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ON CROSSED PRODUCTS AND TAKAI DUALITY

by IAIN RAEBURN*

(Received 12th December 1986)

The Takai duality theorem has proved to be a fundamental tool in the theory of
crossed products of C*-algebras. It was inspired by Takesaki's duality theorem for
crossed products of von Neumann algebras [7], so it is not surprising that the original
proof [6] depended heavily on spatial techniques. Here we shall prove Takai's theorem
by exploiting the universal properties of crossed products.

Let <x:G-+Aut;4 be an action of a locally compact group G on a C*-algebra A. We
shall think of the crossed product as a C*-algebra AxaG whose representations are in
one-to-one correspondence with the covariant representations of {A, G, a)—that is, pairs
of representations n of A, U of G satisfying

7t(as(a)) = l/s7t(a) U* for a e A, s e G.

Of course, this has always been a standard way of viewing crossed products (see [2] and
[1]), but as far as we know, no-one has bothered to give a precise characterisation in
terms of this universal property. We therefore begin by giving a detailed definition of
crossed product. It is easy to see that there is at most one C*-algebra with the required
property, and the usual construction of AxaG as the C*-enveloping algebra of a
Banach *-algebra L\G,A) (as in [4, §7.6], for example) shows that one exists. However,
it is also easy to construct one directly, and we do this in Proposition 3.

When the group G is abelian, there is a canonical action a of the dual group G on
AxaG (see Proposition 5), and Takai's duality theorem asserts that (AxxG)xsG is
isomorphic to the tensor product A ® ft of A with the algebra S\ of compact operators
on L\G). The representations of A x G x 6 are given by triples of representations n of
A, U of G, V of 6 on the same space; the main step in our proof is the construction of a
representation of A®S< from such a triple, from which it will follow that A®S< has the
universal property which characterises AxGxG.

We feel that this proof is conceptually clearer than the usual one, and makes it easier
to see what happens to additional structure under the duality isomorphism (see the
remarks at the end of §2). It is also technically quite elementary: we use only standard
properties of multiplier algebras, as given in [4, §3.12], some basic facts about
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integrating continuous functions of compact support with values in a C*-algebra, and
the fact that C0(G)xG = Si(L2(G)). The necessary integration theory is similar to that
required in Pedersen's treatment [4], and we shall follow his example in relegating the
details to an appendix. We discuss the isomorphism C0(G)xGsR in Example 4;
however, we point out that it has also been a crucial ingredient in the previous versions.

We were led to this proof of Takai duality by attempts to make non-abelian duality
work for (unreduced) crossed products by non-amenable groups, where there are severe
problems with the usual spatial techniques. We are optimistic that one can prove, for
example, a version of Quigg's duality theorem [5] along lines similar to these. However,
this will involve considerable technical complications, and we hope that presenting the
abelian case separately will illustrate the simplicity of the construction.

Notation. All homomorphisms and representations of a C*-algebra A will be *-
preserving. When we take tensor products of C*-algebras, at least one will be nuclear,
and we write A ® B for the unique C*-completion. If n, v are commuting representations
of A,B on the same space H, we write n®v for the corresponding representation of
A®BonH. The identity map will be denoted by i, and the identity of an algebra by 1.
We denote by fi a left Haar measure for a locally compact group G, by A, p the left and
right regular representations of G on L2(G), by M the representation of C0{G) as
multiplication operators on L2{G), and by T, a the actions of G on CQ(G) by left and
right translation.

Let M(B) denote the multiplier algebra of a C*-algebra B. We shall call a
homomorphism <p:A-*M(B) non-degenerate if there is an approximate identity {c,} for A
such that <£(£,)-• 1 strictly in M(B); this implies that </> has a (unique) strictly continuous
extension <pM(A)^>M(B) (see, for example, [3, Lemma 1.1]). When B = ft(H), so M(B) =
B(H), such homomorphisms are also non-degenerate representations in the usual sense.

1. Crossed products

Let a:G->AuM be a strongly continuous action of a locally compact group G on a
C*-algebra A; we shall say (A, G, a) is a dynamical system. A covariant representation of
(A, G, a) is a pair (n, U) consisting of a nondegenerate representation n of A on H, and a
(strongly continuous) unitary representation U of G on H, such that

n(as(a)) = Usn(<*) V? foTa<=A,se G.

Definition 1. A crossed product for a dynamical system (A,G,<x) is a C*-algebra B
together with a homomorphism iA:A->M(B) and a strictly continuous homomorphism
iG:G-*UM(B) satisfying

(a) Uas(a)) = iG(s)iA(a)iG(s)* for a 6 A, s e G;
(b) for every covariant representation (n, U) of (A, G, a), there is a non-degenerate

representation n x U of B with n = (TI X U) ° iA and U=(n x U) ° iG;
(c) the span of {iA(a)iG(z):aeA, zeQ(G)} is dense in B, where iG has been extended

to CC{G) as in Corollary 8.
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Remarks. (1) We shall shortly prove that there is a crossed product and that it is
unique up to isomorphism. We shall therefore refer to the crossed product, and denote
it by A x aG, as usual.

(2) Every non-degenerate representation p of AxaG has the form nxU for some
covariant representation (n,U) of (A,G,<x). To see this, we take n = p°iA,U-p°ic, so
that (n, U) is covariant by (a). Lemma 7(3) implies that the equality (TT X U) ° iG — U
extends to CC{G); thus

n x U(iA{a)iG(z)) = n(a)U(z) = p(iA(a)iG(z)) for a e A, z e CC{G),

and it follows from (c) that p = nxU.
(3) The homomorphisms iA and iG are necessarily injective. To see this, let n be a

faithful representation of A, and define a representation n1 of A on L2(G,HJ by
(7t,(a)^)(s) = 7t(as"

1(a))(<J(s)). The pair consisting of 7it and the action 1®A of G by left
translation is covariant, so (b) implies that they factor through iA and iG. But both n^
and 1 ® A are faithful, so iA and iG must be too.

Proposition 2. (1) There is a *-homomorphism iAxiG of CC(G,A), with the *-algebra
structure as in [4, §3.6], onto a dense subalgebra of AxaG, such that iAxiG(a®z) =

||00 for weCc(G,A).

(2) Let <(> be a non-degenerate homomorphism of A into the multiplier algebra M(C) of
a C*-algebra C, and u a strictly continuous homomorphism of G into UM(C) such that
<p(as(a)) = us<x(a)uf. Then there is a non-degenerate homomorphism cf>xu of AxaG into
M{C) such that (<j)xu)° iA = cp and (<j> x u) ° iG = u on both G and CC(G).

Proof. (1) Given weCc(G,A), we apply Lemma 7 to the strictly continuous map
S - M ' ^ M S ) ) ! ^ ) to obtain an element

L x 'o(w) = J J^(w(s))iG(s) ds e M(Q,

whose norm is bounded by /i(suppwJHwH^. It is easy to check that iAxiG(a®z) is as
asserted, and approximating w uniformly by a finite sum Y,ai®zi shows that in fact
'it x 'e(w) belongs to A x G. It follows as in the proof of Corollary 8 that iA x iG is a *-
homomorphism.

(2) We represent C faithfully on a Hilbert space H, so that (<f>, u) becomes a covariant
representation, and apply property (b) to obtain a map of A into B(H) satisfying
(<p xu)°iA = 4> and (<f>xu)°iG — u. An application of Lemma 7(3) shows that the second
equation extends to CC(G); thus <j>xu carries the generator iA(a)iG{z) into <t>(a)u(z), and
hence maps A into M(C)<zB(H) (this also shows that <j> x u is independent of the
representation chosen). If {zj} c CC(G) is an approximate identity for the inductive limit
topology, then it is easy to verify that u(Zj)-»l strictly in M(C), and the nondegeneracy
of (p x u follows from that of 4>.
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Proposition3. (1) If (B,iA,iG) and (C,jA,jG) are both crossed products for (A, G,a),
there is an isomorphism 4> of B onto C such that ^>°iA = j A and (j>°iG = j G .

(2) There is a crossed product for any dynamical system.

Proof. (1) It follows from (c) and its adjoint that j A is non-degenerate, so by
Proposition 2(2) there is a non-degenerate homomorphism (f> = jAx jG of B into M(C)
such that <l>(iA(a)iG(z)) = Jxi^Jd2)- Condition (c) thus implies that <$> maps B onto C.
Reversing the roles of B and C gives a homomorphism which also swaps generators,
and hence is an inverse for <p.

(2) Choose a set S of covariant representations of (A, G, a) such that every cyclic
covariant representation is equivalent to a member of S. (To see that there is such a set,
fix a Hilbert space of large cardinality, and restrict attention to representations in this
space.) We then let H = ® {Hn: (n, U) eS}, define iA = ©n: A->B(H), iG = ®U, and take B
to be the closed span of {iA(a)iG(z):aeA,zeCc(G)}. To prove that B is a C*-algebra, we
first note that if / e CC(G, A), then Lemma 7 gives us an operator

iA x iG(f) = J Uf(s))iG(s) dse B(H) = M(ft(tf));

by approximating / uniformly by £ a{ ® zf e A ® CC(G) and using Lemma 7(1) we can
see that iA x iG(f) e B. Now (iA, iG) is covariant, so it follows that

(iG{z)iA(a)) = (Sz(s)iG(s) ds)iA(a) = Sz(s)iG(s)iA(a)ds=$z(s)iA(«Aa))iG(s) ds

belongs to B. Since iG(z)* = iG(z*), this implies that B is closed under taking adjoints.
Further, since we can approximate iG{z)iA(b) by a finite sum £ iA(bi)iG{zi), we can
approximate iA(a)iG(z)iA(b)iG(w) by a sum

and B is also closed under multiplication, hence a C*-algebra. The same argument
shows that iA takes values in M(B). We also have

iG(s)iA(a)iG(z)=J iA(<xAa))z(t)iG(st) dt,

and a similar formula for Jx(a)'G(z)'G(s)5 s o 'G(S) a l s o belongs to M(B). Property (a)
follows from the covariance of (iA, iG) and (c) is trivially true. For (n, U) e S, we can
define n x U by projecting onto the subspace Hn of H, and we can handle an arbitrary
covariant representation by decomposing it as a direct sum of cyclic representations and
conjugating appropriate members of S. Thus (b) also holds, and £ is a crossed product
for 04, G, a).

Example 4. We shall later need to know that (5l(L2(G)), M, X) is a crossed product
for (C0(G), G, T), and we now briefly indicate hov/ this can be proved. The covariance of
(M, A) gives (a). The integrated form M x k (see Proposition 2 above) carries
CQ(G, CC(G)) into the space of operators given by kernels in CC{G x G); these are dense
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in ft(L2(G)), and (c) follows by a standard approximation argument. The imprimitivity
theorem implies that every covariant representation of (C0{G), G, x) is induced from the
trivial subgroup {e}. The representations of {e} are just the multiples of the trivial one,
which induces to (M, X), so every covariant representation of (C0(G), G) is equivalent to
a multiple of (M, A). This gives (b).

Proposition 5. Let (A, G, a) be a dynamical system, with G abelian. Then there is an
action & (the dual action) ofG on Ax.XG such that

« , 0 » » G ( Z ) ) = iMidt*) for y e G, a e A, z e CC(G).

Proof. Define jy:G-*UM(B) by jy(s)=y(s)iG(s). We claim that the triple (B,iA,jy) is
also a crossed product for (A,G,tx). In fact (c) holds because jy(z) = iG(yz), and both (a)
and (b) follow from the observation that (n, U) is a covariant representation iff {n,yU) is.
Thus by part (1) of Proposition 3, there is an isomorphism &y:B-*B such that

The second formula for a.y implies that y-*&y is a homomorphism, and from Proposition
2 we have

- a ® z)\\

Zrisuppz)\\a\\\\yz-z\\

->0 as y-»l,

so v-^a, is continuous.

2. The Takai duality theorem

Theorem 6. Let (A, G, a) be a dynamical system with G abelian. There is an isomorphism
<f> of (A x aG) x $G onto A ® R(L2(G)) such that the second dual action &ofG=(6)~is carried
into a ® (Ad p).

Proof. Let a, a"1 denote the maps of A into Cb(G, A)cM(C0(G, A)) given by

a(a)(s)=aJLa), a-
1(a)(s) = a-1(a),

and define embeddings of A, G and G in M(A <g) ft) by

OL-\ )G=\®X, ;G =

where we are viewing 6 as a subset of Cb(G). If {ej is an approximate identity for A,
then routine arguments show that a{e^-*\ strictly in M(A®C0(G)), and hence jA(ei)-*^
strictly in M(/l<g)ft). Further, we have
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JA(«JLa)) = i ® M(« - '(<*»)) = i ® M(i ® Tj(a " '(a)))

= [i® ((AHJ o Af)](a" '(a)) =je(s)jA(a)j^s)*.

Thus by Proposition 2(2), there is a non-degenerate homomorphism jAxjG of /4xaG
into M(/l®ft), such that (jAx jG)°iA = j A and (jAx jG)oiG = jG

 o n both G and CC(G).
We shall prove that (A®Si,jAxjG,jG) is a crossed product for (A xaG, G,a), and the
result will then follow easily.

The commutativity of Cb(G) implies that jA(a) commutes with jdy), and it is easy to
check that M{y)l(z) = X(yz)M(y), so

JG(y)JA(a)Ja(z)JG(y)* = JA(a)jG(yz) = &y(jA(a)jG(z)),

which implies condition (a) of Definition 1. Next we note that, if weCc(G) and F " 1

denotes the inverse of the usual Fourier transform, then jG(w) = l(g)M(F~lw). The range
of F~l is a dense subalgebra of C0(G), so we can use standard approximation
arguments to see that the span of {<x~l(a)(l<g)(F~1w))} is dense in A®C0{G). This and
the density of (M(/)A(z)} in ft(L2(G)) (see Example 4 above) imply that the set

U » ; G ( Z ) ; < ; ( W ) : a e A, z e CC(G), w e CC(G)}

spans a dense subspace of /I®ft. Since jAx jG(iA{a)iG(z)) = jA(a)jG(z), this shows that
condition (c) also holds, and it remains to verify (b).

Let (n x U, V) be a covariant representation of (A x G, G, a). We shall construct the
corresponding representation of /4®ft by tensoring commuting representations of A
and ft. Composing the integrated form of V with the Fourier transform F gives a
representation L of C0(G), whose extension to Cb(G) = M(CQ(G)) satisfies L(y)=Vr The
equation relating U and V implies that (L, U) is a covariant representation of (C0(G), G, T),
and hence there is a representation LxU of ft(L2(G)) such that (LxU)oM = L and
(L x U) o X = [/ (see Example 4). Since each Vy commutes with the range of n, so does
each L(/), and they combine to give a representation n®L of A®C0(G). Let p denote
the representation (n ® L) ° a of X on //. It is immediate that p commutes with L, and we
claim it commutes with U too.

Suppose {4>n} <=/l O C0(G) converges to a(a) uniformly on compacta, so that 7t® L(a(a))
is the *-strong limit of 7r®L((/>„). Then for fixed seG we also have

O = OCs(<f>n(S~ »t))"»«^«(fl)(s" '0) = «r(0) = <*»)(*)

uniformly on compacta in G. Thus, given ^e / / , we can choose 0 = ^ a ,
such that

7i®L(4>)£~7r®L(a(a)K and n

Then

https://doi.org/10.1017/S0013091500003436 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500003436


ON CROSSED PRODUCTS AND TAKAI DUALITY 327

This approximation can be made arbitrarily accurate, so we have proved that Usp(a) =
p(a)Us.

Since both L and U commute with p, so does LxU, and we obtain a representation
v = p ® (L x U) of A <g> ft on ff. At once we have

v° Jfi(y) = (p®(Lx t/))(l®Af(y))=(Lx l/)(M(>>)) = L(y) = KT,

v ° jG(s) = (p ® (L x [/))(1 ® As) = (L x L/)(AS) = I/,.

Next we observe that a extends to an automorphism /? of /l(g)C0(G) satisfying fi(a® / ) =
<x(a)(l®/): when realised on CO(G,/1), )? is given by /S(z)(s) = as(z(s)). A quick calculation
shows

[((TI (g) L) o a) ® (L x [/)] o («® M) = (n ® L) o )S,

so that

v ° L(a) = [((7t (8) L) o a) ® (L x [/)] o (j ® M) o« - ^a)

Thus vo(_/i4xjc)oii4 = vo_/i4 = re, vo(; i 4x;G)oic=[/, and v»(j^ x jc) = n x [/. This
completes the proof of (b).

Let ij denote the embedding of A x G in M((A x G) x G). Then Proposition 3(1) gives
us an isomorphism \//:A®Si-*AxGxG such that

*KJA(a)J&)JeM) = WA x- JcVAaM'tod*)) = 'i('»'c(z))'(;(w). (1)

Now as carries the generator on the right of (1) to ii(iA(o)i<Az))^G(sw)> s o t 0 verify that
we need only check that

) . (2)

A quick calculation gives AdpJ(M(/)) = Af(<rJ(/)), from which we obtain
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We also have

as <g> (Ad p&JM) = i ® M (a, <g> 0& ~ »(a))) = i ® Af (a " '(a)) = JM,

and ps commutes with A(z), which gives (2). This completes the proof of the theorem.

Remark. In the original proof of this theorem, the isomorphism \ji is constructed in
three stages, and it can be quite painful to extract additional information about \j/. This
should usually be easier to do using our version. For example, (1) describes what \j/ does
to a set of generators for A® Si, and our construction shows that, for any representation
(n x U) x V of A x G x G, we have

((TI x V) x V) o if/ -1 = ((TI <g> L) o a) ® (L x U),

where L is the representation of C0(G) corresponding to the representation V of G. For
another example, suppose an abelian C*-algebra C acts on A (so that we have a map of
C into the centre of M(A)), and that each automorphism as commutes with this action.
Then there are natural actions of C on AxxG, (A xaG) xfG and A<g>Si, and it follows
from (1) that ^ is a C-module isomorphism.

Appendix on integration

Lemma 7. Let feC(^G,A). Then there is a unique element $f(s)ds of A such that for
any nondegenerate representation n of A

(«(J fts) ds)Z, r,) = J (K(f(s)K, n) ds for {, r, e Hn. (•)

Further, we have

(1)
(2) (J f(s) ds)a=J f(s)a ds for as A or M(A);
(3) (j>($ f{s)ds) = \<f>(f(s))ds for any homomorphism <f>:A-*B,
(4) (Sf(s)ds)*=lf(s)*ds.

Similarly, if f. G-*M(A) is strictly continuous and has compact support, there is an element
J/(s)ds of M(A) satisfying (*), (1), (2), (4). If (f> is non-degenerate, so that <j> extends to
M(A), (3) also holds.

Proof. If n is a faithful representation of A, the right-hand side of (*) is a bounded
sesquilinear form on HK, and hence defines a bounded operator T(f) on HK satisfying

. (5)

To see that T(f) belongs to n(A), we approximate / uniformly on supp/ by a finite.
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sum £a,(g)zie/l<g>Cc(G), so that by (5), T(f) is near T(^a,-®z,). It is easy to check
that

so T(f)en(A). We define J/(s)«fa = jT H^X/))- Notice that J/(s)ds is near

so for any representation p of 4, p(f./(s)ds) is close to Y,Piai)$zi(s)ds, and it follows
that (*) holds. Since n is isometric, (5) implies (1); (2), (3) and (4) follow from (*).

If f:G->M(A), the same argument gives an operator T(/) on Hn, and we can see that
it belongs to M(A) by making uniform approximations to the functions s-*f(s)a,s-*af(s).
Then (1), (2) and (4) are easy to check. By definition of <f> on M(A) (see [3, Lemma 1.1]),
we have

(s)ads)b by (2)

= (\<p(f(s)a)ds)b by (3)

= i<f>(f(s)a)bds

= $<Hf(s))(<Ka)b)ds

which gives (3).

Corollary 8. Suppose u is a strictly continuous homomorphism of G into UM(A). Then
u(z) = \z{s)u,ds defines a *-homomorphism of CC(G) into M(A), which is continuous for the
inductive limit topology on CC(G).

Proof. We apply the lemma to the strictly continuous map s-*z(s)u,. To see that u is
a homomorphism on CC(G), we represent A on a Hilbert space. Then by (*) and
Fubini's theorem

(u(z x wtf, i,) = J {J z(tMrls) dt}(u£, n) ds

= jz(t){jw(s)(utu3Z,r,)ds}dt

= lz(t)(u(w)Z,u*r,)dt

A similar argument shows that u(z*) = u(z)*, and the continuity follows from (1).
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