where
the authors observed robust decrease in cyclone numbers, independent of the season, in CMIP6 models
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projections. One striking difference with the dynamic-sea-level-only analysis is the emergence of large
changes in skewness and kurtosis along the Mediterranean coast, possibly pointing to drops in the
frequency of medicanes, as shown in González-Alemán et al. (2019). A decrease in frequency of
medicanes has been shown to hold on average for different regional models, but some model runs show
no significant changes (Romera et al., 2017). Larger ensembles and different scenarios are then needed
to better quantify the impact of statistical changes in medicanes on coastal sea level. Finally, a large
increase in skewness values in the North and Baltic seas is present in the dynamic-sea-level-only
analysis and shows no (qualitative) differences with the inclusion of inverse barometer. This is
consistent with an increase in frequency of intense westerly winds in that region as shown by Pinto
et al. (2007) and Gaslikova et al. (2013).

We note that the GFDL-CM4 does not simulate category 4 and 5 tropical cyclones (see Yin et al.,
2020). Hence, shifts in higher order moments of the distributions are likely underestimated in the
simulation. Such changes in cyclones frequency should be further explored using different
models and scenarios. Furthermore, such information should be taken into account in the context
of extreme value attribution where extreme sea level is often modeled solely as a function of the
distributional mean.

A limitation of this work is that we focused only on one climate model and we did not consider
ensembles of simulations. First, the climate is a chaotic system and ensemble simulations are often
needed to explore the system’s variability. Second, climate models are affected by structural model
errors and a collection of models is required for more confident climate projections (Smith, 2002; Frigg
et al., 2014). The emergence of significant changes in higher order moments in the model analyzed here
should be seen as a proof of concept rather than a quantitative prediction about the realworld. However,
this result clearly suggests that quantifying sea level changes solely as a function of the mean of the
distribution can be too simplistic. Future work should focus on different models, ensemble runs, and
scenarios in order to quantify possible uncertainties coming from different model structures and internal
variability.

Results of this study could guide new analyses focused on regions experiencing changes in higher
order moments. An example would be to make use of higher resolution regional models to further study
dynamical processes in those locations. Additionally, future studies could focus on changes in high
(i.e., 0.95) and small (i.e., 0.05) quantiles only in such locations across different models and scenarios.
Finally, future work will explore changes in the probability distribution of relevant climate variables other
than sea level, from temperature to precipitation, therefore contributing to a better understanding of
climate variability and its linkages with natural and anthropogenic forcing.
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Appendix A. Preprocessing tide gauge data
Quality-controlled sea level research-grade tide gauge data were downloaded from the University of Hawaii sea level center
(Caldwell et al., 2018) (https://uhslc.soest.hawaii.edu/).

Few locations are associated with multiple distinct tide gauges (indicated by different record IDs). This results in two main
issues: (a) different tide gauge records are often measured with respect to different reference levels and (b) some tide gauges have
temporally overlapping records. Ideally, such different records should be concatenated into a single time series in a way that remains
faithful to the trends observed at each individual station. We address these two issues by implementing the following pipeline for
preprocessing the data:

• Linear trends from each record are computed.
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• A residual time series is obtained by detrending each record and concatenating the time series. If any part of two or more
records overlap temporally, those portions of the residual time series are averaged.

• Slopes for the data are defined at each time by computing the average trend over each record ID. Gaps in the slopes are linearly
interpolated. A composite trendline is created by cumulatively integrating the slopes over time.

• The residual time series is added to the composite trendline to obtain a composite time series.

Figure A1 illustrates the process for a single tide gauge record at Tarawa, Kiribati.

Figure A1. Illustration of preprocessing of tide gauge for observations at Tarawa, Kiribati. (a) Original
time series, with different records demarcated by different colors. Note the different reference points and
overlapping timespans. (b) Residual (detrended) time series obtained by detrending records and
concatenating values, averaging observations over different records if necessary. (c) Computed trendline
obtained by integrating record-averaged slopes over time. (d) Composite processed time series obtained
by adding (b) and (c).
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Appendix B. Tide gauges with long records
In Table B1, we show the start and end dates for each one of the long records tide gauges considered. Each one of these records
includes more than 80 years of data and has less than 20% missing data.

Table B1. Location, starting and ending date of tide gauges with (a) records longer than 80 years and (b) less than 20% missing data.

Tide gauge Start date End date

Key West (FL) 1913-01-20 2018-12-31

Portland (ME) 1910-03-05 2018-12-31

Newport (RI) 1930-09-11 2018-12-31

Atlantic City (NJ) 1911-08-20 2018-12-31

Cristobal (Panama) 1907-04-04 2017-12-31

Newlyn (Cornwall) 1915-04-23 2016-12-31

Balboa (Panama City) 1907-06-20 2018-12-31

Victoria (BC) 1909-02-19 2018-12-31

San Francisco (CA) 1897-08-02 2018-12-31

La Jolla (CA) 1924-10-03 2018-12-31

Crescent City (CA) 1933-04-12 2018-12-31

Neah Bay (WA) 1934-08-02 2018-12-31

Los Angeles (CA) 1923-11-29 2018-12-31

San Diego (CA) 1906-01-22 2018-12-31

Astoria (OR) 1925-01-26 2018-12-31

Eastport (ME) 1929-09-13 2018-12-31

Boston (MA) 1921-05-04 2018-12-31

New York (NY) 1920-06-02 2018-12-31

Wilmington (NC) 1935-12-29 2018-12-31

Fort Pulaski (GA) 1935-07-02 2018-12-31

Pensacola (FL) 1923-05-02 2018-12-31

Galveston Pier 21 (TX) 1904-01-02 2018-12-31

Tregde (Norway) 1927-10-05 2018-12-31

Brest (France) 1846-01-04 2018-12-31

Cuxhaven (Germany) 1917-12-30 2018-12-31

Stockholm (Sweden) 1889-01-01 2014-12-31

Gedser (Denmark) 1891-09-02 2012-12-31

Hornbaek (Denmark) 1891-01-02 2012-12-31
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Appendix C. Exact and sample moments of a distribution
Consider a probability density function P xð Þ, with x ∈ℝ. P xð Þ satisfies R∞

�∞P xð Þdx = 1. The first moment, that is, the mean, is
defined as:

μ=
Z ∞

�∞
xP xð Þdx: (C.1)

The central moment μn of order n is defined as the n-th moment about the mean as:

μn =
Z ∞

�∞
x�μð ÞnP xð Þdx: (C.2)

The variance σ2 of the distribution is defined as the central moment of order n= 2, that is, μ2:

σ2 = μ2 =
Z ∞

�∞
x�μð Þ2P xð Þdx: (C.3)

The skewness γ and excess kurtosis κ of the distribution are defined as the 3rd and 4th standardized central moments:

γ =
μ3
μ3=22

; (C.4)

κ =
μ4
μ22

�3: (C.5)

Skewness and kurtosis are invariant under translation and rescaling and therefore capture exclusively the shape of the
distribution. The focus on excess kurtosis is only a matter of practical convenience as the kurtosis of a normal distribution is equal
to 3. In this paper, we are interested in the temporal evolution of the mean (μ), variance (σ2), skewness (γ), and excess kurtosis (κ).

Note that when focusing on data we can only compute the sample mean, variance, skewness, and kurtosis which serve only as
estimators of the exact quantities as defined above. Given a set of N observations x1,x2,…,xN , we define the sample mean as:

bμ= 1
N

XN
i = 1

xi: (C.6)

The sample central moment of order n is then defined as

bμn = 1
N�1

XN
i = 1

xi�bμð Þn: (C.7)

Therefore, the sample variance (bσ2), skewness (bγ), and excess kurtosis (bκ) are defined as:

bσ2 = 1
N�1

Xn
i = 1

xi�bμð Þ2 (C.8)

bγ = bμ3bμ3=23

(C.9)

bκ = bμ4bμ24�3: (C.10)

In the main text, we often refer to “moments” without specifying if they are sample or exact moments. The fitting procedure
derived in Section 3.2.2 aims in finding changes in the exact statistical moments. The Cornish–Fisher tests shown inAppendices D.1
and D.2 make use of the exact and sample moments, respectively.

Importantly, for simplicity and to ease the derivation in Section 3.2.2, all throughout the paper we refer to the mean, variance,
skewness, and kurtosis as m1,m2,m3,m4ð Þ.

Appendix D. Cornish–Fisher expansion
The Cornish–Fisher expansion allows for asymptotic estimations of quantiles of a probability distribution in terms of its first four
moments (Cornish and Fisher, 1937. We refer the reader to Section 3.2.1 for more details on such formula. Estimations are valid for
distributions that do not show large deviations from normality (i.e., reltively small skewness and kurtosis) with Maillard (2012)
showing the domain of validity of such formula. Maillard (2012), Lamb et al. (2018), and Amédée-Manesme et al. (2019) showed
how to correct the skewness and kurtosis parameters in the case of larger deviation from normality. These corrections are not
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necessary in our studywhere the polynomials in Section 3.2.2 are defined in the limit ofm3 andm4 approaching zero. In this case,m3

and m4 are exactly the skewness and kurtosis of the distribution.

Additionally, here we present two tests using the original expression shown in Section 3.2.1. In the first test, we show how the
Cornish–Fisher expansion allows for a trustworthy approximation of the quantile function of a Beta distribution. In a second step, we
extend the analysis for sea level stationary time series and show remarkable agreement with the estimated quantiles as computed
using the NumPy quantile function (Harris et al., 2020). Future work may focus on quantile estimations using the corrected versions
such as in Maillard (2012), Lamb et al. (2018), Amédée-Manesme et al. (2019) to account for large deviations from normality (even
if this may not often be necessary for climate observables). Importantly, we note that for large values of skewness and kurtosis we
expect large errors for very small and very large quantiles (e.g., qp with p= 0:0001 or p= 1�0:0001) but relatively smaller errors for
less extreme values, such as the one considered in this paper (e.g. qp with p∈ 0:05,0:95½ �).

D.1. Test on Beta distribution
We consider a Beta distribution (see Section 3.4) with parameters α= 2 and β = 12 and show it in Figure Ba. In this case, the exact
(not sample) mean (m1), variance (m2), skewness (m3), and excess kurtosis (m4) take the values
m1,m2,m3,m4ð Þ = 0:143,0:008,0:988,1:026ð Þ.The probability distribution is defined for x ∈ 0,1½ �.

Given this Beta distribution, we aim in computing quantiles qp with p∈ 0:01,0:99½ � every dp= 0:01 in three different ways.

• We compute the exact quantiles of the Beta distribution with α= 2 and β = 12, see blue curve in Figure D1b.
• We estimate quantiles under the (wrong) assumption of Gaussianity (green curve in Figure D1b). In this case, every quantile

can be estimated by the mean and variance of the distribution.
• We correct the previous assumption of normality through the Cornish–Fisher expansion. This allows for asymptotic

estimations of the quantiles of the distributions as function of the first four moments. Differences from the ground truth
estimation are very small (orange curve in Figure D1b).

D.2. A sea level test
The Cornish–Fisher expansion allows for the computation of any quantile of general distributions as deviations from the
corresponding quantile of a normal distribution (Cornish and Fisher, 1937; Fisher and Cornish, 1960). As far as we know, this
approximation has not been used in climate studies. Here, we explore its relevance for sea level studies.

We consider the last 300 years of a 650 years long piControl experiment simulated with the GFDL-CM4 model. The model’s
specifics are described in Section 2. The piControl experiment is forced by constant CO2 forcing, set at preindustrial level. Hence,
time series at each grid point are close to stationary, with climatemodel drift relatively small for the 300 years analyzed here. In order
to limit the amount of computations in this section, we remapped the ocean model grid to a uniform 1° grid and only points in the
latitudinal range �60 ° ,60 °½ � are considered. Furthermore, we consider 3-day averages, therefore accounting for 36,500 time steps
at each grid point. The variable of interest is the dynamic sea level (i.e., “zos”, see Section 1), hereafter referred to as ηdyn for
consistency with the main discussion in Section 4.

Figure D1. A test for the Cornish–Fisher expansion in the case of a Beta distribution. (a) Probability
density function of a beta distribution with α= 2 and β = 12. Formulas defining a Beta distributions are
shown in Section 3.4. The mean (m1), variance (m2), skewness (m3), and excess kurtosis (m4) are also
reported. (b) Estimation of quantiles qp with p∈ 0:01,0:99½ � every dp= 0:01. In blue, we show the ground
truth which can be computed analytically for the Beta distribution. In green, we show the estimation
obtained under aGaussian assumption; in this case, themeanm1 and variancem2 are enough to compute
any quantile. In orange, we show the Cornish–Fisher estimation allowing to correct for nonnormality by
computing quantiles as a function of the first four moments.
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For a sea level time series ηdyn x,y, tð Þ at longitude and latitude x,yð Þ, we compute the 0.95 quantile, q0:95. We do so in three
different ways.

• We compute q0:95 using the quantile function in the Python, NumPy package (Harris et al., 2020). We refer to this value as
“Ground Truth” or “GT” under the assumption that 300 years long (stationary) time series are enough to have a good estimate
of the true, underlying distribution.

• We assume that each time series follows a Gaussian distribution. In this case, the 0.95 quantile of each ηdyn x,y, tð Þ can be
computed exactly by knowing its mean m1 and variance m2.

• We adopt the Cornish–Fisher expansion to extend the previous computation to nonnormal statistics. Therefore, we “correct”
the Gaussian estimation by accounting for the third and fourth statistical moments m3 and m4.

Results are shown in Figure D2. In the case of quantiles estimated through Cornish–Fisher, we always obtain closer values to the
“Ground Truth” in respect to the Gaussian estimation. This result is clearly shown in the histograms of differences between the
“Ground Truth” and the Gaussian and Cornish–Fisher estimations, respectively, in orange and blue (Figure D2d).

Figure D2. A test for the Cornish–Fisher expansion in the case of dynamic sea level. (a) We estimate the
quantile 0.95 (q0:95) for each sea level time series η

dyn x,y, tð Þ with the Python, NumPy quantile function.
We refer to this estimation as the “Ground Truth” or “GT”. (b) We estimate q0:95 under the assumption of
Gaussian statistics. In this case, the meanm1 and variance m2 of each time series ηdyn x,y, tð Þ are enough
to compute any quantile. (c) We correct the estimation of q0:95 in panel (b) through the Cornish–Fisher
expansion. (d) We consider the histogram of differences between the “Ground Truth” (panel (a)) and the
Gaussian and Cornish–Fisher estimations shown in panel (b,c). Note how the differences are greatly
reduced using the CF expansion relative to the Gaussian expansion.
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Appendix E. Tide gauges: p-values and FDR
In this work, p-values are computed from the block-bootstrapped distribution (see Section 3.3). Here, we analyze the robustness of
block size when computing p-values and present results in Figure E1. Results are robust in the case of blocks of one season (90 days),
6 months, and 1 year while diverging for smaller sizes such as 30 days. The results shown in the main paper using 1 season are then
robust and this choice is adopted throughout the paper.

Figure E1. p-values for tide gauges data in the 1970–2017 period. (a–d) Sorted p-values for changes in
distributional mean, variance, skewness, and kurtosis, respectively. p-values have been computed from
the block-bootstrapped distribution. These plots investigate the robustness of the p-value computation
under blocks of 30, 90, 180, and 365 days are reported. Convergence is achieved starting from 90 days
(block chosen in the analysis). The false discovery rate ϕ= 0:05 is also reported.
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Appendix F. Tide gauge data at Balboa, Panama
The only two long-record tide gauges with changes in higher order moments were both found in Panama. In Figure F1, we show one
of the two tide gauges for which we identified a statistical significant change in variance.

The full time series is shown in Figure F1a and the quantile slopes together with the projection onto polynomials is shown in
Figure F1b. The first and last 40 years of the time series are plotted in Figure F1c,d. Figure F1d clearly shows larger variance in
respect to the first 40 years. At least in part, these changes can be explained by large sea level oscillations forced by the El Niño
Southern Oscillation (ENSO). Large, positive sea level anomalies can be clearly identified across the years 1982/1983 and
1997/1998 where two large El Niño were recorded (Wang et al., 2019). Very large, persistent negative sea level anomalies can
be seen across the years 1988/1989 in correspondence of a strong La Niña event.

In Figure F2, we provide a justification for the choice of sample size B to infer the bootstrapped distribution. The bootstrapped
distribution is then used to estimate the statistical significance in changes in mean, variance, skewness, and kurtosis (see Section 3).
Here, we show that even with sample sizes as small as B = 100we obtain the same results in terms of statistical significance as with
B= 5000 when looking at 95% confidence level. Generally, larger sample sizes are always preferred and in this paper we adopt
B= 1000. Nonetheless, when focusing on many time series it could be useful considering smaller B for faster computation.

Figure F1.Analysis of the Balboa, Panama tide gauge from 1907-06-20 to 2018-12-31. (a) Recorded sea
level at Balboa, Panama. (b) Linear quantile slopes for the time series shown in panel (a). The slopes
β1 qp
� �

are computed for p∈ 0:05,0:95½ � every dp= 0:05 and indicated as blue dots. The black dashed line
indicates the projection onto polynomials as defined in Eq. (7). Green“check”marks indicate statistically
significant (95% confidence level) changes in moments; red “crosses” indicate nonsignificant changes.
(c,d) Time series in the first and last 40 years of recorded sea level.
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Figure F2. Analysis of the Balboa, Panama tide gauge from 1907-06-20 to 2018-12-31. Here, we show
the bootstrapped distribution to infer statistical significance in changes in the mean, variance, skewness,
and kurtosis (number of bins is set to 50). The dashed black lines indicate the slopes in moments. We focus
on the dependence of our analysis to the sample sizeB used for to infer the null distribution. HereB ranges
from B= 100 (first row) toB= 5000 (fourth row). In all examples, the mean and variance show significant
changes at the 95% level while changes in skewness and kurtosis are found to be not significant. This
means that bootstrapping with sample sizes as low as B = 100 can still give meaningful results. In all our
analysis in this paper, we used B= 1000.
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Appendix G. Time series in the GFDL-CM4 Mediterranean sea
The 1pctCO2 simulation shows many changes in higher order moments. Numerous changes in the third and fourth moments are
found in theMediterranean sea. Here, we extract the time series in the (GFDL-CM4)Mediterranean with largest changes in kurtosis
(fourth moment). We then plot the probability distributions in the first and last 40 years of the simulation showing the large changes
in shapes of distributions. This result is shown in Figure G1.

Cite this article: Falasca F. Brettin A. Zanna L. Griffies SM. Yin J. and Zhao M. (2023). Exploring the nonstationarity of coastal
sea level probability distributions. Environmental Data Science, 2: e16. doi:10.1017/eds.2023.10

Figure G1. (a) Time series showing the largest changes in kurtosis in the Mediterranean sea for the
GFDL-CM4 model 1pctCO2 run. (b) Linear quantile slopes for the time series shown in panel (a). The
slopes β1 qp

� �
are computed for p∈ 0:05,0:95½ � every dp= 0:05 and indicated as blue dots. The black

dashed line indicates the projection onto polynomials as defined in Eq. (7). Green “check”marks indicate
statistically significant (95% confidence level) changes in moments; red “crosses” indicate
nonsignificant changes. (c,d) Histograms for the first and last 40 years of data of the time series shown in
panel (a).
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