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Abstract

In this paper an ill-posed problem for the heat equation is investigated. Solutions u to the equation
u, — uxx = 0, which are approximately known on the positive half-axis t = 0 and on some vertical
lines x — xj,... ,x = xn, are considered and stability estimates of these solutions are presented. We
assume an a priori bound, governing the heat flow across the boundary x = 0.

1980 Mathematics subject classification (Amer. Math. Soc): 35 K 05.

1. Introduction

Suppose that the temperature u(x, t) of an oil well is initially known for any
depth x and then the temperature is monitored at some depths *,,. . . ,xn, for all
times. However, the monitoring device measures the temperature only approxi-
mately. A natural question arises to what inference can be made from such a set
of data, can the temperature u(x, t) at any time t for any depth x be determined
at least approximately?

A simple (though coarse) approach to this problem might be to determine a
solution u(x, t) to the heat equation

(1 .1 ) ut = uxx ( 0 < x < < x > , 0 < t < o o )

such that: (i) the initial value u(x,0) is given: (ii) the values w(x,, /)>• • • »"(*„» 0

of u on some vertical half-axes are known; (iii) u does not increase too fast as
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x -» + oo. Without loss of generality, the initial condition can be assumed to have
the form

(1.2) u(x,0) = 0 ( 0 < x < o o ) .

An appropriate growth condition is

(1.3) Mm x~2ln( fTu2(x,t)dt) =0 foranyTX).

If/,,... ,/„ denote the monitored measurements at given knots xu... ,xn, e and
Pj, i = \,...,n, are positive numbers with px + • • • +pn = 1, then a convenient
way of formulating condition (ii) is

Thus the ratio e/Jp~ represents an upper bound to the error of measurement of u
at xt.

In this paper we deal with the problem specified by (1.1)—(1.4). We indicate
that this problem is an ill-posed problem in the sense of Hadamard, and that it
has some instability. Our results are theoretical and we give additional conditions
which restore stability of solutions. Moreover we give explicit stability estimates
and by using the least squares method we establish a formula for obtaining stable
solutions.

A key remark is in order at this stage. The set (1.1), (1.2), (1.3), (1.4) is a
statement of an ill-posed problem in the sense of Hadamard. More precisely, the
evaluation of any solution u to (1.1)—(1.4) on the left of the vertical line x = xt

(the first vertical axis carrying data) may suffer from an arbitrarily large error,
whatever the error in the data is. This assertion is easily proved with the help of
the following argument. Let u satisfy equation (1.1) and boundary conditions
(1.2), (1.3), and let 0 < a < b be any two fixed points. A well-known uniqueness
theorem (see for example [10]) tells us that the values u(a, t) of u on the line
x — a determine the values of u on the line x — b according to the rule

u(b,t) = l'u{a,s)K{t- s)ds

where

0 if / < 0

and h = b — a. In other words, the forward operator mapping the restriction of u
to the line x = a into the restriction of u to the line x = b is the convolution with
a kernel K whose Fourier transform is given by

(1.5)
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where ^7f = | £|1/2exp[(/w/4)sign £]. Formula (1.5) shows that the operator in
question is bounded in L2(0, + oo), actually it is a contraction and it is one-to-one.
Furthermore, it is a strongly smoothing operator which maps L2(0, +oo) into a
subclass of C°°(0, + oo) and has not a bounded inverse. These facts are a
consequence of the fast decay of the Fourier transform of the kernel K. Hence we
arrive at the following conclusion: the backward operator, mapping the restriction
of u to the line x — b into the restriction of u to a line located at the left of x = b, is
not bounded in L2(0, + oo). The last property amounts exactly to the previously
mentioned instability. A completely explicit example may be the following:

are solutions of (1.1), (1.2), (1.3) such that

0

I uL
n{a,t)dt = 4nz -> oo.

•'o

As is well known, an ill-posed problem in the sense of Hadamard is a process in
which effectual information on solutions is not available from the data. In other
words instability, namely the impossibility of efficiently recovering a solution
from conventional data, can be thought of as a consequence of a loss of
information. Experience has shown that the stability of solutions can often be
restored by complementing conventional data with a priori bounds on the
solutions, the role of these a priori bounds being to replace the lost information.
In the present paper we assume that the heat flow at the bottom of the oil well
does not exceed a fixed quantity. More explicitly, we shall be concerned with
solutions to problem (1.1), (1.2), (1.3), (1.4) which satisfy the a priori bound

(1.6)

where £ is a given constant.
Our results are presented in the next sections. We must mention that the

problem we are dealing with was discussed by Tihonov and Glasko [9], who
especially stressed its numerical aspects. Stability estimates have been obtained,
by methods quite different from ours and in a different functional setting, by
Cannon [2], [3], [4], [5]. Similar problems have been discussed by Anderssen and
Saull [1], Glasko, Zaharov and Kolp [6] and P. Manselli and K. Miller [7].
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2. Stability estimates

The aim of stability estimates is to describe how much the development of

solution from data magnifies errors, when noise affects the data. In other words, a

stability estimate should tell how much any two solutions, which fit the data up to

some error (and possibly satisfy reasonable a priori bounds), differ from each

other. When the problem is linear in nature, stability estimates can be derived by

estimating the size of solutions to the corresponding homogeneous problem. Thus

we shall be concerned in this section with solutions u to the heat equation (1.1),

which satisfy the homogeneous boundary conditions (1.2), (1.3) and the following

inequality

(2-1) 2
k=\

We retain condition (1.3), which plays the role of an a priori bound.

THEOREM. Let u satisfy (1.1), (1.2), (1.3), (1.6) and (2.1). Then the following

estimates hold:
[ roc ] 1/2

" ' • E / .<£ N-ln
m (2/m)\n(E/e) l + o In

\n(E/e)

(ii) |jf u\x,t)dt\

(iii) sup{|w(x,r): t > 0}

^•n m

~\+x/m

In
1

V2 e . E
l n

Here m is the mean

(2.2) m=pxx] + ••• +pnxn

and the abscissa x, that is involved in (ii), (iii), is to be kept fixed between 0 and m.

The symbols o(l) stand for quantities which are infinitesimal as e/E -> 0 {we do not

claim that these infinitesimals are uniform with respect to x).

REMARK 1. We have not specified the function class where our solutions u are

sought. For our purposes, any function class (that is any meaning of the

boundary conditions) is allowed which leads to the usual representations of

solutions to the heat equation in terms of Poisson type integrals.
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REMARK 2. As it will be clear from our proofs, the previous estimates could be

given in a more precise (though less explicit) form. For instance, the following

inequality is proved below:

(2.3)

where

(2.4a)

an increasing convex function on 0 < X < oo having a zero of infinite order at
X = 0. An elementary argument shows the following behaviour of the inverse
function

hence (2.3) is a more comprehensive version of (i).

REMARK 3. The above theorem shows that the difference between any two

solution M, and u2 to problem (1.1), (1.2), (1.3), (1.4), (1.6) satisfies

(2.5a)

where <J> is given by (2.3). We want to stress here that the same proof allows us to
replace such a <#> with the following one:

n

(2.5b) *(A) = X 2 />*exp(-x,/27x).
k=\

The latter form of <£, though more involved, brings into evidence how error
bounds may depend upon the (position and number of the) knots xt,...,xn as
well as the precisionpk of the measurement at xk. In particular, formulas (2.5a),
(2.5b) may help in investigating those arrangements of knots which lead to the
minimum error estimate.

PROOF. A well-known uniqueness theorem (see [11] for example) guarantees
that any solution u to (1.1), (1.2), (1.3) can be represented by the formula

(2.6a) u(x,t) = f'u(0, s)K(x, t - s) ds
Jo

where

(2.6b) {
i f f < 0
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is a derivative of the fundamental solution of the heat equation. A more
comprehensive form of (2.6) is

(2.7) /4.U)exP(^-x^)-=|; '

where denotes the Fourier transform and

.0 i f / < 0 .

In the derivation of (2.7) the formula

is involved, as well as Paley-Wiener theorem.
Formula (2.7) lumps together equation (1.1), initial condition (1.2) and growth

condition (1.3). The limitation (1.6) goes into a constraint for 0, since (2.4) and
the Plancherel theorem yield

On the other hand, (2.1) implies

(2.10)

where m is given by (2.2). Indeed (2.4) and the Plancherel theorem yield

k=\ 0 •'-oo k = ]

because of the arithmetic-geometric inequality.
Now we are in a position to prove assertions (i) and (ii). Fix x such that

0 =£ x < m and define a function <j> with the following rule:

(2.11) <,(X)=^exp(-mV
/2T), X = \ exp(-x^), | > 0.

The properties of <j> that we need are listed in the lemma below. In particular we
use in a crucial way the convexity of <f>. Note that if x = 0 (2.11) simply becomes
(2.4a).
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Denote the L2(0, oo) norm by II ||. We have the following chain of inequalities:

\u(x, -)II

(because of formulas (2.7) and (2.9))

(2 12) (Jensen inequality for convex functions)

(see equation (2.11))

(see inequality (2.10) and formula (2.9)).
H« x (o , - )H 2

As 0(A)/X increases with X, (2.12) and (1.6) give

(2-13)

In view of the expansion of (/>"' (see lemma below) the estimates (i), (ii) have been

established.
A proof of (iii) runs as follows. From (2.7) we get

hence the Cauchy-Schwarz inequality gives

| u(x, t) |< [ / + J exp(- (1 -

1/2

for any X between 0 and 1. Combining this estimate with (ii) gives

\x\/m
vyi f i i 1/ z. F / ^

|«(*,0l- 1 — A w

hence (iii) follows when X is so chosen that the dominating part of the last

estimate is as small as possible.
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LEMMA. Let 0 < a < b be two fixed numbers. Define a function <j> by the formula

(2.15) <t>(X) = r2e~b\ X = r~2e-"r, r > 0.

The following properties hold:

(i) </>(X)/X, hence <j>(X), increases as X increases;

(ii) <£(X) is convex;
(iii)<KX) = X*/fl((-lnX)/a)2(-I+*/'f l )(l + o(l)) as X -» 0;
(iv) <t>~\n) = n"/b((-lnfi)/b)2{-l+a/b\l + o(l)) as ju - 0.

PROOF, (i) (d/dX){^(X)/X) = {d/dX)e(a~b)r = (a - b)e^~by • \/(dX/dr)
= (b - a)ri/{ar + 2) > 0.

(ii) (d2<j>/dX2) = (b- a)(2 + 2(b + a)r + abr2)r3ear/(2 + arf > 0.
(iii) We start from an expansion of r in terms of X. Here r and X are connected

by (2.15b), namely

(2.16) r2ear = 1/X.

Defining q by the formula

(2.17)

and inserting (2.17) into (2.16) gives the following equations for q:

(2.18) a\Jq + In q = In (1/X)

From (2.18) one easily sees (by taking derivatives, for example) that q is a
decreasing function of X. Thus q must have a limit as X -» 0, and (2.18) tells us
that this limit is +oo. Consequently

for (2.18) yields

We have thus proved In q = ln(a~' ln(l/X))2 + o(l), hence

(2.19) r = - l n + o(l)
a X ( l / a l n l /X) 2

because of (2.17). Combining (2.19) with (2.15a) gives easily the wanted property

Properiy (iv) follows from (iii), by interchanging a with b. Our lemma is fully
proved.
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3. Least squares method

A constructive existence theorem for problem (1.1), (1.2), (1.3), (1.4), (1.6)
should involve both (i) showing that (under suitable compatibility conditions on
the data/,(?),- •• ,/„(?)> e> E) t n e s e t °f a'l solutions u to the heat equation (1.1),
which satisfy conditions (1.2), (1.3) together with (1.4) and (1.6), is not empty;
and (ii) exhibiting a representative from such a set of solutions. The least squares
method (see [7] for example) provides us with a strategy for discussing these
questions. In our case, the method may consist of looking for the solution u to the
heat equation (1.1), which satisfies conditions (1.1), (1.2) and minimizes the
quadratic functional

(3.1) e~2 2 Pkr\u(xk, t) -fk(t) \2dt + E~2 f°ul(0, t) dt.
k=\ Jo Jo

Presently, we shall prove the following two facts:
(i) the minimum (under the specified constraints) of the functional (3.1) is

(ii) the minimizer w of (3.1) is given by

(3.3a) u(x,

(3-3b) *(*) =
-(e/EY\i\

Here fk denotes the Fourier transform of fk, it is understood that all fk are
continued by zero on the negative axis. We proceed as follows:

(i) The level set

{u solution to (1.1): u satisfies (1.2) and (1.3),
(3.4)

the functional (3.1) at u is less than 1}

is not empty if and only if the following condition (where only data of our
problem are involved) holds

(3.5) the integral (3.2) is less than 1.

Obviously, (3.4) is a subset of the collection of all solutions to our problem (1.1),
(1.2), (1.3), (1.4), (1.6). Hence (3.5) ensures that our problem has solutions.
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(ii) Suppose that condition (3.5) holds. Then the function u defined by (3.3), is

a solution to problem (1.1), (1.2), (1.3), (1.4), (1.6): actually (3.3) is a distinguished

member of the level set (3.4), namely (3.3) is just the Chebyshev centre of (3.4) (see

[9] for comments). Let us recall that the Chebyshev centre of a convex subset K of

a Hilbert space is the point u from K, which minimizes the worst deviation

between u and any other point from K; in other words, u is the solution of the

minimax problem

sup{ | |u — v\\:v E. K) — minimum.

The above results are the main concern of this section. As far as proofs are

concerned, it is enough to observe that the functional (3.1) takes the form

\s Jfx { * \ *v — i •» n. » \ r \ , t ~ f » n . ^ ~ t ** S

lire2

. * = > 2UxPk™p[-xkfi\r\) + (e/Ef

if one uses (3.3a) to represent u.
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