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Existence and non-uniqueness of constant scalar

curvature toric Sasaki metrics

Eveline Legendre

Abstract

We study compatible toric Sasaki metrics with constant scalar curvature on co-oriented
compact toric contact manifolds of Reeb type of dimension at least five. These metrics
come in rays of transversal homothety due to the possible rescaling of the Reeb vector
fields. We prove that there exist Reeb vector fields for which the transversal Futaki
invariant (restricted to the Lie algebra of the torus) vanishes. Using an existence result
of E. Legendre [Toric geometry of convex quadrilaterals, J. Symplectic Geom. 9 (2011),
343–385], we show that a co-oriented compact toric contact 5-manifold whose moment
cone has four facets admits a finite number of rays of transversal homothetic compatible
toric Sasaki metrics with constant scalar curvature. We point out a family of well-known
toric contact structures on S2 × S3 admitting two non-isometric and non-transversally
homothetic compatible toric Sasaki metrics with constant scalar curvature.

1. Introduction

In this paper we study the existence and uniqueness of compatible Sasaki metrics of constant
scalar curvature (cscS for short) on a compact co-oriented contact manifold (N,D), where the
uniqueness should be understood up to a contactomorphism and transversal homothety (rescaling
of the Reeb vector field). Sasaki–Einstein metrics, which occur when the first Chern class c1(D)
of the contact distribution D vanishes, have been intensively studied in recent years by many
authors, see [BG08]. On the other hand, the theory of cscS metrics can be viewed as an odd-
dimensional analogue of the more classical subject of constant scalar curvature Kähler metrics,
which has been actively studied since the pioneering works of Calabi [Cal85]. We will focus in this
paper on the special case when the contact structure is toric of Reeb type in the sense of [BG00]
and the compatible metric is invariant under the torus action. In this setting, the problem of
existence of cscS metrics is very closely related to the theory of constant scalar curvature Kähler
metrics on toric varieties, recently developed by Donaldson in [Don02].

Banyaga and Molino, Boyer and Galicki, and Lerman [BM92, BM96, BG00, Ler02, Ler03]
classified toric contact manifolds (N2n+1,D, T̂n+1) (in what follows, we suppose n > 1). The
action of T̂ pull-backs to a Hamiltonian action on the symplectization (M2n+2, ω̂) of (N,D),
commuting with the Liouville vector field τ , see [Ler03]. In particular, the contact moment
map µ̂ :M → (Rn+1)∗ refers to the unique moment map on the toric symplectic cone which
is homogeneous of degree two with respect to the Liouville vector field τ (i.e. Lτ µ̂= 2µ̂) and
C = Im µ̂ ∪ {0} is the moment cone.
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In order to study toric Sasaki metrics, it is not restrictive to consider toric contact manifolds
of Reeb type, so that there exists a vector b ∈ Rn+1 = Lie Tn+1 inducing a Reeb vector field
Xb ∈ Γ(TM), see [BG08]. Equivalently, b lies in C∗+, the interior of the dual cone of C (the set
of strictly positive linear maps on Im µ̂= C\{0}). In particular, C is a strictly convex polyhedral
cone, that is, C∗+ is not empty. From [BG00, Ler03], we know that toric contact manifolds of
Reeb type of dimension at least five are in correspondence with strictly convex polyhedral cones
C ⊂ Rn+1 which are good with respect to a lattice Λ. This means that every set of primitive
vectors normal to a face of C can be completed to a basis of Λ.

Given a strictly convex polyhedral cone C, which is good with respect to a lattice Λ, one can
associate to any b ∈ C∗+ the characteristic labeled polytope1 (∆b, ub), where

∆b = C ∩ {y | 〈b, y〉= 1
2}

is a compact simple polytope and ub = {ub1, . . . , ubd} is the set of equivalence classes in Rn+1/Rb
of the primitive vectors of Λ which are inward normal to the facets of C. Here, Rn+1/Rb is
identified with the dual vector space of the annihilator of b in (Rn+1)∗, which, in turn, is identified
with the hyperplane {y | 〈b, y〉= 1

2}.

Remark 1. Referring to (∆b, ub) as a labeled polytope is slightly abusive: when there is a lattice
Λ′ ⊂ Rn+1/Rb containing the normals ubi, there exist uniquely determined positive integers mi

such that (1/mi)ubi are primitive elements of Λ′. Then (∆b, m1, . . . , md) is a rational labeled
polytope in the sense of Lerman–Tolman [LT97] and it describes a compact toric symplectic
orbifold. This case appears when the Reeb vector field Xb is quasi-regular [BG08].

Recall that on a toric symplectic orbifold a compatible Kähler metric corresponds to a
symplectic potential, φ, that is, a strictly convex smooth function defined on the interior
of the moment polytope ∆, which satisfies certain boundary conditions depending on the
labeling u [Abr01, ACGT04, Don05, Gui94]. We denote the set of these symplectic potentials
by S(∆, u). Similarly, Martelli et al. [MSY06] parameterized the set of compatible toric Sasaki
metrics in terms of homogeneous smooth functions of degree one on C̊, the interior of C, and
subject to boundary and convexity conditions. In particular, a Kähler cone metric ĝ on (M, ω̂)
corresponds to a potential φ̂ on C̊. According to the Abreu formula [Abr98, Abr10], the scalar
curvature sĝ is then the pull-back by µ̂ of

S(φ̂) =−
n∑

i,j=0

∂2Ĥij

∂yi∂yj
, (1)

where Ĥij is the inverse Hessian of φ̂. Hence, a cscS metric corresponds to a potential φ̂ with
b ∈ C∗+ such that S(φ̂)|∆b is constant. This correspondence can be equivalently expressed in terms
of symplectic potentials on characteristic labeled polytopes. Indeed, any potential φ ∈ S(∆b, ub)
on a characteristic polytope (∆b, ub) canonically determines (and is determined by) a Boothy–
Wang potential φ̂ corresponding to a Kähler cone metric ĝ on M , see [Abr10] and § 2.2 below.
The scalar curvature of ĝ is the restriction to N ⊂M of the pull-back of

S(φ̂) = 4S(φ)− 4n(n+ 1),

where S(φ) =−
∑n

i,j=1 ∂
2Hij/∂yi∂yj with Hij the inverse Hessian of φ, see [Abr10]. Furthermore,

the scalar curvature of the Sasaki metric is sg = 4S(φ)− 2n, see [BG08] and § 2.3.

1 In [MSY06], ∆ is the characteristic polytope of a toric Sasaki metric with Reeb vector field Xb.
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Existence and non-uniqueness of cscS metrics

A primary obstruction to the existence of cscS metrics is given by the Futaki–Sasaki or
transversal Futaki invariant of the Reeb vector field introduced by Boyer et al. in [BGS08a].
In the toric case, for any Reeb vector field Xb, one can restrict this invariant to the Lie algebra
of the torus and obtain a vector Fb ∈ (Rn+1/Rb)∗ such that Fb = 0 should a compatible cscS
toric metric exist. Thus, we can recast the problem of existence and uniqueness of cscS toric
metrics.

Problem 1. Given a strictly convex good cone C, does there exist b ∈ C∗+ such that

Fb = 0, (2)
∃φ ∈ S(∆b, ub), such that S(φ) is constant? (3)

If it exists, is such a b unique up to rescaling?

Rescaling b 7→ λ−1b, equivalently the contact form ηb 7→ ληb, leads to a ray of toric Sasaki
structures

g′ = λg + (λ2 − λ)ηb ⊗ ηb.
Such a deformation, called transversal homothety, changes the scalar curvature as

sg′ = λ−1(sg + 2n)− 2n,

see [BG08]. In particular, cscS metrics occur in rays. However, once the Reeb vector b ∈ C∗+ is
fixed, the uniqueness of cscS metrics follows from uniqueness of solutions of the extremal Kähler
equation in S(∆b, ub), see [Gun99] and Lemma 2.13 below.

In view of Problem 1, the Donaldson–Tian–Yau conjecture [Don02, Tia90, Yau93] has a
straightforward interpretation in the toric Sasaki case using the notion of polystability of labeled
polytopes given by Donaldson in [Don02].2

Conjecture 1.1. A compact co-oriented toric contact manifold of Reeb type admits a
compatible toric cscS metric if and only if there exists b ∈ C∗+ such that Fb = 0 and (∆b, ub)
is polystable.

Donaldson proved his conjecture [Don02, Don05, Don08b, Don09] for compact convex labeled
polytopes in R2. This immediately implies that Conjecture 1.1 holds true for compact five-
dimensional toric contact manifolds of Reeb type.

The question of existence of toric Sasaki–Einstein metrics, which makes sense on co-oriented
compact toric contact manifolds with Calabi–Yau cone (that is, c1(D) = 0), is now solved. First,
Martelli et al. [MSY06] proved that the volume functional, defined on the space of compatible
Sasaki metrics, only depends on the Reeb vector field and, up to a multiplicative constant, is

W (b) =
∫

∆b

d$.

Furthermore, they showed that the Hilbert functional is a linear combination of W and Z, where
Z is defined for any φ ∈ S(∆b, ub) as

Z(b) =
∫

∆b

S(φ) d$

and only depends on the Reeb vector field. They also proved that Z(b) coincides with W (b) up
to a multiplicative constant, when restricted to a suitable space of normalized Reeb vector fields,

2 Donaldson uses a measure on the boundary instead of labels; the two notions are equivalent.
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see Remark 2. The unique critical point of (the restriction of) W is then the only normalized
Reeb vector field with vanishing transversal Futaki invariant.3

Futaki et al. [FOW09] showed, on the other hand, that for such a Reeb vector field Problem 1
has always a solution (corresponding to a Sasaki–Einstein metric).

Remark 2. Unlike cscS metrics, there are no rays of transversal homothetic Sasaki–Einstein
metrics. Indeed, since the scalar curvature sg of a Sasaki–Einstein metric satisfies sg = 2n(2n
+ 1), see [BG08], being Sasaki–Einstein prevents the rescaling of the Reeb vector field. In par-
ticular, there is an obvious normalization of Reeb vector fields in the search for Sasaki–Einstein
metrics. However, Sasaki–Einstein metrics are cscS metrics and thus come in rays of such.

In this paper, we extend the Martelli–Sparks–Yau arguments to toric contact manifolds of
Reeb type by showing that, after a suitable normalization of the Reeb vector fields, the critical
points of the functional

F (b) =
Z(b)n+1

W (b)n

coincide with normalized Reeb vectors with vanishing transversal Futaki invariant.

Theorem 1.2. A co-oriented toric contact manifold of Reeb type admits at least one ray of
Reeb vector fields with vanishing (restricted) transversal Futaki invariant.

Unlike the Sasaki–Einstein problem, Reeb vector fields with vanishing transversal Futaki
invariant do not necessarily lead to cscS metrics, see e.g. [Don02]. However, as we proved
in [Leg11], any labeled quadrilateral (∆, u) with vanishing Futaki invariant admits a symplectic
potential φ ∈ S(∆, u) for which S(φ) is constant. Thus, we obtain the following theorem.

Theorem 1.3. A co-oriented toric contact five-dimensional manifold of Reeb type whose
moment cone has four facets admits at least one and at most seven distinct rays of transversal
homothetic compatible Sasaki metrics of constant scalar curvature. Moreover, for each pair
of co-prime numbers, (p, q), such that p > 5q, there exist two non-isometric, non-transversally
homothetic Sasaki metrics of constant scalar curvature compatible with the same toric contact
structure on the Wang–Ziller five-dimensional manifold M1,1

p,q .

More precisely, following [Leg11, Corollary 1.6], these metrics are explicitly given in terms of
two polynomials of degree at most three. The toric contact structure on M1,1

p,q is the one described
in [BGSO8b]. The first part of Theorem 1.3 partially answers a question of Boyer [Boy11].

The paper is organized as follows. Section 2 contains basic notions of toric Sasakian geometry,
emphasizing the boundary conditions required for the potential to induce a smooth Kähler cone
metric. We also give the results we need about uniqueness of cscS metrics. In § 3 we give a way
to check whether or not a labeled polytope is characteristic of a good cone; we then study the
properties of the functional F and prove Theorem 1.2. In § 4 we specialize our study to the case
of cones over quadrilaterals in R3 and prove Theorem 1.3.

2. Sasaki and transversal Kähler toric metrics: a quick review

A labeled polytope, (∆, u), is a simple compact polytope ∆ in an n-dimensional vector space t∗

which has d codimension one faces, called facets and denoted by F1, . . . , Fd, together with a

3 Martelli et al. extended their results to the non-toric case in [MSY08].
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Existence and non-uniqueness of cscS metrics

set u= {u1, . . . , ud} of vectors in t which are inward (with respect to ∆) and such that ui is
normal to Fi. Recall that a polytope is simple if each vertex is the intersection of n distinct
facets. In what follows, we consider ∆ itself as a face. (∆, u) is rational with respect to a lattice
Λ if u⊂ Λ.

Definition 2.1. Two labeled polytopes are equivalent if one underlying polytope can be
mapped on the other via an invertible affine map, A : t∗→ s∗, such that the normals correspond
via the differential’s adjoint (dA)∗ : s→ t.

2.1 Toric contact and symplectic geometry

A symplectic cone is a triple (M, ω, τ), where (M, ω) is a symplectic manifold and τ ∈ Γ(TM)
is a vector field generating a proper action of R>0 on M such that Lτω = 2ω.

Definition 2.2. A toric symplectic manifold is a symplectic manifold (M, ω) together with an
effective Hamiltonian action of a torus T , ρ : T ↪→ Symp(M, ω), such that the dimension of T is
half the dimension of M and there is a proper T -equivariant smooth map µ :M → t∗ = (Lie T )∗

satisfying dµ(a) =−ιdρ(a)ω. The map µ is unique up to an additive constant and is called the
moment map. We recall that at p ∈M , dρ(a) =Xa(p) = (d/dt|t=0

)(exp ta) · p.

Recall that, to a co-oriented compact connected contact manifold, (N2n+1,D), there
corresponds a symplectic cone over a compact manifold, (Do

+, ω̂, τ). Do
+ is a connected

component of the complement of the 0-section in Do, the annihilator in T ∗N of the contact
distribution D. ω̂ = dλ is the restriction of the differential of the canonical Liouville form λ of
T ∗N and τ is the Liouville vector field τ(p,α) = (d/ds|s=0

)e2sαp, so that Lτ ω̂ = 2ω̂. See [Ler03] for
a detailed description.

Definition 2.3. A (compact) toric contact manifold (N2n+1,D, T̂n+1) is a co-oriented compact
connected contact manifold (N2n+1,D) endowed with an effective action of a (maximal) torus
T̂ ↪→Diff(N) preserving the contact distribution D and its co-orientation. Equivalently, the
symplectic cone (Do

+, ω̂, τ) is toric with respect to the action of T̂ and the Liouville vector
field τ commutes with T̂ . We denote by

µ̂ : Do
+→ t̂

∗ = (Lie T̂ )∗

the contact moment map, that is, the unique moment map of (Do
+, ω̂, T̂ ) which is homogeneous

of degree two with respect to τ , see [Ler03].

Definition 2.4. A polyhedral cone is good with respect to a lattice Λ if any facet Fi admits
a normal vector, ûi, primitive in Λ and, for any face FI =

⋂
i∈I Fi, spanZ{ûi | i ∈ I}= Λ ∩

spanR{ûi | i ∈ I} and the ûi (i ∈ I) are linearly independent when FI 6= {0}.

Lerman [Ler02, Ler03] showed that the image, Im µ̂, of the contact moment map of a compact
toric contact manifold (N,D, T̂ ) does not contain 0 and C = Im µ̂ ∪ {0} is a convex, polyhedral
cone which is good with respect to the lattice of circle subgroups, Λ⊂ t̂. C is called the moment
cone.

As mentioned in the introduction, a toric contact manifold of dimension at least five is of
Reeb type if the moment cone C is strictly convex, that is,

C∗+ = {b ∈ t̂ | ∀x ∈ C\{0}, 〈b, x〉> 0} 6= {∅}.
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Indeed, see [BG08], for any b ∈ C∗+, there is a contact form, ηb, (i.e. ker ηb = D) for which Xb is
a Reeb vector field, meaning that ηb(Xb)≡ 1 and LXbηb ≡ 0.

Any strictly convex good polyhedral cone is the moment cone of a toric contact manifold of
Reeb type, unique up to contactomorphisms, see [Ler03].

Definition 2.5. Let (C, Λ) be a strictly convex rational polyhedral good cone with d facets.
Denote by û1, . . . , ûd the set of primitive vectors in Λ normal to the facets of C. For b ∈ C∗+, we
define the labeled polytope

(∆b, ub) = (C ∩ t∗b , [û1]b, . . . , [ûd]b) (4)

where t∗b the hyperplane t∗b = {x ∈ t̂
∗ | 〈b, x〉= 1

2}. Up to translation, tb is the annihilator of b in
t̂
∗ and, thus, its dual space is identified with t̂/Rb. The polytope ∆b is an n-dimensional and

simple polytope. We say that (∆b, ub) is the characteristic labeled polytope of (C, Λ) at b.

As Boyer and Galicki showed in [BG00], the space of leaves Zb of the Reeb vector field Xb is an
orbifold if and only if the orbits of Xb are closed, that is, if and only if Rb ∩ Λ 6= {0}. In that case,
Xb is said to be quasi-regular and b generates a circle subgroup of T̂ , Tb = Rb/(Rb ∩ Λ), which
acts on the cone (Do

+, ω̂) via the inclusion ιb : Tb ↪→ T̂ , with moment map µb = ι∗b ◦ µ̂ : Do
+→ R.

The space of leaves is identified with the symplectic reduction µ̂−1
b (1/2)/Tb. Via the Delzant–

Lerman–Tolman [Del88, LT97] correspondence, (Zb, dηb, T/Tb) is the toric symplectic orbifold
associated to (∆b, ub).

Remark 3. Any compact toric symplectic orbifold admits a moment map whose image is a
convex polytope ∆ in the dual of the Lie algebra of t∗. The weights of the action determine
a set of normals u⊂ t so that (∆, u) is rational with respect to the lattice Λ = ker exp(t→ T ).
The Delzant–Lerman–Tolman correspondence states that a compact toric symplectic orbifold is
determined by its associated rational labeled polytope, up to a T -invariant symplectomorphism
of orbifolds.

Conversely, any rational labeled polytope can be obtained from a toric symplectic orbifold,
via Delzant’s construction. Two Hamiltonian actions (µ, T, ρ), (µ′, T ′, ρ′) on a symplectic orbifold
(M, ω) are equivalent if and only if their labeled polytopes are equivalent in the sense of
Definition 2.1.

A toric Sasaki manifold (N,D, g, T̂ ) is a (2n+ 1)-dimensional Sasaki manifold whose
underlying contact structure is toric with respect to an (n+ 1)-dimensional torus T̂ and
whose metric is T̂ -invariant. Recall that it corresponds to the Kähler toric cone (M, ω̂, ĝ, τ, T̂ , µ̂),
where M = Do

+ and ĝ is the cone metric of g, that is, ĝ is homogeneous of degree two with respect
to the Liouville vector field τ and coincides with g on N ⊂M , seen as the level set ĝ(τ, τ) = 1.
(ω̂, ĝ, Ĵ) is a toric Kähler structure such that τ is real holomorphic. Notice that Ĵτ is induced
by an element b ∈ C∗+ ⊂ t̂, so that Xb = Ĵτ restricts to a Reeb vector field on N . The transversal
Kähler geometry of g refers to the metric ǧ induced on D by g = ηb ⊗ ηb + ǧ.

2.2 Kähler metric in action-angle coordinates
The material of this section is taken from [Abr01, Abr10, BGL08, CDG03, Gui94]. Let
(M2n, ω, J, g, T, µ) be a Kähler toric orbifold, that is, g is a T -invariant Kähler metric and
J is a complex structure such that g(J ·, ·) = ω(·, ·). We are interested in the cases where
P = Im µ is a strictly convex cone or a polytope. We denote by P̊ the interior of P. Recall
from [Del88, Ler03, LT97] that M̊ = µ−1(P̊) is the subset of M where the torus acts freely. The
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Kähler metric provides a horizontal distribution for the principal T -bundle µ : M̊ → P̊ which is
spanned by the vector fields JXu, u ∈ t = Lie T . This gives an identification between the tangent
space at any point of M̊ and t⊕ t∗. Usually, one chooses a basis (e1, . . . , en) of t to identify M̊ '
P̊ × T using the flows of the induced commuting vector fields Xe1 , . . . , Xen , JXe1 , . . . , JXen .
The action-angle coordinates on M̊ are local coordinates (µ1, . . . , µd, t1, . . . , td) on M̊ such that
µi = 〈µ, ei〉 and Xei = ∂/∂ti. The differentials dti are real-valued closed 1-forms globally defined
on M̊ as duals of the Xei (i.e. dti(Xei) = δij and dti(JXej ) = 0).

In action-angle coordinates, the symplectic form becomes ω =
∑n

i=1 dµi ∧ dti. It is well
known [Gui94] that any toric Kähler metric is written as

g =
∑
s,r

Grs dµr ⊗ dµs +Hrs dtr ⊗ dts, (5)

where the matrix-valued functions (Grs) and (Hrs) are smooth on P̊, symmetric, positive
definite, and inverse to each other. Following [ACGT04], we define the S2t∗-valued function
H : P̊ → t∗ ⊗ t∗ by Hµ(p)(u, v) = gp(Xu, Xv), and put Hrs = H(er, es); G : P̊ → t⊗ t is defined
similarly.

When M is compact, necessary and sufficient conditions for a S2t∗-valued function H to be
induced by a globally defined toric Kähler metric on M were established in [Abr01, ACGT04,
Don05]. We are going to adapt the point of view of [ACGT04] to Kähler cones. Let (∆, u) be
a labeled polytope. For a non-empty face F = FI =

⋂
i∈I Fi of ∆, denote tF = spanR{ui | i ∈ I}.

Its annihilator in t∗, denoted toF , is naturally identified with (t/tF )∗. We use the identification
T ∗µ t∗ ' t.

Definition 2.6. The set of symplectic potentials S(∆, u) is the space of smooth strictly convex
functions on ∆̊ for which H = (Hess φ)−1 is the restriction to ∆̊ of a smooth S2t∗-valued function
on ∆, still denoted by H, which verifies the boundary condition: for every y in the interior of
the facet Fi ⊂∆,

Hy(ui, ·) = 0 and dHy(ui, ui) = 2ui, (6)
and the positivity condition: the restriction of H to the interior of any face F ⊂∆ is a positive-
definite S2(t/tF )∗-valued function.

Proposition 2.7 [ACGT04, Proposition 1]. Let H be a positive-definite S2t∗-valued function
on ∆̊. H comes from a Kähler metric on M if and only if there exists a symplectic potential
φ ∈ S(∆, u) such that H = (Hess φ)−1.

This result follows from two lemmas: [ACGT04, Lemma 2], which holds regardless of
the completeness of the metric and thus can be used as such here (Lemma 2.8 below),
and [ACGT04, Lemma 3], which we adapt to toric Kähler cones (Lemma 2.9 below). Then
we prove Proposition 2.11, which is the adaptation of [ACGT04, Proposition 1].

Remark 4. For this adaptation, it is more natural to work with S2t-valued functions G = (Gij)
without requiring that they are the Hessian of a potential φ ∈ C∞(P̊). The metric g defined
via (5) is then an almost Kähler metric.

Lemma 2.8 [ACGT04, Lemma 2]. Let (M, ω) be a toric symplectic 2n-manifold or orbifold with
moment map µ :M →P ⊂ t∗ and suppose that (g0, J0), (g, J) are compatible almost Kähler
metrics on M̊ = µ−1(P̊) of the form (5), given by G0, G, and the same angular coordinates, and
such that (g0, J0) extends to an almost Kähler metric on M . Then (g, J) extends to an almost
Kähler metric on M provided that GG0 and G0HG0 −G0 are smooth on P.
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Lemma 2.9. Let (M, ω̂, τ) be a toric symplectic cone over a compact co-oriented contact
manifold of Reeb type with two cone Kähler metrics inducing the same S2t̂-valued function Ĝ on
the interior of the moment cone. Then there exists an equivariant symplectomorphism of (M, ω̂)
commuting with τ and sending one metric to the other.

Proof. Let ĝ and ĝ′ be two such metrics; they share the same level set

{p ∈M | ĝp(τ, τ) = 1}= {p ∈M | ĝ′p(τ, τ) = 1} 'N.

Indeed, the part (µ̂1, . . . , µ̂n) of the action-angle coordinates does not depend on the metric, the
Liouville vector field is τ =

∑
i 2µ̂i(∂/∂µ̂i), and thus

ĝ(τ, τ) = 4
n∑

i,j=0

µ̂iµ̂jĜij = ĝ′(τ, τ).

The equivariant symplectomorphism, say ψ, of (M̊, ω̂) sending one set of action-angle coordinates
to the other commutes with τ and sends one metric to the other. Moreover, it restricts to
N̊ as an equivariant isometry between g and g′ which can then be uniquely extended to a
smooth equivariant isometry on N by a standard argument. Finally, since g and g′ determine
the respective cone metrics, this isometry pull-backs to a global isometry on M which coincides
with ψ on M̊ . 2

The fact that (ω̂, ĝ, Ĵ) is a cone Kähler structure with respect to τ reads, in terms of Ĥ, as
follows.

Lemma 2.10 [MSY06]. For any 0 6 i, j 6 n, Ĥij is homogeneous of degree one with respect to
the dilatation in t∗. Moreover, if b ∈ t̂ induces the Reeb vector field Xb = Jτ , then for all µ̂ ∈ C,
Ĥµ̂(b, ·) = 2µ̂.

Proposition 2.11. Let (M, ω̂, T̂ , τ) be a toric symplectic cone associated to a strictly convex
good polyhedral cone (C, Λ) having inward primitive normals û1, . . . , ûd. Let Ĥ be a positive-
definite S2t̂

∗
-valued function on C̊. Ĥ comes from a T̂ -invariant almost Kähler cone metric ĝ on

M if and only if:

– Ĥ is the restriction to C̊ of a smooth S2t̂
∗
-valued function on C;

– for every y in the interior of the facet F̂i ⊂ C,

Ĥy(ûi, ·) = 0 and dĤy(ûi, ûi) = 2ûi; (7)

– the restriction of Ĥ to the interior of any face F̂ ⊂ C is a positive-definite S2(̂t/̂tF )∗-valued
function;

– Ĥ is homogeneous of degree one with respect to the dilatation in t∗.

Proof. The necessary part follows from [ACGT04, Proposition 1] and Lemma 2.10 above. For
the converse, take a basis of t consisting of the Reeb vector b (already determined by Ĥ on M̊)
and the normals associated to an edge of C. Following the proof of [ACGT04, Proposition 1],
we consider the first few terms of the Taylor series of the entries of Ĥ in this basis. Then we
conclude the proof with Lemmas 2.8 and 2.9. 2

For b ∈ C∗+, the Boothy–Wang symplectic potential φ̂ of φ ∈ S(∆b, ub) is the function

φ̂(µ̂) = 2〈µ̂, b〉 · φ
(

µ̂

2〈µ̂, b〉

)
+
〈µ̂, b〉

2
log〈µ̂, b〉
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defined on the interior of the cone C, see e.g. [Abr10]. The following proposition adapts the
relation between potentials via reduction given in [CDG03] to the case of cone metrics and non-
necessarily quasi-regular Reeb vector fields. We give a proof below, since this statement does not
appear in this form in the literature and is central in our study.

Proposition 2.12. Let (C, Λ) be a strictly convex good cone with b ∈ C∗+. Denote by (∆b, ub)
the characteristic labeled polytope of (C, Λ) at b. Ĥ is a positive-definite S2t̂

∗
-valued function

on C coming from a T̂ -invariant almost Kähler cone metric ĝ on M with Reeb vector field Xb if
and only if

Ĥµ̂ = 2〈µ̂, b〉Hb
µ + 2

µ̂⊗ µ̂
〈µ̂, b〉

, (8)

where µ= µ̂/2〈µ̂, b〉 ∈∆b and Hb is a positive-definite S2(̂t/Rb)∗-valued function on ∆b satisfying
the conditions of Proposition 2.7 with respect to (∆b, ub).

Moreover, in that case, Ĥ is the Hessian’s inverse of a symplectic potential φ̂ if and only if φ̂
is the Boothy–Wang symplectic potential of φ ∈ S(∆b, ub) whose Hessian’s inverse is Hb. Finally,
ǧ(Xa, Xc) = Hb(a, c) on N .

Proof. The necessary part of the first affirmation follows from [Leg11]. For the converse, take
a basis (e0, e1, . . . , en) of t̂ such that e0 = b, the Reeb vector. Consider the corresponding
coordinates (y0, y1, . . . , yn) on t̂

∗ and write Ĥ and its inverse Ĝ as matrices using (8):

Ĥ =2



y0 y1 · · · yn

y1
... y0Hb +

yiyj
y0

yn


, Ĝ =

1
2y3

0



y2
0 + yiyjGij −y0yiGi1 · · · − y0yiGin

−y0yjG1j
... y2

0Gb

−y0yjGnj


,

where Gb stands for the inverse of Hb. It is then elementary to check that Ĥ satisfies the
conditions of Proposition 2.11 as soon as Hb satisfies the conditions of Proposition 2.7 and that
Ĝ is the Hessian of φ̂ if Gb is the Hessian of φ. 2

Remark 5. If Rb ∩ Λ 6= {0}, then the transversal metric ǧ induced by ĝ on the orbifold Zb is
associated to 2〈µ̂, b〉Hb, see [Leg11].

2.3 Toric cscS metrics and uniqueness
A Sasaki structure (N,D, g) implies three Riemannian structures: the Riemannian metric g on
the contact manifold N , the transversal metric ǧ on the contact bundle, and the Riemannian
metric ĝ on the symplectization M = Do

+. The respective scalar curvatures are related to each
other by

sĝ|N
= sǧ − 4n(n+ 1) = sg − 2n(2n+ 1),

see [BG08]. On the other hand, the scalar curvature of a toric Kähler cone metric ĝ with
symplectic potential φ̂ is given by the pull-back of S(φ̂) defined by the Abreu formula (1) and,
if φ̂ is the Boothy–Wang potential of φ ∈ S(∆b, ub), then

S(φ̂)(µ̂) =
1
〈µ̂, b〉

(
2S(φ)

(
µ̂

〈µ̂, b〉

)
− 2n(n+ 1)

)
,
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see [Abr98, Abr10]. We now give a straightforward corollary of the uniqueness of the solutions
to Abreu’s equation on labeled polytopes, due to Guan [Gun99] and the formulas above.

Lemma 2.13. Up to an equivariant contactomorphism, for each b ∈ C∗+ there exists at most one
toric cscS metric with Reeb vector field Xb.

Proof. If φ̂ and φ̂′ are potentials on the cone C associated to Kähler cone metrics having the
same Reeb vector field Xb, then φ̂ and φ̂′ are the Boothy–Wang potentials of functions φ and
φ′ ∈ S(∆b, ub). φ̂ (respectively φ̂′) defines a toric cscS metric if and only if S(φ) (respectively
S(φ′)) is constant. Now, thanks to Guan’s uniqueness result [Gun99] (recast in terms of
symplectic potentials on labeled polytopes in [Don09]), if S(φ) and S(φ′) are both constant
then φ− φ′ is affine-linear. In that case, φ̂− φ̂′ is affine-linear and thus φ̂ and φ̂′ define the same
Kähler cone metric. 2

Proposition 2.14. Let (N,D, T̂ ) be a co-oriented compact toric contact manifold of Reeb
type with contact moment map µ̂ : Do

+→ t̂
∗

and moment cone C. Let ga and gb be compatible

T̂ -invariant Sasaki metrics on N with respective vector fields Xa and Xb. We suppose that N is
not a sphere, that its dimension is at least five, and that (N,D, ga) and (N,D, gb) are not
3-Sasaki. If ϕ :N →N is a diffeomorphism such that ϕ∗ga = gb, then ϕ is a contactomorphism
and there exist ψ ∈ Isom(N, gb) and A ∈Gl(̂t), preserving the lattice Λ = ker(exp : t̂→ T̂ ),
so that

µ̂ ◦ (ϕ ◦ ψ)∗ =A∗ ◦ µ̂.
In particular, A∗ is an automorphism of C and Ab= a.

Conversely, any linear automorphism of C whose adjoint preserves the lattice gives rise to a
T -equivariant contactomorphism ψ such that if g is a compatible toric Sasaki metric on (N,D, T̂ )
then so is ψ∗g.

Proof. Since 3-Sasaki manifolds, spheres, and 3-manifolds are the only manifolds carrying
Riemannian metrics which are Sasakian with respect to more than one contact structure,
see [BG08], under our assumptions, Isom(N, gb)⊂ Con(N,D). Thus, T̂ and ϕ−1 ◦ T̂ ◦ ϕ are tori
in Con(N,D). Since a Hamiltonian action on the symplectization (Do

+, ω̂) induces isotropic
distributions, T̂ and ϕ−1 ◦ T̂ ◦ ϕ are maximal tori in Isom(N, gb), which is a compact Lie group
since N is compact. In particular, they are conjugate, that is, there exists ψ ∈ Isom(N, gb) such
that

T̂ = (ϕ ◦ ψ)−1 ◦ T̂ ◦ ϕ ◦ ψ.
The differential A at 1 ∈ T̂ of the automorphism τ 7→ (ϕ ◦ ψ)−1 ◦ τ ◦ ϕ ◦ ψ is linear and preserves
the lattice. Moreover, µ̂ ◦ (ϕ ◦ ψ)∗ and A∗ ◦ µ̂ are moment maps for the same Hamiltonian action
of T̂ on (Do

+, ω̂) and they are both homogeneous of degree two with respect to the Liouville
vector field. Hence, µ̂ ◦ (ϕ ◦ ψ)∗ =A∗ ◦ µ̂.

Note that (ϕ ◦ ψ)∗Xb =Xa, since (ϕ ◦ ψ)∗ga = gb and ϕ ◦ ψ ∈ Con(N,D). The converse
follows from the Delzant–Lerman construction. 2

In the proof of Proposition 2.14, the hypothesis that (N,D, gb) is not 3-Sasaki, a sphere,
or a 3-manifold is used to deduce that ϕ−1 ◦ T̂ ◦ ϕ is included in Con(N,D). Thus, we can
remove this hypothesis by assuming that ϕ is a T̂ -equivariant contactomorphism. Combined
with Lemma 2.13, we get the following proposition.
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Proposition 2.15. Let (N,D, T̂ ) be a compact toric contact manifold of Reeb type of
dimension at least five. Two toric cscS metrics ga and gb, with respective Reeb vector fields
Xa and Xb, coincide up to a combination of T̂ -equivariant contactomorphism and transversal
homothety if and only if there exists λ > 0 such that (λ∆b, ub) and (∆a, ua) are equivalent in
the sense of Definition 2.1.

2.4 Transversal Futaki invariant and extremal affine function
Let (∆, u) be a labeled polytope, ∆⊂ t∗, and u⊂ t. Choosing a basis (e1, . . . , en) of t gives a
basis µ0 = 1, µ1 = 〈e1, ·〉, . . . , µn = 〈en, ·〉 of affine-linear functions.

Definition 2.16. Let the vector ζ = (ζ0, . . . , ζn) ∈ Rn+1 be the unique solution of the linear
system

n∑
j=0

Wij(∆)ζj = Zi(∆, u), i= 0, . . . , n (9)

with

Wij(∆) =
∫

∆
µiµj d$ and Zi(∆, u) = 2

∫
∂∆

µi dσ,

where the volume form d$ = dµ1 ∧ · · · ∧ dµn and the measure dσ on ∂∆ are related by the
equality uj ∧ dσ =−d$ on the facet Fj . We call ζ(∆,u) =

∑n
i=0 ζiµi the extremal affine function.

Remark 6. One can also define ζ(∆,u) as the unique affine function such that L∆,u(f) =∫
∂∆ f dσ − 1

2

∫
∆ fζ(∆,u) d$ = 0 for any smooth function f , see [Don02].

The extremal affine function ζ(∆,u) is the L2(∆, d$)-projection of ‘the scalar curvature’
S(φ) to the space of affine-linear functions, for any symplectic potential φ ∈ S(∆, u). Indeed,
integrating (1) and using (6), we get

Zi(∆, u) =
∫

∆
S(φ)µi d$ = 2

∫
∂∆

µi dσ. (10)

In view of this, if there exists a symplectic potential φ ∈ S(∆, u) such that S(φ) is an affine-linear
function, then S(φ) = ζ(∆,u). In that case, the corresponding toric Sasaki metric is extremal in
the sense of [BGS08a]. Thus, we get the following corollary.

Corollary 2.17. On a compact toric contact manifold with good moment cone (C, Λ), an
extremal compatible toric Sasaki metric with Reeb vector field Xb has constant scalar curvature
if and only ζ(∆b,ub) is constant, where (∆b, ub) is the characteristic labeled polytope of (C, Λ)
at b.

For any φ ∈ S(∆, u), we define the linear functional F(∆,u) : t→ R as

F(∆,u)(a) =
∫

∆
faS(φ) d$,

where fa(µ) = 〈a, µ〉
∫

∆ d$ −
∫

∆〈a, µ〉 d$ has mean value 0. Via (10), F(∆,u) does not depend
on the choice of φ. Indeed, setting Z̄ = (1/

∫
∆ d$)Z0(∆, u),

F(∆,u)(a) =
∫

∆
faζ(∆,u) d$ =

∫
∆
fa(ζ(∆,u) − Z̄) d$.

In particular, F(∆,u) = 0 if and only if ζ(∆,u) is constant.
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Given any compatible T̂ -invariant CR structure on a toric contact manifold with Reeb vector
field Xb, Fb = F(∆b,ub) is the restriction of the transversal Futaki invariant of [BGS08a] to the
space of real transversally holomorphic vector fields which are induced by the toric action.
However, our definition of F(∆b,ub) is independent of the choice of a compatible CR structure,
relating this invariant to the symplectic version of the Futaki invariant introduced in [Lej10].

3. The Reeb family of a labeled polytope

A labeled cone (C, L) consists of a polyhedral cone, C, with d facets in some vector space V and
L= {L1, . . . , Ld} ⊂ V ∗, so that C = {y | 〈y, Li〉> 0, i= 1, . . . , d}. Moreover, a labeled polytope
(∆, u) is characteristic of (C, L) at b ∈ V ∗ if ∆ = C ∩ {y | 〈y, b〉= 1} and ui = [Li] ∈ V ∗/Rb. The
interesting case is when L1, . . . , Ld span a lattice Λ⊂ V ∗ for which C is good, since in that case
(∆, u) determines the transversal geometry associated to the Reeb vector Xb on the toric contact
manifold associated to (C, Λ).

Convention 1. From now on, we set ∆ = C ∩ {y | 〈y, b〉= 1} instead of ∆ = C ∩ {y | 〈y, b〉= 1/2}.
This convention facilitates the calculations of the next sections and geometrically corresponds
to normalizing the Liouville vector field so that the symplectic form of the symplectic cone is
homogeneous of degree one instead of two.

Definition 3.1. A Reeb family is a set of equivalence classes of labeled polytopes characteristic
of a given labeled cone (C, L).

3.1 The cone associated to a polytope

Let (∆, u) be a labeled polytope with defining functions

Li = 〈 ·, ui〉+ λi ∈Aff(t∗, R).

That is, ∆ = {x ∈ t∗ | Li(x) > 0, i= 1, . . . , d}, Fi = {x ∈ t∗ | Li(x) = 0}, and ui = dLi via the
identification T ∗µ t∗ ' t.

The defining functions L1, . . . , Ld determine a cone

C(∆) = {y ∈Aff(t∗, R)∗ | 〈y, Li〉> 0, i= 1, . . . , d}

and its dual C∗(∆) = {L ∈Aff(t∗, R) | 〈y, L〉> 0 ∀y ∈ C(∆)}. By translating the polytope ∆ + µ,
we translate the defining functions Lµi = Li − 〈µ, ui〉, producing a linear equivalence between the
cones C(∆) and C(∆ + µ). More generally, we have the following lemma.

Lemma 3.2. If (∆, u) and (∆′, u′) are equivalent by an invertible affine map A, then so are
(C(∆′), L′) on (C(∆), L) via the adjoint map of the pull-back of A.

Proposition 3.3. A labeled polytope (∆, u) is characteristic of a good cone if and only if the
defining functions L1, . . . , Ld of (∆, u) span a lattice in Aff(t∗, R) with respect to which the cone
C(∆) is good.

This proposition follows from the next lemma, where 1 ∈Aff(t∗, R) denotes the constant
function equal to 1.

Lemma 3.4. Let (∆, u) be a labeled polytope with defining functions L1, . . . , Ld. C(∆)
is a non-empty, strictly convex, polyhedral cone. Moreover, (∆, u) is characteristic of
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(C(∆), {L1, . . . , Ld}) at 1 ∈Aff(t∗, R) and, up to linear equivalence, this is the unique labeled
cone for which (∆, u) is characteristic.

Proof. Consider the evaluation map e : t∗ ↪→Aff(t∗, R)∗, that is, for µ ∈ t∗, the map eµ : L→ L(µ)
is linear. We have Im e= {y | 〈y, 1〉= 1} and then e(∆) = Im e ∩ C(∆). For any y ∈Aff(t∗, R)∗,
there exist a unique µ ∈ t∗ and a unique r = 〈y, 1〉 ∈ R such that y = eµ − e0 + re0, where e is
the evaluation map as above. This gives an identification Aff(t∗, R)∗ ' t∗ × R, leading to

C(∆)\{0}= {erµ − e0 + re0 | µ ∈∆, r > 0} '∆× R>0. (11)

By using again the identification T ∗µ t∗ ' t, the differential maps Aff(t∗, R) to t. The differential
corresponds also to the quotient map of Aff(t∗, R) by the linear subspace of constant functions.
Thus, dLi = [Li] = ui ∈Aff(t∗, R)/R1. The uniqueness part of Lemma 3.4 is straightforward. 2

Remark 7. For a given labeled (simple) polytope (∆, u) with vertices ν1, . . . , νN and facets
F1, . . . , Fd, one can define N lattices of Aff(t∗, R) as Λi = 〈Ll | νi ∈ Fl〉Z. They are free groups
of rank n and one can prove that, assuming that Λ = 〈Ll, . . . , Ld〉Z is a lattice in Aff(t∗, R), the
cone (C(∆), Λ) is good if and only if all the groups Λ/Λ1, . . . , Λ/ΛN are free.

3.2 The Reeb family of a labeled polytope

Let (∆, u) be a labeled polytope with defining functions L1, . . . , Ld. Denote the interior of C∗(∆)
by C∗+(∆). It is the set of affine maps b ∈Aff(t∗, R) which are strictly positive on C(∆). C∗+(∆)
is non-empty and open (C(∆) is a closed subset of Aff(t∗, R)∗) and, by using (11), is given by

C∗+(∆) = {b ∈Aff(t∗, R) | 〈b, µ〉> 0 ∀µ ∈∆}.

Using Lemma 3.4, we get that: if (∆, u) and (∆′, u′) are in the same Reeb family then there
exists a unique vector b ∈ C∗+(∆) such that (∆′, u′) is characteristic of (C(∆), {L1, . . . , Ld}) at b.
In particular, the cone C∗+(∆) provides an effective parametrization of the Reeb family of (∆, u).
The affine hyperplane

t∗b = {y ∈Aff(t∗, R)∗ | 〈y, b〉= 1}
is identified with the annihilator of b in Aff(t∗, R)∗ via a translation and then its dual vector
space is the quotient tb = Aff(t∗, R)/Rb.

Proposition 3.5. The Reeb family of (∆, u) is parameterized by

{(∆b, ub) = (Ψb(∆), [L1]b, . . . , [Ld]b) | b ∈ C∗+(∆)},

where [Ll]b is the equivalence class of Ll in tb and the map Ψb : ∆→ t∗b is defined as Ψb(µ) =
eµ/b(µ).

Proof. Using the decomposition (11), we see that

t∗b ∩ C(∆) =
{
eµ/b(µ) − e0 +

e0

b(µ)
=

eµ
b(µ)

∣∣∣∣ µ ∈∆
}
. (12)

The map Ψb(µ) = eµ/b(µ) is well defined and injective on any set where b is positive.
A basis, (v1, . . . , vn), of t provides coordinates on t∗ via µi = 〈µ, vi〉 and so we write

µ= (µ1, . . . , µn), as well as a basis of Aff(t∗, R), that is,

(1, 〈·, v1〉, . . . , 〈·, v1〉), (13)
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which, in turn, gives coordinates on Aff(t∗, R)∗ as y = (y0, y1, . . . , yn), where y0 = 〈y, 1〉 and
yi = 〈y, vi〉.

In this system of coordinates, we have eµ = (1, µ1, . . . , µn) and thus

Ψb(µ) =
1

b(µ)
(1, µ1, . . . , µn).

Denoting b= b(0)1 +
∑n

i=1 bivi,, the differential of Ψb at µ is

dµΨb =
1

b(µ)2

(
− ∂

∂y0
⊗ db+

n∑
i,j=1

(
b(µ)

∂

∂yi
⊗ dµi − bjµi

∂

∂yi
⊗ dµj

))
, (14)

where db is identified with an element of t and thus with a linear map in Aff(t∗, R). For a given
vector X =

∑n
i=1 Xi(∂/∂µi) ∈ Tµ∆, we compute that dµΨb(X) = 0 if and only if db(X) = 0 and

b(µ)X = 0, that is, Ψb is an immersion. 2

3.3 The Futaki invariant of a Reeb family
The purpose of this paragraph is to find a functional over the Reeb family of (∆, u), whose
critical points are the Reeb vector b ∈ C∗+(∆) such that the extremal affine function ζ(∆b,ub) is
constant (i.e. the corresponding restricted Futaki invariant Fb vanishes, see § 2.4).

Notation 1. Fix a basis of t giving coordinates (y0, . . . , yn) on Aff(t∗b , R)∗ as above and set d$ =
dy0 ∧ dy1 ∧ · · · ∧ dyn. For b ∈ C∗+(∆), put ζ(b) = ζ(∆b,ub), where (∆b, ub) is the labeled polytope
in the Reeb family of (∆, u) given by b via the parametrization of Proposition 3.5. Denote by
d$b the volume form on t∗b = {y | 〈y, b〉= 1} ⊂Aff(t∗, R)∗, satisfying b ∧ d$b = d$, and dσb the
measure on ∂∆b determined by the equality Ll ∧ dσb =−d$b on the facet Fb,l = ∆b ∩ Lol . In
the system of coordinates induced from (y0, . . . , yn) on t∗b , the affine extremal function is written
ζ(b) = ζ0(b) +

∑n
i=1 ζi(b)yi ∈Aff(t∗b , R), where (ζ0(b), ζ1(b), . . . , ζn(b)) ∈ Rn+1 is the solution of

a linear system (9) involving the functions

Wij(b) =Wij(∆b) and Zi(b) = Zi(∆b, ub)

computed using d$b.

Remark 8. In the case where L1, . . . , Ld span a lattice Λ for which C(∆) is good, there is a
contact manifold (N, D) associated to (C(∆), Λ). Then, as in [MSY06], one can compute that
up to a positive multiplicative constant depending only on the dimension of N , W00(b) is the
volume of N with respect to the volume form ηb ∧ (dηb)n, where ηb is the contact form of Xb.

Lemma 3.6. For i, j = 1, . . . , n,

W00(b) =
∫

∆

1
b(µ)n+1

d$, Wij(b) =
∫

∆

µiµj
b(µ)n+3

d$,

Wi0(b) =W0i(b) =
∫

∆

µi
b(µ)n+2

d$

and

Z0(b) = 2
∫
∂∆

1
b(µ)n

dσ, Zi(b) = 2
∫
∂∆

µi
b(µ)n+1

dσ.

Proof. We use the coordinate systems on t∗ and Aff(t∗, R) introduced in the proof of
Proposition 3.5.
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Choose p= (p1, . . . , pn) ∈∆ and denote

d$b =
1
b(p)

(
dy1 ∧ · · · ∧ dyn +

n∑
i=1

(−1)i+1pi dy0 ∧ · · · ∧ d̂yi ∧ · · · ∧ dyn
)
.

Thus, b ∧ d$b = dy0 ∧ dy1 ∧ · · · ∧ dyn, since b= b(0) dy0 +
∑n

i=1 bi dyi when viewed as an
element of T ∗y Aff(t∗, R)∗. By setting α=

∑n
k=1 αk with αk = (−1)k+1pk dy1 ∧ · · · ∧ d̂yk ∧ · · · ∧

dyn, we get

d$b =
1
b(p)

(dy1 ∧ · · · ∧ dyn + dy0 ∧ α).

On the other hand, put Aµ =
∑n

i,j=1(b(µ)(∂/∂yi)⊗ dµi − biµj(∂/∂yi)⊗ dµj). In view of the
expression of dµΨb (14), Aµ = b(µ)2dµΨb + (∂/∂y0)⊗ db. Moreover, Aµ is a morphism between
Tµ∆ and the kernel of dy0 in the tangent space of Aff(t∗b , R)∗ and one can prove that4

detAµ = b(0)b(µ)n−1 and db ∧A∗µαk =−bkpkb(µ)n−1 dµ1 ∧ · · · ∧ dµn.

Hence, since α is an (n− 2)-form on Aff(t∗, R) such that α(∂/∂y0) = 0, we have

(Ψ∗bd$b)µ =
1

b(p)b(µ)2n
(A∗µ dy1 ∧ · · · ∧ dyn − db ∧A∗µα) =

1
b(µ)n+1

d$,

where db=
∑n

i=1 bi dµi, via the identification T ∗µ t∗ ' t. The first part of Lemma 3.6 then follows
easily and it remains to prove the statement concerning the functions Z0 and Zi. Note that
Ψ∗bLl = (1/b(µ))ul and then

ul ∧ (Ψ∗b dσb)µ = b(µ)Ψ∗b(Ll ∧ dσb)µ =−b(ν)(Ψ∗b d$)µ =− 1
b(µ)n

d$.

This shows that (Ψ∗b dσb)µ = (1/b(µ)n) dσ for µ ∈ ∂∆, which concludes the proof. 2

Convention 2. For now on, we suppose b(0) = 1. There is no loss of generality since, in view of
the defining equations (9), for r > 0 we have

ζ(rb) = rζ0(b) + r2
n∑
i=1

ζi(b)µi.

Note that Ω = {b ∈ C∗+(∆) | b(0) = 1} is relatively compact in Aff(t∗, R).

Proposition 3.7. The critical points of the functional F : Ω→ R, defined as

F (b) =
Z0(b)n+1

W00(b)n
,

are the affine-linear functions b for which ζ(b) is constant.

Proof. Notice that ζ(b) is constant if and only if ζ(b) = ζ0(b), which happens if and only if ζ0(b)
is a solution of the linear system

Wi0(b)ζ0(b) = Zi(b), i= 0, . . . , n. (15)

In that case, ζ0(b) = Z0(b)/W00(b) with b a solution of

Wi0(b)Z0(b)−W00(b)Zi(b) = 0, i= 1, . . . , n. (16)

4 For example, a proof can use induction on n when viewing Aµ as an n× n matrix depending on two vectors
µ ∈ Rn and b ∈ Rn+1.
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By noticing that for i= 1, . . . , n,
∂

∂bi
W00(b) =−(n+ 1)Wi0(b) and

∂

∂bi
Z0(b) =−nZi(b),

we compute the differential of F at b ∈ Ω:

dbF =
−n(n+ 1)Z0(b)n

W00(b)n+1

n∑
i=1

(Wi0(b)Z0(b)−W00(b)Zi(b)) dbi,

which concludes the proof. 2

Lemma 3.8. Let b ∈ Ω. Then

W00(b) = n
∑
l

∫
Fl

Ll(0)
bn

dσ.

Proof. For b ∈ Ω, put X =
∑

i(µi/b
n)(∂/∂µi), so we have div X = n/bn+1. Thus,

1
n
W00(b) =

∫
∂∆

ιX d$ =−
∑
l

∫
Fl

〈ul, µ〉
bn

dσ =
∑
l

∫
Fl

Ll(0)
bn

dσ

since ul ∧
∑

i ι∂/∂µi d$ = 〈ul, µ〉 d$. 2

Consider the map x= (x1, . . . , xd) : Ω→ Rd whose components are the strictly convex and
strictly positive functions

xl = xl(b) =
∫
Fl

1
bn
dσ.

With this notation and by putting λl = Ll(0), the functionals W00, Z0, and F are

W00(b) = n

d∑
i=1

λlxl, Z0(b) = 2
d∑
i=1

xl, and F (b) =
(2
∑
xl)n+1

(
∑
nλlxl)n

. (17)

For each l = 1, . . . , d, Fl is an (n− 1)-dimensional polytope whose volume is xl, up to a positive
multiplicative constant determined by ul. This suggests applying Lemma 3.8 recursively. Note
that

∫
E(1/b2) dσ(E) = 1/b(pE)b(qE), where dσ(E) is the Lebesgue measure on the edge E and pE

and qE denote the vertices of ∆ lying in E. Therefore, for each edge there are suitable constants
α(E), β(E) so that

W00(b) =
∑

E∈edges(∆)

α(E)
b(pE)b(qE)

and Z0(b) =
∑

E∈edges(∆)

β(E)
b(pE)b(qE)

. (18)

Moreover, F is a rational function of the values of b on the vertices. More precisely,

F (b) =
( ∏
ν∈vert(∆)

1
b(ν)

)
·

(
∑
β(E)

∏
ν /∈E b(ν))n+1

(
∑
α(E)

∏
ν /∈E b(ν))n

, (19)

where the sums are taken over edges of ∆.

Proof of Theorem 1.2. Formulas (17) imply that λ= max{λl | l = 1, . . . , d}> 0 and

F (b) >
(2
∑
xl)n+1

(nλ
∑
xl)n

=
2n+1

(λn)n
∑

xl =
2n

(λn)n
Z0(b).

Moreover, ∂Ω is the set of affine-linear functions vanishing on the boundary of ∆ (but not on
the interior). In particular, they vanish on some vertices of ∆. Since Z0(b) only depends on the
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value of b on the vertices, see (18), Z0(b) and thus F (b) converge to infinity when b converges to
a point of ∂Ω.

Hence, Theorem 1.2 follows from the fact that F is a strictly positive function, defined on a
relatively compact open set Ω, and converging to infinity at the boundary. In particular, F must
have a critical point somewhere in Ω. 2

Proposition 3.9. Let (∆, u) be an n-dimensional labeled polytope with N vertices. The set
of critical points of F is a real algebraic set given as the common roots of n polynomials in n
variables of degree 2N − 3.

Proof. By using (18), dbF = 0 if and only if for any linear function h : t∗→ R,∑
E

(nZ0α(E)− (n+ 1)W00β(E))(h(pE)b(qE) + h(qE)b(pE))
b(pE)2b(qE)2

= 0. (20)

A linear function is determined by its values on n linearly independent points. Taking
a set of n linearly independent vertices of ∆, say p1, . . . , pn, (20) may be written as a
homogeneous equation in n variables h(p1), . . . , h(pn). In particular, if (20) holds for any linear
function h, the coefficient Pi of h(pi) in (20) vanishes for all i. These coefficients Pi are functions
of b(p1), . . . , b(pn) (since b(0) = 1; the affine-linear function b is determined by its value at
p1, . . . , pn). It is easy to see that, up to a suitable positive multiplicative constant, Pi is a
polynomial of degree at most 2N − 3 in n variables b(p1), . . . , b(pn). 2

3.3.1 The Sasaki–Einstein case. Let (N,D) be a contact manifold such that c1(D), the first
Chern class of the contact bundle D, vanishes. In [MSY06], it is shown that the normalized Reeb
vector field for which the transversal Futaki invariant is zero corresponds to the critical point
of the volume functional and that such a point is unique. In our setting, this implies that, if
c1(D) = 0, the critical point of F is unique and corresponds to the critical point of W00(b) in Ω.

The condition c1(D) = 0 is a necessary condition for the existence of a Sasaki–Einstein metric
and corresponds to the fact that the primitive normals of the moment cone lie in a hyperplane,
see [FOW09, MSY06]. Moreover, if Xb is the Reeb vector field of a Sasaki–Einstein metric, then
the basic first Chern class cB1 = 2(n+ 1)[dηb]B, which implies that (∆b, ub) is monotone in the
sense of the following definition.

Definition 3.10. A labeled polytope (∆, u) is monotone if there exists µ ∈ ∆̊ such that
Ll(µ) = c for all l = 1, . . . , d, where c is some positive constant.

In [Don08a], integral polytopes which are monotone (with respect to the normals primitive in
the lattice which is the dual of the lattice containing the vertices of the polytope) are called Fano
polytopes. This terminology is justified since a smooth toric variety X is Fano in the usual sense
(i.e. the anticanonical line bundle −KX is ample) if and only if the integral Delzant polytope
associated to (X,−KX) is monotone in the sense above. Equivalently, the symplectic manifold
associated to this integral Delzant polytope is monotone (i.e. the symplectic class coincides up
to a multiplicative constant with the first Chern class). In the orbifold case, one can prove that
a rational labeled polytope (∆, u) is monotone if only if the associated symplectic toric orbifold
(M, ω) is monotone. The next lemma is straightforward.

Lemma 3.11. The defining functions of a monotone polytope lie in a hyperplane and any labeled
polytope in the Reeb family of a monotone labeled polytope is monotone.
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Theorem 3.12 [MSY06]. If (∆, u) is monotone, then F has a unique critical point. Moreover,
up to a translation of ∆, there exists a constant λ > 0 such that W = λZ.

Proof. The functional F depends equivariantly on the representative of the affine equivalence
class of a labeled polytope. In particular, the number of critical points of F does not change
if we translate the polytope. If (∆, u) is monotone, there exists µ ∈ ∆̊ such that Ll(µ) =
c > 0; then, by using Lemma 3.8, the function W00 associated to (∆− µ, u) is W00(b) =
(n/c)Z0(b). 2

4. Examples: the case of quadrilaterals

Up to affine transform, there exists a unique strictly convex cone with four facets in R3. Indeed,
P Gl(3, R) acts transitively on the set of generic 4-tuples of points of RP2. In particular, up to
linear transform, every Reeb family of quadrilaterals contains the equivalence class of a labeled
square. It is then enough to consider the Reeb family of labeled squares in order to study Reeb
families of quadrilaterals.

Let ∆o be the convex hull of p1 = (−1,−1), p2 = (−1, 1), p3 = (1, 1), p4 = (1,−1) in R2. ∆o

is a square and the vectors normal to its edges are of the form

u1 =
1
r1
e1, u2 =

−1
r2
e2, u3 =

−1
r3
e1, u4 =

1
r4
e2, (21)

where e1 =
(

1
0

)
, e2 =

(
0
1

)
∈ (R2)∗. The defining functions of (∆o, u) are

Ll = 〈 ·, ul〉+
1
rl

for l = 1, . . . , 4. Let us denote the edges El = L−1
l (0) ∩∆o. With coordinates (x, y) on R2, we

have u1 = (1/r1) dx, u2 = (−1/r2) dy, u3 = (−1/r3) dx, u4 = (1/r4) dy. The following lemma is
straightforward.

Lemma 4.1. (∆o, u) is monotone if and only if r1 + r3 = r2 + r4.

Moreover, one can easily check that

Ω = {b= 1 + b1e1 + b2e2 | |b1 + b2|< 1, |b1 − b2|< 1}.

By integration, we get

W00(b) =
∫

∆o

1
b3
dx dy =

2
b(p1)b(p2)b(p3)b(p4)

.

In this setting, the measure dσ can be made explicit:

dσ|E1
=−r1 dy, dσ|E2

=−r2 dx, dσ|E3
= r3 dy, dσ|E4

= r4 dx.

Integrating again leads to

Z0(b) =
∫
∂∆o

1
b2
dσ =

2r1

b(p1)b(p2)
+

2r2

b(p2)b(p3)
+

2r3

b(p3)b(p4)
+

2r4

b(p1)b(p4)
.

We then get

F (b) =
Z0(b)3

W00(b)2
=

2(r1b(p3)b(p4) + r2b(p1)b(p4) + r3b(p1)b(p2) + r4b(p2)b(p3))3

b(p1)b(p2)b(p3)b(p4)
.

1630

https://doi.org/10.1112/S0010437X1100529X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X1100529X


Existence and non-uniqueness of cscS metrics

Put a1 = b1 − b2 and a2 = b1 + b2 so that b(p1) = 1− a2, b(p2) = 1− a1, b(p3) = 1 + a2,
b(p4) = 1 + a1, and Ω' {(a1, a2) | |ai|< 1}. Moreover,

F (b) =
2(a1a2K + a1(K − 2(r2 − r3)) + a2(K − 2(r4 − r3)) +K − 2(r2 + r4))3

(1− a2
1)(1− a2

2)

with K = r1 + r3 − r2 − r4. Note that K = 0 if (∆o, u) is monotone.
One can prove the following lemma using elementary methods.

Lemma 4.2. The point b= 1 + b1e1 + b2e2 ∈ Ω is a critical point of F if and only if (a1, a2) =
(b1 − b2, b1 + b2) ∈ R2 is a common root of the polynomials

P (a1, a2) = −a2
1a2K − a2

1(K + 2(r2 − r3)) + 2a1a2(K + 2(r4 − r3))
+ 2a1(K + 2(r2 + r4)) + 3(a2K +K + 2(r2 − r3)),

Q(a1, a2) = −a2
2a1K − a2

2(K + 2(r4 − r3)) + 2a1a2(K + 2(r2 − r3))
+ 2a2(K + 2(r2 + r4)) + 3(a1K +K + 2(r4 − r3))

lying in the square {(a1, a2) | |ai|< 1}. Consequently, F has at most seven critical points.

Lemma 4.3. If r1 = r3, r2 = r4, and r1 + r3 > 5(r2 + r4), then K > 0 and P and Q have exactly
five distinct common roots: (0, 0), ±(a,−a) with 0< a2 = 1− 4(r2 + r4)/K < 1, and ±(a, a) with
a2 = 5 + 4(r2 + r4)/K > 1.

In particular, F admits three distinct critical points in Ω.

Proof. If r1 = r3 and r2 = r4, then K + 2(r4 − r3) = 0, K + 2(r2 − r3) = 0, and

P (a1, a2) =−a2
1a2K + 2a1(K + 2(r2 + r4)) + 3a2K,

Q(a1, a2) =−a2
2a1K + 2a2(K + 2(r2 + r4)) + 3a1K.

Write P (x, a2) = C(x)a2 +D(x), where C(x) =−Kx2 + 3K and D(x) = 2(K + 2(r2 + r4))x.
Since C and D do not have any common root, P and Q have at most five common roots of
the form (

a,−D(a)
C(a)

)
with a a root of C2(x)Q

(
x,−D(x)

C(x)

)
.

By noticing that

P (a1,−a1) =−Q(a1,−a1) = a1(a2
1K −K + 4(r2 + r4))

P (a1, a1) =Q(a1, a1) = a1(−a2
1K + 5K + 4(r2 + r4)),

we get the desired five distinct common roots.
Since r1 + r3 > 5(r2 + r4), 0< 1− 4(r2 + r4)/K < 1 while 5 + 4(r2 + r4)/K > 1. 2

We have to find which examples provided by Lemma 4.3 correspond to Reeb vector fields
on a toric contact manifold, that is, which labeled squares of Lemma 4.3 are characteristic
of a good cone. Denote by (e1, e2, e3) the standard basis of R3. Consider the polyhedral cone
Co = {x | 〈x, δj〉> 0, j = 1, . . . , 4} ⊂ R3, where the rays δi are

δ1 = R>0(e3 + e1), δ2 = R>0(e3 + e2), δ3 = R>0(e3 − e1), δ4 = R>0(e3 − e2).

Lemma 4.4. Each strictly convex polyhedral cone with four facets in R3 is equivalent to Co by
an affine transform. Moreover, Co is a good cone with respect to a lattice Λ⊂ R3 if and only if
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there exists s > 0 such that the primitive normal vectors inward to Co are û1 = sc1(e1 + e3),
û2 = sc2(e2 + e3), û3 = sc3(e3 − e1), and û4 = sc4(e3 − e2) for some positive integers c1, c2, c3,
c4 such that

lcm(c1, c2) = lcm(c1, c4) = lcm(c3, c2) = lcm(c3, c4). (22)

Proof. The first statement follows from the fact that P Gl(3, R) acts transitively on the set of
generic 4-tuples of points of RP2 and that the normal lines of a strictly convex polyhedral cone
are generic (any subset of three elements is a basis).

In our case, the normal inward vectors are û1 = c1(e1 + e3), û2 = c2(e2 + e3), û3 = c3(e3 − e1),
and û4 = c4(e3 − e2). Up to multiplication by a constant s > 0, we may assume that ci ∈Q for
all i. Indeed, the fact that (Co, Λ) is rational (i.e. it is possible to choose uj ∈ Λ) implies that
ci/cj ∈Q. Moreover, there exists a primitive vector of Z4, say k = (k1, k2, k3, k4), such
that

∑
j kjuj = 0. This vector is unique up to sign and, putting C = lcm(c1, c2, c3, c4), we choose

it to be

k = (C/c1,−C/c2, C/c3,−C/c4).

The Delzant–Lerman construction [Ler03] implies that the symplectic cone over the toric contact
manifold is the quotient of

X̃ =
{

(z1, z2, z3, z4) ∈ C4\{0}
∣∣∣∣ 4∑
j=1

kj |zj |2 = 0
}

by the action of S1, defined by ρ : S1 × X̃ → X̃,

ρ(λ, z) = ((λk1z1, λ
k3z3), (λk2z2, λ

k4z4)).

Lerman [Ler03] showed that the quotient constructed via this method from a rational polyhedral
cone (Co, Λ) is smooth if and only if (Co, Λ) is a good cone. The stabilizer of a point z ∈ X̃ is
determined by its vanishing components, precisely Stabρz = {λ ∈ S1 | λkj = 1 if zj 6= 0}. One can
then verify that the stabilizer group of each point z ∈ X̃ is trivial if and only if

gcd(k1, k2) = gcd(k1, k4) = gcd(k3, k2) = gcd(k1, k4) = 1. (23)

Since kj = (−1)j−1C/cj and |ab|= lcm(a, b)gcd(a, b), the condition (23) is equivalent to
lcm(c1, c2) = lcm(c1, c4) = lcm(c3, c2) = lcm(c3, c4) = C. 2

Proof of Theorem 1.3. Let (r1, r2, r3, r4) ∈ Z4 with p= r1 = r3, q = r2 = r4 being coprime
integers such that p > 5q. Let u be defined by (21). The labeled cone of (∆o, u) is identified
with the cone Co labeled with the vectors

û1 =
1
p

(e1 + e3), û2 =
1
q

(e2 + e3), û3 =
1
p

(e3 − e1), û4 =
1
q

(e3 − e2).

These vectors are all contained in a lattice Λ and the rational cone (Co, Λ) is good since it satisfies
Lemma 4.4. In particular, (Co, Λ) is associated to the Wang–Ziller manifold M1,1

p,q with the toric
contact structure (D, T̂ ) described in [BGSO8b].

The set of characteristic labeled polytopes of (Co, Λ) is the Reeb family of (∆o, u) which
satisfies the hypothesis of Lemma 4.3. Hence, there exist three Reeb vectors

bo = (0, 0, 1) and b± =
(

0,±
√

1− 4q
p− q

, 1
)
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whose respective characteristic labeled quadrilaterals have constant extremal affine functions.
Via [Leg11, Theorem 1.4], there exist symplectic potentials, say φbo ∈ S(∆bo , ubo) and φ±b ∈
S(∆b± , ub±), for which S(φbo), S(φb+), and S(φb−) are constant. In particular, their respective
Boothy–Wang symplectic potentials φ̂bo , φ̂b+ , and φ̂b− define toric Kähler cone metrics ĝbo , ĝb+ ,
and ĝb− on the symplectic cone over (M1,1

p,q ,D, T̂ ) for which the associated Sasaki metrics gbo ,
gb+ , and gb− on M1,1

p,q have constant scalar curvature.

The Wang–Ziller manifold M1,1
p,q is diffeomorphic to S2 × S3, see [BGSO8b], and cannot carry

a 3-Sasaki structure due to its dimension. Thus, it satisfies the hypothesis of Proposition 2.14.
So, if there exists a diffeomorphism ψ such that ψ∗gbo is a transversal homothety of gb+ , then
there exists a real number λ > 0 such that (λ∆bo , ubo) is equivalent to (∆b+ , ub+) in the sense of
Definition 2.1. But, this cannot happen since ∆bo is a square while ∆b+ is a trapezoid. Similarly,
gbo and gb− are not isometric as Riemannian metrics even up to a transversal homothety.

On the other hand, the linear transform A=−e1 ⊗ e∗1 − e2 ⊗ e∗2 + e3 ⊗ e∗3 preserves the set
of normals and exchanges b+ and b−. Thus, A∗ preserves Co and provides a T̂ -equivariant
contactomorphism sending gb+ to gb− , thanks to Proposition 2.15. 2
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(Birkhäuser, Boston, MA, 2008), 263–290.

BGL08 D. Burns, V. Guillemin and E. Lerman, Kaehler metrics on singular toric varieties, Pacific J.
Math. 238 (2008), 27–40.

1633

https://doi.org/10.1112/S0010437X1100529X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X1100529X


E. Legendre

Cal85 E. Calabi, Extremal Kähler metrics. II, in Differential geometry and complex analysis, eds I.
Chavel and H. M. Farkas (Springer, Berlin, 1985), 95–114.

CDG03 D. M. J. Calderbank, L. David and P. Gauduchon, The Guillemin formula and Kahler metrics
on toric symplectic manifolds, J. Symplectic Geom. 1 (2003), 767–784.

Del88 T. Delzant, Hamiltoniens périodiques et images convexes de l’application moment, Bull. Soc.
Math. France 116 (1988), 315–339.

Don02 S. K. Donaldson, Scalar curvature and stability of toric varieties, J. Differential Geom. 62
(2002), 289–349.

Don05 S. K. Donaldson, Interior estimates for solutions of Abreu’s equation, Collect. Math. 56 (2005),
103–142.

Don08a S. K. Donaldson, Kähler geometry on toric manifolds, and some other manifolds with large
symmetry, in Handbook of geometric analysis. No. 1, Advanced Lectures in Mathematics
(ALM), vol. 7 (International Press, Somerville, MA, 2008), 29–75.

Don08b S. K. Donaldson, Extremal metrics on toric surfaces: a continuity method, J. Differential Geom.
79 (2008), 389–432.

Don09 S. K. Donaldson, Constant scalar curvature metrics on toric surfaces, Geom. Funct. Anal. 19
(2009), 83–136.

FOW09 A. Futaki, H. Ono and G. Wang, Transverse Kähler geometry of Sasaki manifolds and toric
Sasaki–Einstein manifolds, J. Differential Geom. 83 (2009), 585–636.

Gun99 D. Guan, On modified Mabuchi functional and Mabuchi moduli space of Kähler metrics on
toric bundles, Math. Res. Lett. 6 (1999), 547–555.

Gui94 V. Guillemin, Kähler structures on toric varieties, J. Differential Geom. 40 (1994), 285–309.
Leg11 E. Legendre, Toric geometry of convex quadrilaterals, J. Symplectic Geom. 9 (2011), 343–385.
Lej10 M. Lejmi, Extremal almost-Kähler metrics, Internat. J. Math. 21 (2010), 1639–1662.
Ler02 E. Lerman, A convexity theorem for torus actions on contact manifolds, Illinois J. Math. 46

(2002), 171–184.
Ler03 E. Lerman, Toric contact manifolds, J. Symplectic Geom. 1 (2003), 785–828.
LT97 E. Lerman and S. Tolman, Hamiltonian torus actions on symplectic orbifolds and toric

varieties, Trans. Amer. Math. Soc. 349 (1997), 4201–4230.
MSY06 D. Martelli, J. Sparks and S.-T. Yau, The geometric dual of a – maximisation for toric Sasaki–

Einstein manifolds, Comm. Math. Phys. 268 (2006), 39–65.
MSY08 D. Martelli, J. Sparks and S.-T. Yau, Sasaki–Einstein manifolds and volume minimisation,

Comm. Math. Phys. 280 (2008), 611–673.
Tia90 G. Tian, On Calabi’s conjecture for complex surfaces with positive first Chern class, Invent.

Math. 101 (1990), 101–172.
Yau93 S.-T. Yau, Open problems in geometry, in Differential geometry: partial differential equations

on manifolds (Los Angeles, CA, 1990), Proceedings of Symposia in Pure Mathematics, vol. 54,
Part 1 (American Mathematical Society, Providence, RI, 1993), 1–28.

Eveline Legendre eveline.legendre@cirget.ca
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