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A scaling theory for the passive scalar transport in Couette flow, i.e. the flow between two
parallel plates moving with different velocities, is proposed. This flow is determined by
the bulk Reynolds number Reb and the Prandtl number Pr. In the turbulent regime, for
moderate shear Reynolds number Reτ and moderate Pr, we derive that the passive scalar
transport characterised by the Nusselt number Nu scales as Nu ∼ Pr1/2Re2

τ Re−1
b . We then

use the well-established scaling for the friction coefficient Cf ∼ Re−1/4
b (corresponding

to a shear Reynolds number Reτ ∼ Re7/8
b ) which holds reasonably well within the range

3 × 103 � Reb � 105, to obtain Nu ∼ Pr1/2Re3/4
b for the Nusselt number scaling. The

theoretical results are tested against direct numerical simulations of Couette flows for
the parameter ranges 81 � Reb � 22361 and 0.1 � Pr � 10, finding good agreement.
Analyses of the numerically obtained turbulent flow fields confirm logarithmic mean
wall-parallel profiles of the velocity and the passive scalar in the inertial sublayer.

Key words: turbulent convection, Bénard convection, turbulence simulation

1. Introduction

The transport of passive scalars in shear-driven turbulent flows (Warhaft 2000) is highly
relevant to various natural phenomena, for example, in oceanic mixed layers (Large,
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McWilliams & Doney 1994; Kantha & Clayson 2004) and weakly stable stratified
atmospheric boundary layers (Deusebio, Caulfield & Taylor 2015). Understanding
turbulent mixing in such phenomena is of major importance for environmental and
meteorological processes.

Early experimental work on turbulent passive transport of temperature by Subramanian
& Antonia (1981) and Nagano & Tagawa (1988) has shown the existence of characteristic
logarithmic profiles of temperature and streamwise velocity for flow in weakly heated
channels. These papers also studied the profiles of higher-order statistics. Moreover,
Nagano & Tagawa (1988) showed that the probability distribution function of the
temperature and streamwise velocity fluctuations in the log-layer are well approximated by
Gaussian probability distribution functions. The empirically found log-law of the passive
temperature by Kader (1981), based on various experimental data, has proven to be quite
successful. Kays & Crawford (1993) not only provide an extensive, in-depth overview of
heat and momentum transport in boundary layers, channel flows and pipe flows, but also
propose a conduction model for the turbulent Prandtl number with further improvements
proposed by Weigand, Ferguson & Crawford (1997) whereas Jischa & Rieke (1979a,b)
propose a model based on transport equations for the turbulent kinetic energy and for the
turbulent heat flux. Obviously, various efforts to describe the kinetic and thermal boundary
layers in shear flows and their (relative) thicknesses have been made from early on, dating
back to Prandtl (1910, 1925, 1932) and von Kármán (1921, 1934). Excellent summaries of
both the experimental data and the theoretical work are given in the famous textbook on
boundary layers by Schlichting & Gersten (2016).

More recently there have been various numerical studies of passive scalar transport in
wall-bounded flows. Direct numerical simulations (DNS) of channel flows have revealed
the existence of streaky structures in the log-layer (Kim & Moin 1989; Kawamura, Abe
& Matsuo 1999, 2004; Debusschere & Rutland 2004; Schwertfirm & Manhart 2007)
and large streamwise vortical structures in the bulk which dominate the heat transport
(Debusschere & Rutland 2004) and lead to the nonlinear effects (Kawamura et al. 2004).
Large eddy simulations using coarse grids and filtered flow fields for the passive scalar
have shown that the small scales hardly influence the macroscopic turbulence (Robert &
Tiselj 2006). It has been observed that the mean profiles of velocity and passive scalar
can be accurately predicted even if the flow is not fully resolved down to the Kolmogorov
and Batchelor scales (Bergant & Tiselj 2007). This suggests that the scalar flux is also
dominated by the large-scale circulation and not the smaller-scale fluctuations. Similar
observations made by Na & Hanratty (2000) show that the high wavenumber fluctuations
are damped close to the wall.

It has also been observed that the fluctuations of streamwise velocity and temperature
are highly correlated in the boundary layer (Kim & Moin 1989; Na & Hanratty 2000;
Tiselj et al. 2001; Liu 2003; Schwertfirm & Manhart 2007; Antonia, Abe & Kawamura
2009; Pirozzoli, Bernardini & Orlandi 2014, 2016). The energy budgets for turbulent
production, dissipation and Reynolds stresses have also been well studied (Kim & Moin
1989; Lyons, Hanratty & McLaughlin 1991; Papavassiliou & Hanratty 1997; Wikström
& Johansson 1998; Kawamura et al. 1999; Debusschere & Rutland 2004; Schwertfirm &
Manhart 2007). For channel flows, Pirozzoli et al. (2016) noted that in the log-layer the
production of turbulent kinetic energy is larger than the dissipation. In contrast, in the
bulk, the dissipation is larger than the production (Liu 2003), which leads to a transport
of turbulent kinetic energy out of the log-layer into the bulk. With the availability of more
computational resources, an exploration of channel flows at larger shear Reynolds numbers
has revealed that the local dominance of production over dissipation leads to large-scale
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eddies and an additional term in the log-layer of the scalar field which scales linearly
with outer wall distance (Pirozzoli et al. 2016). A comparison between the transport of
passive scalars in channel flow and in Couette flow reveals similarities in aspects of flow
organisation and flow structures in the bulk as well as in the log-layer (Kawamura, Abe &
Shingai 2000; Liu 2003; Debusschere & Rutland 2004). Indeed, the mechanism of scalar
transport in both flows is driven by large streamwise vortices (Debusschere & Rutland
2004) and the scalar profiles are very similar (Kawamura et al. 2000). However, in contrast
to the channel flow where the turbulent shear stress vanishes at the channel centre, the
production term of turbulent kinetic energy is non-zero at the channel centre for Couette
flow (Liu 2003) due to the non-zero turbulent shear stress at the mid-height. Therefore,
the scalar transport in Couette flows is up to 20 % greater than the scalar transport of the
channel flow (Debusschere & Rutland 2004). The value of the von Kármán constant for
the scalar profiles is also case dependent and, a priori, cannot be assumed to be universal.

In this paper, we will focus on obtaining the dependence between the transport of passive
scalar and momentum transport in Couette flow. The control parameters for the system are
the bulk Reynolds number

Reb ≡ UbH/ν, (1.1)

characterising the strength of the kinetic driving due to the bottom plate (at z = 0) moving
with speed (−Ub) and the top plate (at distance z = H) with speed Ub, and the Prandtl
number

Pr ≡ ν/κ, (1.2)

as the ratio between the kinematic viscosity ν and the scalar diffusivity κ (i.e. a material
property of the fluid)

The crucial global response parameters of that system are the Nusselt number (Nu),
which is the non-dimensionalised scalar flux from the bottom plate to the top plate,

Nu ≡ QH
κΔ

, (1.3)

with Q being the scalar flux, and the shear Reynolds number

Reτ ≡ uτ H
2ν

, (1.4)

where uτ ≡ √
τw/ρ =

√
ν
〈
∂zux|z=0

〉
A,t is the friction velocity, with τw being the mean

wall shear stress, ρ being the density, ux being the streamwise component of the velocity,
z being the wall-normal distance from the bottom wall and 〈. . . 〉A,t indicating the mean
over time and a wall-parallel plane A at a distance z from the bottom wall (here, z =
0). Alternatively, the same response information that is expressed in the shear Reynolds
number Reτ , can also be expressed in terms of the friction coefficient

Cf ≡ 2τw

ρU2
b

= 8
Re2

τ

Re2
b
. (1.5)

The key question is: How do the global response parameters Nu and Reτ depend on the
control parameters Reb and Pr? That is, we wish to understand the dependencies

Nu(Reb, Pr) and Reτ (Reb, Pr). (1.6a,b)

Na, Dimitrios & Hanratty (1999) found an effective scaling of Nu ∼ Pr0.464 at Reτ ≈
150. For large Prandtl numbers Pr > 700, the effective scaling changes to Nu ∼ Pr0.297
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Figure 1. Parameter space of experiments and simulations on scalar transport taken from various literature
sources. The current simulations shown with the black star markers are performed for the range of bulk
Reynolds numbers 81 � Reb � 22 361 corresponding to shear Reynolds numbers of 7.07 < Reτ < 546 using
Prandtl numbers Pr = 0.1, 0.3, 1.0, 3.0 and 10.0. The other colours represent other experiments and numerical
studies from literature: [1] Subramanian & Antonia (1981), [2] Kader (1981), [3] Nagano & Tagawa (1988), [4]
Kim & Moin (1989), [5] Lyons et al. (1991), [6] Papavassiliou & Hanratty (1997), [7] Wikström & Johansson
(1998), [8] Kawamura et al. (1999), [9] Na et al. (1999), [10] Kawamura et al. (2000), [11] Na & Hanratty
(2000), [12] Tiselj et al. (2001), [13] Liu (2003), [14] Schmitt (2003), [15] Kawamura et al. (2004), [16]
Debusschere & Rutland (2004), [17] Robert & Tiselj (2006), [18] Schwertfirm & Manhart (2007), [19] van
den Berg et al. (2007), [20] Antonia et al. (2009) and [21] Pirozzoli et al. (2016). The star markers correspond
to studies of Couette flow, the plus markers correspond to studies of channel flow and the filled circle markers
correspond to the studies of pipe flow. A black circular outline around the marker represents an experimental
study.

(Shaw & Hanratty 1977). However, these scaling relations for Pr are obtained empirically
through the analysis of numerical and experimental data, respectively, and lack a sound
theoretical explanation. In this current work, we derive the Nusselt number dependence
through scaling arguments and show its validity through numerical simulations. The
ranges of Pr and Reτ for the present DNS are shown in figure 1.

The manuscript is organised in the following way. In § 2 we present the underlying
dynamical equations and develop the scaling for passive scalar transport. Section 3 briefly
presents the numerical method. In § 4, we check that the numerical results agree with the
assumptions made in § 2. Section 5 consists of the comparison between the numerical
results and the scaling laws obtained from the theoretical predictions in § 2. Section 6
focuses on the mean velocity and temperature profiles. Section 7 demonstrates that Nu and
Reτ for case of the sheared Rayleigh–Bénard system in the limit of the Rayleigh number
going to zero converge to the Nu and Reτ scaling laws of passive scalar transport. The
paper ends with conclusions in § 8.

2. Underlying equations and theory

2.1. Underlying equations
Passive scalar transport in incompressible Couette flow is governed by the
Navier–Stokes equation for the velocity field u(x, t) ≡ (ux, uy, uz), the continuity
equation and the transport equation for the scalar θ(x, t). In Cartesian coordinates
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x ≡ (x, y, z) ≡ (x1, x2, x3), they read

∂tui + uj∂jui = −∂ip + ν∂2
j ui, (2.1)

∂iui = 0, (2.2)

∂tθ + uj∂jθ = κ∂2
j θ, (2.3)

where p(x, t) is the kinematic pressure and θ(x, t) the passive scalar with the arithmetic
mean of the top and bottom wall values subtracted. We consider x, y to be the wall-parallel
directions and z to be the wall-normal direction. The boundary conditions for the equations
are

θ |z=0 = Δ/2, θ |z=H = −Δ/2, ux|z=0 = −Ub, ux|z=H = Ub, (2.4a–d)

uy
∣∣
z=0 = uy

∣∣
z=H = 0, uz|z=0 = uz|z=H = 0. (2.5a,b)

The scalar flux Q from the bottom plate to the top plate is
Q = 〈uzθ〉A,t − κ 〈∂zθ〉A,t . (2.6)

2.2. Laminar case
In the laminar regime, steady uniform gradients of the streamwise velocity and temperature
develop in the flow. Therefore, we have the profiles of the streamwise velocity and scalar
given by

ux = Ub

(
2z
H

− 1
)

, θ = Δ

2

(
1 − 2z

H

)
, (2.7a,b)

with z as the wall-normal coordinate which lies between z = 0, corresponding to the
bottom plate, and z = H, corresponding to the top plate. This gives the well-known and
trivial laminar results ∂zux = 2Ub/H, τw = 2ρνUb/H, or in dimensionless form

Reτ = 1√
2

Re1/2
b , Cf = 4Re−1

b , (2.8a,b)

and ∂θ/∂z = −Δ/H, Q = κΔ/H, or in dimensionless form
Nu = 1. (2.9)

2.3. Turbulent regime
From (2.1), we use the Reynolds (1895) averaging to split the velocity and scalar into the
mean and fluctuating values as follows:

ui = 〈ui〉t + u′
i, θ = 〈θ〉t + θ ′, (2.10a,b)

with 〈. . . 〉t indicating the Reynolds averaging. Assuming that x is the streamwise direction
and using (2.1) averaged in time and over the wall-parallel directions, we obtain

∂z

(
− 〈u′

xu′
z
〉
A,t + ν∂z 〈ux〉A,t

)
= 0, (2.11)

which simply reflects momentum conservation in the z direction. Integrating this relation
z between z = 0 and z gives the well-known Reynolds-averaged Navier–Stokes equation
(Pope 2000)

− 〈
u′

xu′
z
〉
A,t + ν∂z 〈ux〉A,t = ν∂z 〈ux〉A,t

∣∣
z=0 ≡ u2

τ . (2.12)

Here, − 〈u′
xu′

z
〉
A,t represents the Reynolds shear stress and ν∂z 〈ux〉A,t represents the viscous

shear stress. These quantities can be viewed as the convective and diffusive momentum
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fluxes. This equation means that the total momentum flux given by the sum of convective
and diffusive fluxes at any height equals the diffusive momentum flux at the wall in the
case of statistically steady flow, i.e. the diffusive flux at the wall is the bottleneck for the
total flux through the system. At the wall, we introduce a characteristic length scale in
terms of the kinetic boundary layer thickness λu (Prandtl 1904; Blasius 1908) such that

ν∂z 〈ux〉A,t
∣∣
z=0 = u2

τ = νUb/λu. (2.13)

The diffusive time scale of the momentum flux at the wall is then λ2
u/ν. Since the

convective heat transfer through turbulent motions in the bulk is much quicker than the
diffusive heat transfer at the wall, this diffusive time scale represents the bottleneck for the
for momentum transport through the system.

Similarly, the Reynolds-averaged form of (2.3) yields

∂z

(
− 〈θ ′u′

z
〉
A,t + κ∂z 〈θ〉A,t

)
= 0, (2.14)

which when integrated between the limits z = 0 and z gives

− 〈
θ ′u′

z
〉
A,t + κ∂z 〈θ〉A,t = κ∂z 〈θ〉A,t

∣∣
z=0 ≡ θQ

2, (2.15)

with θQ defined analogously to uτ (Schlichting & Gersten 2016). This equation again
reflects that the total scalar flux through the system is determined by the scalar flux at
the wall. Therefore, we introduce another characteristic length scale in terms of the thermal
boundary layer thickness λθ such that

θQ
2 = κΔ/λθ = (2κΔ/H)Nu. (2.16)

The diffusive time scale of heat flux at the wall is then λ2
θ /κ , which must be the bottleneck

time scale of the system, as the diffusive scalar flux at the wall is the bottleneck for the
total scalar flux through the system.

However, since the scalar is a passive quantity, the time scale of the system should be
solely governed by the diffusive time scale of the momentum flux at the wall, in which
case

λ2
u/ν ≈ λ2

θ /κ. (2.17)

Postulating this gives,
λu/λθ ≈ Pr1/2. (2.18)

Using (1.4), (1.5), (2.13) and (2.16) results in the relation

Nu ≈ 2Pr1/2Re2
τ Re−1

b = Cf

4
Pr1/2Reb. (2.19)

Note that the relation (2.19) is similar to the Reynolds (1874) analogy for turbulent
boundary layer over a heated flat plate (Schlichting & Gersten 2016) and turbulent flow
in heated pipes (Kays 1994; McEligot & Taylor 1996). According to the Reynolds analogy,
the shear stress and the heat flux are analogous if the average value of the turbulent Prandtl
number 〈Prt〉L ≈ 1 in the log-layer. Here, the value of the Prt is defined at any given point
in the flow by

Prt =
〈
u′

xu′
z
〉
t

∂z 〈ux〉t

/ 〈
u′

zθ
′〉

t
∂z 〈θ〉t

, (2.20)

and 〈. . . 〉L indicates the average value in the log-layer. For alternate definitions used to
compute Prt from the numerical simulations, we refer the reader to §4. Therefore, from
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the Reynolds analogy,
Nu ≈ f (Pr)Cf Reb. (2.21)

The comparison of (2.19) and (2.21) thus confirms that the Reynolds analogy is also
applicable to the case of passive transport in Couette flow with the value of f (Pr) ≈
Pr1/2/8.

For the scaling of the shear Reynolds number with the bulk Reynolds number in
the turbulent regime, we use the empirical relation Cf ∼ Re−1/4

b . This relation was first
suggested by Blasius (1913) for pipe flows in an intermediate range of 3 × 103 � Reb �
105 and is widely accepted as a good representation of the friction coefficient of pipe
flows for the aforementioned range of bulk Reynolds numbers (McKeon, Zargola & Smits
2005). This scaling relation has since been well established through experiments of flows
in non-circular pipes (Nikuradse 1930, 1950), rectangular ducts (Dean 1978) and channel
flows (Schultz & Flack 2013). Also, the DNS results by Bernardini, Pirozzoli & Orlandi
(2014) and by Orlandi, Bernardini & Pirozzoli (2015) show that this power law is a good
description of the friction coefficient in turbulent Poiseuille and Couette flows for the
considered Reb range.

Using the scaling relation Cf ∼ Re−1/4
b with relation (1.5), we get

Reτ ∼ Re7/8
b . (2.22)

Since Cf is independent of Pr, combining relations (2.22) and (2.19) gives

Nu ∼ Pr1/2Re3/4
b . (2.23)

The scaling relation Cf ∼ Re−1/4
b (i.e. Reτ ∼ Re7/8

b ) holds well for the range of Reb
considered here but it is not valid at high bulk Reynolds numbers. The value of the friction
coefficient deviates more and more from the empirical power law for Re � 105 (McKeon
et al. 2005; Scheel, Emran & Schumacher 2013). We note that, for extremely large Reb,
it might be more appropriate to use the logarithmic law to obtain the friction coefficient
(similar to the Prandtl (1932) turbulent friction law). However, for the range of Reb for
which we claim the validity of the scaling laws derived in this work, the Blasius law and
the Prandtl turbulent friction law show minimal differences and therefore the use of the
Blasius scaling is sufficient. At higher Reb, we still expect the scaling given by (2.19) to
hold, however with a different scaling for Cf .

For extremely large Reb, we expect that the scaling law given by relation (2.23) may
not be valid and further studies are required to determine the scaling relations for Nu at
very high Reb. Here, we draw an analogy from the ultimate regime of turbulent thermal
convection, where the scaling relations of Nu change for extremely large thermal forcing
(i.e. Rayleigh Number) (Kraichnan 1962; Spiegel 1971; Chavanne et al. 1997; He et al.
2012; Zhu et al. 2018b).

3. Numerical method

We performed numerical simulations in a domain of dimensions 8H × 4H × H in the
streamwise (along the x axis), spanwise (along the y axis) and wall-normal (along the z
axis) directions, respectively. We impose periodic boundary conditions in the wall-parallel
directions and no-slip boundary conditions at the top and bottom plates.

The non-dimensional form of the incompressible Navier–Stokes equations (2.1) and
(2.3) are integrated numerically using the AFiD GPU package (Zhu et al. 2018a) which
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Figure 2. (a) The ratio of the kinetic and scalar boundary layer thicknesses normalised with Pr1/2 plotted
against bulk Reynolds number; (b) the thickness of the kinetic boundary layer in wall units; (c) the thickness
of the scalar boundary layer in wall units.

uses a second-order finite-difference scheme (van der Poel et al. 2015). The code has been
validated and verified many times (Verzicco & Orlandi 1996; Verzicco & Camussi 1997,
2003; Stevens, Verzicco & Lohse 2010; Stevens, Lohse & Verzicco 2011; Ostilla-Mónico
et al. 2014; Kooij et al. 2018). We use a uniform discretisation in the wall-parallel periodic
directions and a non-uniform grid, with a clipped Chebyshev-like clustering of nodes in
the wall-normal direction.

The grid for all cases except for (Reb = 14 142, Pr = 1) and (Reb = 22 360, Pr = 1)
consists of 1536, 768 and 256 nodes in the streamwise, spanwise and wall-normal
directions, respectively, whereas the grid for (Reb = 14 142, Pr = 1) and (Reb =
22 360, Pr = 1) consists of 2048, 1024 and 384 nodes in the streamwise, spanwise and
wall-normal directions, respectively, to ensure sufficient resolution. We note that the
computational domain used in the current study is smaller than those typically used in
studies of Couette flow (Avsarkisov et al. 2014; Pirozzoli et al. 2014; Lee & Moser 2018).
However, here, we focus on the global quantities Nu and Reτ (and thus also Cf ), for which
a smaller domain is sufficient. The domain used is, however, larger than the minimal size
mentioned in Sekimoto, Atkinson & Soria (2018) to ensure ‘healthy’ turbulence in the
log-layer region. To further confirm that the domain size is sufficient, we have verified
that these integral properties obtained from an 8H × 4H × H domain agree to within 1 %
of the corresponding values obtained from test domain of size 48H × 24H × H.

4. Boundary layer thickness and turbulent Prandtl number

Figure 2(a) shows that the ratio of the kinetic and scalar boundary layer thicknesses in
the turbulent flow simulations indeed scales as Pr1/2 while figures 2(b) and 2(c) show the
wall-normal location of the kinetic and scalar boundary layers. It is interesting to note that,
for Pr > 0.1, the scalar boundary layer lies completely inside the buffer region whereas,
for Pr = 0.1, the scalar boundary layer overlaps with the log-layer. This results in the
minor disagreement with the Pr dependence that can be seen in 2(a) for Reb = 10 000 and
Pr = 0.1, suggesting that the predictions from the theory are not accurate for Pr 	 1.
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Figure 3. Turbulent Prandtl number Pr(1)
t computed using (4.1) and averaged over wall-parallel directions for

(a) Pr = 0.1, (b) Pr = 0.3, (c) Pr = 1.0, (d) Pr = 3.0, (e) Pr = 10.0. ( f ) Turbulent Prandtl number Pr(1)
t and

Pr(2)
t computed using (4.1) and (4.2), respectively, and averaged over wall-parallel directions in the log-layer

i.e. for z+ � 30.

Figure 3 shows Prt obtained from our simulations. The average value of Prt at a given
distance from the wall can be computed from the numerical simulations using either

Pr(1)
t =

〈
u′

xu′
z
〉
A,t

∂z 〈ux〉A,t

/ 〈
u′

zθ
′〉

A,t

∂z 〈θ〉A,t
, (4.1)

or

Pr(2)
t =

〈 〈
u′

xu′
z
〉
t

∂z 〈ux〉t

〉
A

/〈〈
u′

zθ
′〉

t
∂z 〈θ〉t

〉
A

. (4.2)

To obtain the profile for Pr(1)
t , we first average the time-averaged profiles of u′

xu′
z, ∂zux, u′

zθ
′

and ∂zθ over the wall-parallel directions and then compute the Prt using (4.1). On the other
hand, to obtain the profile for Pr(2)

t , we use time-averaged three-dimensional flow fields
to compute the ratios

〈
u′

xu′
z
〉
t /∂z 〈ux〉t and

〈
u′

zθ
′〉

t /∂z 〈θ〉t at each grid point, average them
over the wall-parallel directions and then compute the Prt using (4.2). For a statistically
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steady flow, the difference between the values computed using the equations (4.1) and (4.2)
should be very small.

The wall-normal variation of Pr(1)
t is shown in figures 3(a)–3(e). From figure 3( f ),

we see that the mean value of the turbulent Prandtl number in the log-layer (z+ � 30)
is quite sensitive to the definition used in the computation. The range of z+ over which
Prt(z+) is averaged also affects the value of the mean Prt. The average Pr(1)

t obtained
by using (4.1) approaches unity for larger Reb while for larger viscous Prandtl number
(Pr = 3.0, Pr = 10.0), the average Pr(2)

t obtained by using (4.2) drops to lower than
unity and approaches 0.85, as suggested in the literature (Kader 1981; Malhotra & Kang
1984; Kays 1994; McEligot & Taylor 1996). Once again, it is noteworthy that the data
for Pr = 0.1 show a slower convergence of Prt than the cases for larger Pr, suggesting
that the predictions of the theory would become inaccurate for Pr 	 0.1. However, for
the control parameters of this paper, and for a large range of wall-normal distances z+,
we can say that, indeed, Prt ≈ 1 is a reasonable assumption consistent with the numerical
data.

5. Global scalar transport and wall shear

Now we investigate the variation of Nu and Reτ (and thus also Cf , or vice versa) with
increasing Reb. From figures 4(a) and 4(b) in the turbulent regime, we indeed find the
Blasius scaling Cf ∼ Re−1/4

b (Blasius 1913; Nikuradse 1930, 1950; Orlandi et al. 2015)
(indicated with the black dashed line) from the present numerical simulations as well
as from the data taken from Pirozzoli et al. (2014), Orlandi et al. (2015), Avsarkisov
et al. (2014) and Lee & Moser (2018), closely approximating the Prandtl (1932) turbulent
friction law (von Kármán 1934)√

2
Cf

= 1
k

ln

(
Reb

√
Cf

8

)
+ B. (5.1)

It is shown as black dash dotted line where k = 0.41 (Pirozzoli et al. 2014) is the von
Kármán (1934) constant and B = 5.

In figures 4(c) and 4(d), the scaling for Reτ changes sharply with the transition from the
laminar to the turbulent regime. In the laminar regime, the effect of steady linear gradients
can be seen from the Reτ ∼ Re1/2

b scaling. In the turbulent flow regime, we see a good
agreement with the suggested scaling law given by (2.22).

A similar sharp transition is also observed for Nu in figure 5(c). Figure 5(d) shows that
Nu varies as Pr1/2 for the range of Pr considered in the numerical simulations, which
reflects the analogy between turbulent transport of the passive scalar in Couette flow and
turbulent transport of heat in Rayleigh–Bénard flow in the limit of zero thermal driving.
It can be observed that the values of Nu obtained from the numerical simulations follow
the scaling laws given, respectively, by (2.9) and (2.23) quite well. We note that Kays &
Crawford (1993) give an empirical relation Nu = 0.022Pr0.5Re0.8 for turbulent pipe flows
with gases (0.5 < Pr < 1) which is very close to our fit of Nu = 0.015Pr0.5Re0.75.

The sharpness of the transition from the laminar regime to the turbulent one in the
Couette-type shear flow under consideration here is in vast contrast to the very smooth
transition from the laminar regime to the turbulent one in Rayleigh–Bénard flow (Ahlers,
Grossmann & Lohse 2009; Stevens et al. 2013). The reason for this difference lies in the
different type of flow instability: whereas in Rayleigh–Bénard flow linear instabilities are
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Figure 4. (a) Value of Cf vs Reb for various Pr. The Cf ∼ Re−1/4
b scaling in the turbulent regime (represented

with black dashed line) is consistent with the Prandtl (1932) turbulent friction law (shown as the purple dash
dot line). (b) Value of Reτ vs Reb.
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Figure 5. (a) Value of Nu vs Reb for different Pr. (b) Value of Nu compensated with Pr1/2 vs Reb.

very crucial (Landau & Lifshitz 1987), in Couette-type shear flow, the onset of turbulence
is of nonlinear non-normal type (Trefethen et al. 1993; Grossmann 2000; Barkley 2016;
Lemoult et al. 2016; Shi, Avila & Hof 2013).
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Prt = 0.85 Prt = 1.0

Pr D (Simulations) D (Kader 1981) D (Simulations) D (Kader 1981)

0.1 −4.71 −4.64 −5.38 −6.10
0.3 −1.08 −0.92 −1.30 −2.70
1.0 6.26 6.50 6.50 4.88
3.0 20.4 20.4 20.8 18.4

10.0 51.6 53.8 54.5 49.5

Table 1. Comparison between the value of the intercept D for the log law obtained from the numerical
simulations and the value computed from the empirical relation from Kader (1981).

6. Mean velocity and scalar profiles

We now come to the local flow properties. The existence of a logarithmic inertial sublayer
in turbulent wall-bounded flows with passive scalar transport has been studied extensively
(Yaglom 1979; Jischa & Rieke 1979a; Kader 1981; Pirozzoli et al. 2016). The log-laws for
the mean streamwise velocity and the mean temperature may be written as

u+ = 1
k

ln(z+) + B, θ+ = Prt

k
ln(z+) + D(Pr, Prt). (6.1a,b)

The values of z+, u+ and θ+ are defined as usual as

z+ = zuτ /ν, u+ = u/uτ , (6.2a,b)

θ+ = |θw − θ |/θτ , θτ = Q/uτ . (6.3a,b)

Here, θτ is a quantity analogous to the friction velocity, θw is the mean value of θ at the
wall and D(Pr, Prt) is an a priori unknown offset temperature, which in general, depends
on Pr and Prt.

The value of D(Pr, Prt) as a function of Pr and Prt as obtained from the numerical
simulations is shown in table 1. Kader (1981) proposed the following empirical fitting
relation:

D =
(

3.85Pr1/3 − 1.3
)2 + Prt

κ
ln(Pr), (6.4)

along with Prt = 0.85 as a modelling parameter.
Figure 6(a) shows the mean streamwise velocity profile normalised with the friction

velocity vs height in wall units for the various Reb obtained from the numerical
simulations. The laminar cases (shown by the blue lines) follow the linear profile whereas
the turbulent cases (green–red lines) display the log-layer beyond the viscous sublayer.
This is also seen when plotting the diagnostic function in figure 6(b) where we see an
appreciably well developed log-layer for the turbulent cases. Figure 6(c) shows the mean
scalar profiles where we see a similar family of lines, each associated with a particular
value of Pr.

The dependence of the turbulent Prandtl number Prt on Pr has been well studied for pipe
flows (Malhotra & Kang 1984; McEligot & Taylor 1996), channel flows (Kim & Moin
1989) as well as for stratified Couette flows (Zhou, Taylor & Caulfield 2017; Glazunov
et al. 2019) with models suggested by Jischa & Rieke (1979a,b). It is considered that,
for Pr < 1, Prt > 1 and for Pr > 1, Prt < 1 with Prt → 0.85 for large Pr and Reb (Kays
1994). This observation is consistent with the numerical results shown in figure 3. We note
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Figure 6. (a) Mean streamwise velocity normalised with the friction velocity (uτ ) vs height in wall units.
(b) The diagnostic function for the mean streamwise velocity. (c) Mean scalar value normalised with θτ vs
height in wall units. The value of the intercept of the log-law is obtained from the empirical relation (6.4) given
by Kader (1981). (d) The diagnostic function for the mean temperature.

that a constant value of Prt = 0.85 suggested by Kader (1981) seems to be a good fit for
the mean temperature profiles of all the values of Pr considered in this study, as shown by
the diagnostic function in figure 6(d).
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7. Passive scalar transport in Couette flow as limiting case of heat transport in
sheared Rayleigh–Bénard

For weak temperature fluctuations and small thermal driving (i.e. small or even zero
Rayleigh number), the transport of heat may be considered as passive transport of
temperature (Subramanian & Antonia 1981). Therefore, we may view the passive scalar
transport problem as a limiting case of the heat transport in the sheared Rayleigh–Bénard
system (Ahlers et al. 2009; Lohse & Xia 2010; Chilla & Schumacher 2012). The
sheared Rayleigh–Bénard system consists of the standard Rayleigh–Bénard set-up with an
additional Couette-type shear forcing. The strength of the thermal driving in the sheared
Rayleigh–Bénard system, due to the temperature difference Δ between the hot bottom
plate and the cold top plate, is given by the Rayleigh number as

Ra ≡ βgH3Δ

νκ
. (7.1)

Here, β is the thermal expansion coefficient and g is the gravitational acceleration.
The relative strength of thermal and shear driving is quantified by the Richardson

number given by

Ri ≡ Ra

PrRe2
b
. (7.2)

Viewing the passive transport in Couette flow as the limiting case of the sheared
Rayleigh–Bénard system with Ra → 0 and Ri → 0, the numerical simulations and results
shown in this paper correspond to

Nu(Reb, Pr, Ra = 0) and Reτ (Reb, Pr, Ra = 0). (7.3a,b)

For the passive scalar transport in Couette flow, given that there is a temperature difference
Δ /= 0 between the bottom and top plates, the limit Ra → 0 is achieved by setting
the thermal expansion coefficient β → 0, or alternatively the gravitational acceleration
g → 0. The standard Rayleigh–Bénard case of purely thermally driven convective flow
(Ahlers et al. 2009; Lohse & Xia 2010; Chilla & Schumacher 2012) is another limiting
case, namely

Nu(Reb = 0, Pr, Ra) and Reτ (Reb = 0, Pr, Ra). (7.4a,b)

For that case, Grossmann & Lohse (2000, 2001, 2002, 2004), Stevens et al. (2013) and
Shishkina et al. (2017) have developed a unifying theory, based on the decomposition of
the kinetic and thermal dissipation rates into boundary layer and bulk contribution, which
very successfully describes the experimental and numerical data for the control parameter
dependencies of the Nusselt and wind Reynolds numbers (Ahlers et al. 2009; Stevens et al.
2013). Note that some other limiting cases of problem (1.6a,b) have already been analysed
before, namely

Nu(Reb, Pr = 1, Ra) and Reτ (Reb, Pr = 1, Ra), (7.5a,b)

by Blass et al. (2020) and

Nu(Reb, Pr, Ra = 106) and Reτ (Reb, Pr, Ra = 106), (7.6a,b)

by Blass et al. (2021). In these two papers, the focus was on the interplay and the
competition between thermal driving and shear driving, identifying the transitions from
dominance of one to dominance of the other, in order to understand the dependencies
(7.5a,b) and (7.6a,b).
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Figure 7. (a) Shear Reynolds number (Reτ ) plotted against the bulk Reynolds number Reb. (b) Nusselt number
(Nu) plotted against the bulk Reynolds number (Reb). The data are taken from by Blass et al. (2020, 2021). In
the limiting case of large shear, the scaling relations assumed (Reτ ∼ Re7/8

b ) or derived (Nu ∼ Re3/4
b ) in this

paper are recovered.

With increasing shear forcing as compared with thermal forcing, i.e. PrRe2
b � Ra, one

approaches Ri → 0, which is the limiting case of passive scalar transport in Couette flows.
For such large shear forcing (compared with thermal forcing), we expect the Nu and Reτ

to follow the scaling dependencies derived in this work. From figure 7, it can indeed
be observed that Nu(Reb, Pr, Ra) and Reτ (Reb, Pr, Ra) for the sheared Rayleigh–Bénard
system as obtained by Blass et al. (2020, 2021) seem to, in the limit of large shear forcing,
asymptotically converge to the Nu(Reb, Pr, Ra = 0) and Reτ (Reb, Pr, Ra = 0) scaling
laws discussed here in the context of passive scalar transport in Couette flows.

8. Conclusions

In conclusion, building on the Blasius’s empirical scaling relation Cf ∼ Re−1/4
b for the

friction coefficient, which holds for intermediate Reb, we have studied the scaling relations
for passive scalar transport Nu(Reb, Pr) in turbulent Couette flow. We then performed
DNS for the large control parameter ranges 81 � Reb � 22 360 and 0.1 � Pr � 10, and
identified the laminar and turbulent regimes and the transition between them. These
numerical results are in good agreement with the derived scaling laws for the whole
range of considered control parameters. Some disagreement is observed in the transitional
regime where it is very difficult to obtain well-converged results. We verify the validity
of the assumptions made to derive the scaling of Nu(Reb, Pr) and show that this scaling
arises due to the presence of strong streamwise fluctuations close to the wall. The scaling
for Reτ (Reb, Pr) is taken from the empirical Blasius scaling for the friction coefficient
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Cf ∼ Re−1/4
b for pipe flows, which not only shows minimal deviation from the Prandtl

(1932) turbulent friction law but also from experimental results for non-circular channels
(Nikuradse 1930, 1950), rectangular ducts (Dean 1978) as well as from numerical studies
of channel flows (Bernardini et al. 2014) and Couette flows (Orlandi et al. 2015) for the
bulk Reynolds number range 3 × 103 � Reb � 105.

Next, the mean profiles of streamwise velocity and temperature in the turbulent regime
show the existence of the viscous sublayer close to the wall and the inertial sublayer which
follows the log-law (Yaglom 1979; Kader 1981; Jischa & Rieke 1979a), as shown by the
respective diagnostic functions.

Obviously, it is desirable to further extend the regime of control parameters to even
larger shear Reynolds numbers Reb and even smaller and larger Pr, to observe the possible
emergence of new regimes. Such new regimes can also emerge for rough walls, which
will enhance the scalar transfer, analogous to the enhanced heat transfer in rough-wall
Rayleigh–Bénard convection (Ciliberto & Laroche 1999; Emran & Shishkina 2020; Xie &
Xia 2017; Zhu et al. 2017; Jiang et al. 2018; Zhu et al. 2019).
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Appendix. Numerical simulations

Pr Reb(×103) Reτ Cf (×10−3) Nu 
x+
c (×10−2) 
y+

c (×10−2) 
z+
w (×10−3) Δz+

c (×10−2) tuτ /λu

0.100 0.100 7.10 40.4 1.00 7.40 7.40 1.06 8.68 0.286
0.100 0.141 8.49 28.8 1.00 8.84 8.84 1.27 10.4 0.344
0.100 0.224 10.7 18.3 1.00 11.1 11.1 1.60 13.1 0.433
0.100 0.316 12.9 13.3 1.00 13.4 13.4 1.92 15.7 0.530
0.100 0.447 16.0 10.2 1.00 16.6 16.6 2.39 19.5 0.695
0.100 0.707 28.9 13.4 1.15 30.1 30.1 4.32 35.3 1.28
0.100 0.816 31.4 11.9 1.18 32.7 32.7 4.70 38.4 1.48
0.100 0.913 35.8 12.3 1.26 37.3 37.3 5.34 43.7 1.93
0.100 1.00 37.4 11.2 1.25 38.9 38.9 5.58 45.7 1.96
0.100 1.41 48.1 9.24 1.37 50.1 50.1 7.18 58.7 3.33
0.100 2.24 72.7 8.46 1.66 75.7 75.7 10.9 88.9 6.81

Table 2. For caption see next page.
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Pr Reb(×103) Reτ Cf (×10−3) Nu 
x+
c (×10−2) 
y+

c (×10−2) 
z+
w (×10−3) Δz+

c (×10−2) tuτ /λu

0.100 3.16 97.7 7.64 2.01 102 102 14.6 119 11.8
0.100 4.47 132 6.97 2.38 138 138 19.7 161 20.7
0.100 7.07 199 6.37 3.16 208 208 29.8 244 43.8
0.100 10.0 273 5.96 3.98 284 284 40.8 334 79.0
0.300 0.0816 6.36 48.5 1.00 6.62 6.62 0.950 7.77 0.439
0.300 0.100 7.07 40.0 1.00 7.37 7.37 1.06 8.64 0.490
0.300 0.129 8.03 31.0 1.00 8.37 8.37 1.20 9.82 0.557
0.300 0.183 9.55 21.9 1.00 9.95 9.95 1.43 11.7 0.662
0.300 0.258 11.4 15.5 1.00 11.8 11.8 1.70 13.9 0.787
0.300 0.408 14.3 9.80 1.00 14.9 14.9 2.13 17.5 0.990
0.300 0.577 17.0 6.93 1.00 17.7 17.7 2.54 20.8 1.18
0.300 0.707 20.8 6.91 1.02 21.6 21.6 3.11 25.4 1.60
0.300 0.816 20.2 4.90 1.00 21.0 21.0 3.02 24.7 1.40
0.300 0.913 35.8 12.3 1.79 37.3 37.3 5.34 43.7 3.59
0.300 1.00 37.0 10.9 1.75 38.5 38.5 5.52 45.2 3.43
0.300 1.05 39.4 11.2 1.88 41.0 41.0 5.88 48.1 4.02
0.300 1.29 45.1 9.77 2.00 47.0 47.0 6.74 55.1 5.04
0.300 1.83 61.3 9.01 2.51 63.8 63.8 9.16 74.9 8.89
0.300 2.58 82.1 8.09 3.00 85.5 85.5 12.3 100 14.3
0.300 4.08 121 7.00 3.93 126 126 18.0 148 29.8
0.300 5.77 165 6.57 5.12 172 172 24.7 202 54.8
0.300 8.16 220 5.82 6.25 229 229 32.9 269 95.4
0.300 10.0 269 5.78 7.57 280 280 40.2 329 133
0.300 12.9 339 5.51 9.11 353 353 50.6 414 204
1.00 0.100 7.07 40.0 1.00 7.37 7.37 1.06 8.64 0.894
1.00 0.141 8.41 28.3 1.00 8.76 8.76 1.26 10.3 1.06
1.00 0.224 10.6 17.9 1.00 11.0 11.0 1.58 12.9 1.34
1.00 0.316 12.6 12.6 1.00 13.1 13.1 1.88 15.4 1.59
1.00 0.447 15.0 8.94 1.00 15.6 15.6 2.23 18.3 1.89
1.00 0.707 18.8 5.66 1.00 19.6 19.6 2.81 23.0 2.38
1.00 0.816 33.0 13.1 2.61 34.4 34.4 4.93 40.3 5.23
1.00 0.913 35.9 12.4 2.74 37.4 37.4 5.36 43.9 5.91
1.00 1.00 37.4 11.2 2.75 38.9 38.9 5.59 45.7 6.88
1.00 1.41 49.8 9.91 3.48 51.8 51.8 7.44 60.8 11.0
1.00 2.24 72.1 8.31 4.62 75.1 75.1 10.8 88.1 20.9
1.00 3.16 96.7 7.48 5.95 101 101 14.4 118 37.1
1.00 4.47 131 6.91 7.76 137 137 19.6 161 64.3
1.00 7.07 197 6.23 11.1 205 205 29.5 241 139
1.00 10.0 268 5.77 14.6 280 280 40.1 328 247
1.00 14.1 376 5.65 20.2 294 294 25.0 307 45.6
1.00 22.4 564 5.10 29.1 441 441 37.6 461 76.9
3.00 0.0816 6.39 49.0 1.00 6.66 6.66 0.955 7.81 1.40
3.00 0.100 7.07 40.0 1.00 7.37 7.37 1.06 8.64 1.55
3.00 0.129 8.03 31.0 1.00 8.37 8.37 1.20 9.82 1.76
3.00 0.183 9.55 21.9 1.00 9.95 9.95 1.43 11.7 2.09
3.00 0.258 11.4 15.5 1.00 11.8 11.8 1.70 13.9 2.49
3.00 0.408 14.3 9.80 1.00 14.9 14.9 2.13 17.5 3.13
3.00 0.577 17.0 6.93 1.00 17.7 17.7 2.54 20.8 3.72
3.00 0.707 18.8 5.66 1.00 19.6 19.6 2.81 23.0 4.12
3.00 0.816 20.2 4.90 1.00 21.0 21.0 3.02 24.7 4.43
3.00 0.913 35.8 12.3 4.12 37.3 37.3 5.35 43.8 11.4
3.00 1.00 36.8 10.8 3.91 38.3 38.3 5.49 44.9 12.0
3.00 1.05 39.8 11.4 4.46 41.5 41.5 5.95 48.7 12.6
3.00 1.29 44.9 9.69 4.74 46.8 46.8 6.71 54.9 15.9

Table 2. For caption see next page.
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Pr Reb(×103) Reτ Cf (×10−3) Nu 
x+
c (×10−2) 
y+

c (×10−2) 
z+
w (×10−3) Δz+

c (×10−2) tuτ /λu

3.00 1.83 61.1 8.96 6.39 63.6 63.6 9.13 74.7 27.3
3.00 2.58 81.7 8.02 8.26 85.1 85.1 12.2 99.9 46.5
3.00 4.08 122 7.12 12.0 127 127 18.2 149 96.3
3.00 5.77 166 6.61 16.1 173 173 24.8 203 174
3.00 8.16 226 6.10 21.3 235 235 33.7 276 279
3.00 10.0 270 5.85 25.3 282 282 40.4 330 302
3.00 12.9 340 5.56 31.5 355 355 50.9 416 328
10.0 0.100 7.07 40.0 1.00 7.37 7.37 1.06 8.64 2.83
10.0 0.141 8.41 28.3 1.00 8.76 8.76 1.26 10.3 3.36
10.0 0.224 10.6 17.9 1.00 11.0 11.0 1.58 12.9 4.23
10.0 0.316 12.6 12.6 1.00 13.1 13.1 1.88 15.4 5.03
10.0 0.447 15.0 8.94 1.00 15.6 15.6 2.23 18.3 5.98
10.0 0.707 18.8 5.66 1.01 19.6 19.6 2.81 23.0 7.52
10.0 0.816 31.0 11.6 5.39 32.3 32.3 4.64 37.9 15.5
10.0 0.913 34.9 11.7 6.22 36.4 36.4 5.22 42.7 19.4
10.0 1.00 38.2 11.7 6.54 39.8 39.8 5.71 46.7 22.5
10.0 1.41 49.4 9.76 8.19 51.4 51.4 7.38 60.4 34.5
10.0 2.24 72.1 8.33 11.9 75.1 75.1 10.8 88.2 59.7
10.0 3.16 96.9 7.51 15.9 101 101 14.5 118 117
10.0 4.47 131 6.87 21.3 136 136 19.6 160 202
10.0 7.07 199 6.31 31.7 207 207 29.7 243 329
10.0 10.0 270 5.83 42.6 281 281 40.3 330 296

Table 2. Simulations considered in this work. The values of 
x+
c and 
y+

c are the grid spacing at the
mid-plane location in wall units in the streamwise and spanwise directions, respectively. Equal grid spacing
is chosen for streamwise and spanwise directions therefore 
x+

c = 
y+
c for all simulations. The values of 
z+

w
and 
z+

c represent the wall-normal grid spacing in wall units at the wall and at the mid-height, respectively.
The non-dimensional time during which the quantities Reτ , Cf , and Nu are averaged is given by tuτ /λu.
All simulations were performed in a 8H × 4H × H domain. The mid-domain and near-wall grid spacing
in wall units (table 2) given by 
x+

c � 3.55, 
y+
c � 3.55, 
z+

c � 4.16, and 
z+
w � 0.051 are comparable

to 
x+
c � 11.22, 
y+

c � 5.14, 
z+
c � 6.34 and 
z+

w � 0.040 used by Lee & Moser (2018), 
x+
c � 12.58,


y+
c � 5.03 
z+

c � 6.71 and 
z+
w � 0.041 used by Lozano-Durán & Jiménez (2014), as well as 
x+

c � 6.80,

y+

c � 4.84, 
z+
c � 4.36 and 
z+

w � 0.080 used by Pirozzoli et al. (2014).
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