N-ARY TRANSFORMATIONS OF SEQUENCES

by A. V. BOYD
(Received 19th March 1959)

1. Let $T\left(\alpha_{1}, a_{2}, \ldots, a_{n-1}\right)$ be the n-ary transformation which takes the sequence $\left\{s_{i}\right\},(i=0,1, \ldots)$, into the sequence $\left\{s_{i}^{\prime}\right\}$ where

$$
s_{i}^{\prime}=\sum_{r=1}^{n} a_{r} s_{i+1 \cdots r}, \quad(i=0,1,2, \ldots)
$$

with $s_{m}=0$ when m is a negative integer, and where $\alpha_{1}, \ldots, \alpha_{n}$ are real numbers with sum unity. In a previous note (1) conditions were found on a and β for the ternary transformation $T(\alpha, \beta)$ to be equivalent to convergence. A method is given here for treating the similar problem for the general n-ary transformation.
2. It is clear that, in the notation of (1), the $T\left(a_{1}, a_{2}, \ldots, a_{n-1}\right)$ transformation is a Nörlund transformation with

$$
\begin{gathered}
M=n-1, \quad p_{r}=\left\{\begin{array}{c}
a_{r+1}(r=0 \text { to } n-1), \\
0(r \geqslant n),
\end{array}\right. \\
P_{r}=1(r \geqslant n), \quad p(x)=\sum_{r=1}^{n} a_{r} x^{r-1} .
\end{gathered}
$$

Then, as in the particular case $n=3$, the n-ary transformation is equivalent to convergence if and only if all the zeros of

$$
\phi(x)=\sum_{r=1}^{n} a_{r} x^{n-r}
$$

lie in the region $|x|<1$. The set of points in the ($\alpha_{1}, \ldots, a_{n-1}$) -space for which this is the case may easily be determined as shown in the next paragraph by using the following results quoted from (2):

Exercise 10.2. A polynomial $g(z)=z^{n}+g_{1} z^{n-1}+\ldots+g_{n}$, with real coefficients, has all its roots in the half-plane $R 1 z<0$ if and only if the determinants

$$
H_{k}=\left|\begin{array}{lllll}
g_{1} & g_{3} & g_{5} & \ldots & g_{2 k-1} \\
1 & g_{2} & g_{4} & \ldots & g_{2 k-2} \\
0 & g_{1} & g_{3} & \ldots & g_{2 k-3} \\
0 & 1 & g_{2} & \ldots & g_{2 k-4} \\
. & \cdot & . & \ldots & . \\
. & . & . & \ldots & . \\
. & . & . & \ldots & . \\
0 & 0 & 0 & \ldots & g_{k}
\end{array}\right|, \quad \begin{aligned}
& \\
& \left(g_{\tau}=0 \text { if } r>n\right)
\end{aligned}
$$

are all positive.
Exercise 10.3. The transformation

$$
z=r \frac{1+w}{1-w}, \quad r>0,
$$

maps the half-plane $R 1 w<0$ into the circular region $|z|<r$.
3. The Quaternary Transformation $T(\alpha, \beta, \gamma)$.

Let S denote the set of points (a, β, γ) for which the $T(a, \beta, \gamma)$ transformation is equivalent to convergence.

When $\alpha=0, T(a, \beta, \gamma)$ reduces to the ternary transformation $T(\beta, \gamma)$ and the results of (1) show then that the portion of S lying in the plane $\alpha=0$ is made up of the point $(0,0,0)$, the segment $\gamma>\frac{1}{2}$ of the γ-axis, and the region for which both $2 \beta+\gamma>1$ and $\gamma<\frac{1}{2}$.

If $\alpha \neq 0$ then, on putting

$$
x=\frac{1+w}{1-w}
$$

the equation $\phi(x)=0$ becomes $(2 a+2 \gamma-1) f(w)=0$
where

$$
f(w)=w^{3}+\frac{3-4 \beta-4 \gamma}{2 \alpha+2 \gamma-1} w^{2}+\frac{6 a+4 \beta+2 \gamma-3}{2 \alpha+2 \gamma-1} w+\frac{1}{2 \alpha+2 \gamma-1} .
$$

When $2 a+2 \gamma=1$ the equation $\phi(x)=0$ has a root $x=-1$. Hence, by exercise 10.3, we require $f(w)=0$ to have all its roots in the half-plane $R 1 w<0$. The necessary and sufficient conditions
or

$$
\begin{aligned}
& g_{1}>0, \quad\left|\begin{array}{ll}
g_{1} & g_{3} \\
1 & g_{2}
\end{array}\right|>0, \quad \text { and } \quad\left|\begin{array}{lll}
g_{1} & g_{3} & 0 \\
1 & g_{2} & 0 \\
0 & g_{1} & g_{3}
\end{array}\right|>0 \\
& g_{3}>0, \quad g_{1}>0 \text { and } g_{1} g_{2}-g_{3}>0
\end{aligned}
$$

of exercise 10.2 then become

$$
\begin{gathered}
a+\gamma>\frac{1}{2}, \quad \beta+\gamma<\frac{3}{4} \text { and } \\
2 \beta^{2}+\gamma^{2}+3 \alpha \beta+3 \beta \gamma+3 \gamma \alpha-2 \alpha-3 \beta-2 \gamma+1<0 .
\end{gathered}
$$

This last inequality may be written

$$
\begin{array}{r}
\left(\sqrt{ } 7+\frac{3}{2}\right)\left\{x^{\prime}-\frac{28+13 \sqrt{ } 7}{19 \sqrt{(28+6 \sqrt{ } 7)}}\right\}^{2}-(\sqrt{ } 7-3)\left\{y^{\prime}-\frac{28-13 \sqrt{ } 7}{19 \sqrt{ }(28-6 \sqrt{ } 7)}\right\}^{2} \\
<-\frac{1}{\sqrt{19}}\left\{z^{\prime}-\frac{3 \sqrt{ } 19}{361}\right\}
\end{array}
$$

where

$$
\begin{aligned}
x^{\prime} \sqrt{ }(28+6 \sqrt{ } 7) & =3 a+(2+\sqrt{ } 7) \beta+(1+\sqrt{ } 7) \gamma \\
y^{\prime} \sqrt{ }(28-6 \sqrt{ } 7) & =3 a+(2-\sqrt{ } 7) \beta+(1-\sqrt{ } 7) \gamma \\
z^{\prime} \sqrt{ } 19 & =a-3 \beta+3 \gamma,
\end{aligned}
$$

so that it is satisfied to one side of an hyperbolic paraboloid whose vertex is at

$$
\left(\frac{54}{361}, \frac{123}{361}, \frac{124}{361}\right) .
$$

REFERENCES

(1) D. Borwein and A. V. Boyd, Binary and ternary transformations of sequences, Proc. Edin. Math. Soc., 11 (1959), 175.181.
(2) H. S. Wall, Analytic Theory of Continued Fractions, New York, 1948.

Department of Mathematics
 University of the Witwatersrand

