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EXTENSION OF HOLOMORPHIC ^-FUNCTIONS
WITH WEIGHTED GROWTH CONDITIONS

KLAS DIEDERICH AND GREGOR HERBORT

Introduction

In this article a new contribution to the following question is given: Let Q

c c Cn be a bounded pseudoconvex domain with C°°-smooth boundary, q ^ dQ a

fixed point and H a /c-dimensional affine complex plane such that q ^ H and H in-

tersects dQ at q transversally. Let U be a suitably small neighborhood of q, and

denote by r a C°°-defining function of Q on U. Under which conditions on dQ near

q is it possible to find an exponent f] > 0 such that every holomorphic function /

onfi' = # n £ n C/with

(0.1) f \f\2dl' < oo

where dXr denotes the Lebesgue-measure on H, can be extended to a holomorphic

function / on Q Pi U such that even

(0.2) f
J QnU

f dl
< oo.

More generally, we will also consider certain cases, where dXf and dX are the re-

spective Lebesgue-measures together with a weight factor of the form e'^ where

(p is allowed to be not plurisubharmonic.

One of the main motivations for studying this question in a situation, which is

necessarily technically more complicated than in previous work, is the following:

in [B-D] (Theorem 3) a d-solving integral operator was constructed on bounded

pseudoconvex domains with real-analytic boundary, which is regularizing with re-

spect to the Z^-norm, a result which, so-far, has not been obtained by other

methods. In the respective estimation of that kernel (Proof of Theorem 3) a prop-

osition was used which was stated on p. 93 of [B-D] and for the proof of which it

was referred to the present article. Theorem 1 of the present article is, in fact,

this proposition.
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1 4 2 KLAS DIEDERICH AND GREGOR HERBORT

Similar extension problems as here have been considered in several articles

by various authors. In fact, the solution of the Levi problem as given in Horman-

der's book [H2] (see Theorem 4.2.9) is already based on a simple extension tech-

nique for L2-holomorphic functions or, more generally, 9-closed (0, q)-forms. Re-

fined extension results with L2-control are, for instance, due to T. Yoshioka [Y],

T. Ohsawa [ 0 1 ] , S. Nakano [ N ] , T. Takegoshi [O-T] , T. Ohsawa [02] and

Diederich-Herbort-Ohsawa [D-H-0].

In [D-H-0] a quantitative version of the following statememt was proved: If

Q is uniformly extendable near q, then there are always holomorphic functions on

QC\ HD U which are not in L2 (QDHCWJ), but can, nevertheless, be ex-

tended to square-integrable holomorphic functions on Q Pi U. The goal of this

article as expressed by the inequalities (0.1) and (0.2) can be understood as in

some sense dual to this fact. Namely, here we start with holomorphic L2-functions

/ o n Q Pi H Pi U and extend them to holomorphic functions / o n Q C\ U which are

better than just L2 . In order to deal with this problem a more complicated 9-solv-

ing machinery has to be applied than in [D-H-0]. We will use as our most essen-

tial tool a curvature inequality due to T. Ohsawa and K. Takegoshi [O-T].

The research of the first author on the subject of this article has been sup-

ported by the Stiftung Volkswagen and by the SFB 170 in Gottigen. It is a plea-

sure to thank these institutions for their support.

§ 1. Basic notions, notations and results

Let Q c c Cw be a bounded pseudoconvex domain with C°°-smooth boundary,

Zo € dQ an arbitrary point. By a defining function of Q near z0 we mean a C°°

real-valued function r on a neighborhood U of z0 such that

QC\ U= {z € U\r(z) <0}

and dr{z) ¥= 0 for all z £ dQ Pi U. We talk about a global defining function r of

Q if U is a neighborhood of all of dQ .

In [D-L] the notion of pseudoconvex extendability of finite order was introduced

as a summarization of certain properties which in [D-F 2] were already shown to

hold for dQ real-analytic. For the purpose of this paper we need the following

modified version of this notion:

DEFINITION. Let Q be as above, 0 € dQ and r a defining function of Q near 0.

Furthermore, let H be a /c-dimensional complex linear subspace of Cn which in-

tersects dQ at 0 transversally and let iV € N. For £ € Cn we denote by H^ the

affine subspace of Cn parallel to H and passing through £. Then Q is said to be
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uniformly extendable of Nth order (in a pseudoconvex way) along the H^ near 0 if

there exist a radius R > 0 and a function <o(£, z) € C°°(M), where M = (5(0 ;

i?) PI Q) X 5 (0 ; 21?), with the following properties

1) dipdi z) * O o n M
2) There is a d > 0 such that for £ € £ ( 0 ; # ) f| £ and z € 5 ( 0 ; 2i?)

we have

d ( - dist(s, #c) + r(C) + r(z))

3) The sets {z € 5 ( 0 ; 2R) | p(£, z) < 0} are pseudoconvex for all

C € 5(0; #) PIS.
In complete analogy to the proof of Theorem 2 in [D-F 2] the following can

be shown (we will not give details in this article):

PROPOSITION. / / dQ is Cw and of finite type near 0, in particular, if dQ is C0*

everywhere, and if H is as above, then there is an N € N such that Q is uniformly ex-

tendable of Nth order along the H$ near 0.

Remark. It was shown in [D-F 1] that bounded pseudoconvex domains Q c c

Cn with smooth real-analytic boundaries are of finite type.

Now let D c Q be a pseudoconvex domain given by

(1.1) D= {pD:= r+(po(\z\2) < 0 } ,

with a convex increasing smooth function (p0 on R, for which, with small £ > 0,

0o = 0 on ( - oo , s2] . S o 3D Pi 5 ( 0 ; e) = dQ D B(O; e). Assume D a Q f|

5 ( 0 ; 2e). We will solve our extension problem on D.

Given a holomorphic function / on D Pi #c as in (0.1) we will construct the

holomorphic extension/ for/ , for which (0.2) holds, in the following special form:

/ = / i — g, where/ i is a smooth extension o f / t o a "cone" shaped set with sup-

port in this set, and g is a smooth function on D which satisfies

(1.2) dg = df1.

In order to make this more precise, we introduce, for £ € 5 ( 0 ; i?), the orthogonal

projection TT? of Cn onto i / and let 7r£ = id — #£.

Then, for small enough Co, R' > 0, and for all £, with | £ | < Rr, the cone

is mapped onto D C] HQ under 7Tc, and

(1.3) 2
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Let us fix a cut-off function % € QfOR) with 0 < % < 1, % = 1, on [— y , y ]

and supp(x) ^ [""1, 1]. For a positive continuous function y we denote by L2(D,

ydXn) (resp. L2(DP|HC , ydXk)) the space of measurable functions on D (resp.

Z) Pi H$) which are square-integrable with respect to the measure ydXn (resp.

ydXk). Here, for 1 < v < n, dXv denotes the Lebesgue measure in complex dimen-

sion v. Our extension theorem is the following (cf. Proposition (p. 93) in [B-D]).

THEOREM 1. Let Q — ir < 0} be a bounded pseudoconvex domain in Cn with

C°°-smooth boundary which contains 0, and let D c Q be a pseudoconvex domain as in

(1.1) with defining function pD. Assume H c Hk+1 are linear subspaces of Cn of

dimensions k and k+l, respectively, and H intersects dQ transversally nearO.

Furthermore, suppose Q is uniformly extendable in a pseudoconvex way of Nth order

along the affine subspaces H^ with an extending function p defined on (5(0; i?) Pi

Q) X 5 ( 0 ; 2R). Let a, 5 be numbers with 0 < a < 1 and 5 € ( - 1 + ^ , ^ ) .

Then for small e' > 0 there exists a family (i?c)c€B(o;e')n0 of continuous linear ex-

tension operators

£ c : L\D n #c I PD \ddXk) f] 6{D H Ed >

LHD n H?\ (I PD \d-2a/N I log | pD ||"3) (z)\ ifdz)\-2{l~a)

of the form

where g^ e C°°(D f) H*+1) is a function satisfying

(1-5) / I gc I2 ( ' j ° ^ i i - T ) 2 | J ^ '' [is dX"+l ^ C \ \ h \ \ l .

tin^ a positive constant C, independent of Q. The operator norms of the E\ are bounded

above by C.

Remark. In case k — n — 1, we obtain again Proposition 2 of [D-H-O] up

2
to zero-order terms in | pv \ by choosing a — 1 and d = -»?.

By an iteration method on Theorem 1 we can consider the following situation.

Suppose that we have an ascending chain of linear subspaces
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Hk = # g Hk+l c • • • a Hn~l a #w = c*

such that for each v the section Q C\ Hv+1 is uniformly extendable along Hv, k

< v < n — 1, of order M,+i ^ 2 near 0.

Then we have the following results:
n 1

THEOREM 2. Assume Q and H are as before. Let en : =min{2 2 -irr, 1 ~ £r/)

with an t" > 0 arbitrarily small, and 0 < <5 < 2 /Nk+i. Then there exists a bounded

linear extension operator

E : L\D r\H,\pD \8dXk) f| 6 (D H H) >

L2(D, I pD \8'Sn I log I pD \\-3(n-k)dAn) 0 G{D),

if D is sufficiently small.

THEOREM 3. Let en be as in Theorem 2, and £«= £«/2. If d > 0 is small

enough, then there exists a bounded linear extension operator

E' : L \ D D H , \ p D \8dXk) H 6 (D H H) >

L2(D, I pD \8~£'nd~l I log I pD ||-3(M-A)) 0 6(D).

Here d denotes the function d(z) = U^l dist(z, Hv).

§ 2. The apriori estimate for the d equation with weights

Let (X, ds2) be a hermitian manifold of dimension n, and a> : X—• R+ be a

continuous function. For q € {0,..., n — 1} we denote by L2
n, q)(X, a>, ds2) the

Hilbert space of all measurable (n, q) forms u for which | fx u A * w a)) \ is fi-

nite. Here, * is the Hodge operator associated to ds2. If (p is a real-valued con-

tinuous function on X, the 9 operator and its formal adjoint have densely defined

closures d <p: L\n,q) (X, e'*, ds2) —• L2
n,q+i) (X.e'^yds2) and d $ : L2

n,q+i)

(X, e~\ ds2) -+ L2(n,q) (X, e~\ ds2). The domains of d9 and 9J will be denoted

&om(dtp) and dom (9*), respectively, and the scalar product and norm on L\n,q)

(X, e'*, ds2) b y ( • , ')dS2,e-<p a n d b y || \\dS2,e-9.

The following theorem on the solvability of the d equation is well-known

([A-V]):

PROPOSITION 2.1. Let v € L?M(9+i)(Z,^"^,ds2) be a smooth d closed form on

X. Suppose there exists a positive continuous function rj on X such that, with a positive

constant Cv we have the basic estimate
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(BE) | (« , v)dS2,e-« \2 < Cv QUu)

for all u € L2(n,q+i)(Xye~(p
y ds2) D dom(d<p) Pi d o m ( ^ ) , where Q<p,v(u) : =

d <pu\\2dS2,e-<p + \\Jrf dtu\\2dS2,e-v. Then there exists a solution w € L2
n,Q)(X,

ds2) of the equation d(4v w) — v, satisfying || w ||2dS2,<r«> ^ Cv.

If one looks carefully at proof of this theorem, then one observes, that the fol-

lowing holds

PROPOSITION 2.2. If Y is a subspace of L\n,q+i)(X, e'^, ds2) 0 Null space ofd^

with (BE) holding for each v € Y, then there exists a linear operator S: Y —•

L\n,q){X, e~\ ds2) with d(^frjS(v)) = v and\\ S(v)||W* ^ Cv.

We want to solve (1.2) by using this proposition with suitable (p and rj and

metric ds2. Our starting point is a curvature estimate due to Ohsawa-Takegoshi

(the formula before Proposition 1 in [O-T], p. 199) which leads to sufficient con-

ditions on the auxiliary functions (p and rj for (BE) to hold for a given smooth

form v € L2
n,i)(X, e'*\ ds2). The lemma which is relevant for our purposes is

PROPOSITION 2.3. Let v € L2
n>i)(X, e'*, ds2) be a smooth form on X. Suppose,

ds2 is Kahler, and there are smooth functions <p and rj on X, r] > 0, such that

2a) i ddcp > ds

b) The length |— Ids* of—*- with respect to ds2 is bounded above by some

positive constant C\.

c) — T] is strictly plurisubharmonic on X, and the integral Jq>(v) : = fxv A *

-ddv v e'^ is finite, where * -ddv is the Hodge operator associated to the Kahler metric

with potential ~ rj.

Then, for any smooth (n, 1) form u onX with compact support, we have

(BE') \(u, i>W*l2 < 2(l+2Cf)

Proof. Let A be the adjoint in L2
n,i)(X, e~v, ds2) of the left multiplication by

the fundamental form of ds2. For any u e C%'l{X) : = space of compactly sup-

ported smooth (w, 1) forms on X the Ohsawa-Takegoshi curvature formula gives

(2.1) Q<p,v(u) > i((Y]dd(p — ddrj) A Au, u)dS2,e-<p + 2 Re(u, drj A

The second member on the right-hand side is in absolute value bounded by

\(u, dr) A d$u)ds2,e-«>\ = l(V>?w, ~^~ A \[r\ d^u)ds\e-A

<iy\\y/rj'u \\2ds2,e-v + 2Cf || V^ d$U \\2ds*,e-p
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< -^iirjddcp A Au, u)dS2,e-v + 2C\Q<P,n(u)

(since, by (a), || vV u \\2ds2,e-<p ^ i(f]dd(p A Au,u)dS2>e-cp) . Substituting this into (2.1)

we arrive at

(2.2) -i(ddrj A Au,u)dS2,e-* < (1 + 2Cl)Q9fV(u).

Our claim now is

(2.3) \(u,v)dS2,e-<p I2 ^ —2i J<p(v)(ddr] A ylw,^)d52,g-*>.

Let for proof of this inequality U be any local coordinate patch and (o>i,..., o)w)

be an orthonormal frame for ds2 on U; by # w e denote the volume form of ds2.

Let A = (r]Vu)v,u=i be the matrix for which
_ n

-ddr] = S rj^Wv A aju.

For any form w € C?'1^^) we write on C/

M; = ZIM^V cui A • • • A o)n A co^,

and denote by id the column vector entries Wi,..., wn and wlw its transpose. Then

we have on U:

(a) u A * W = ^ e~9 dV

08) —1"99?7 A yl« A * w e-
9 = ^uAU e~9 dV

(r) v A *-ddV v e'v = 't; A"1^ ^ " ^ 7

Now by the Cauchy-Schwarz inequality we can estimate

By means of a standard partition of unity argument we obtain (2.3) from this.

Obviously (BEr) is implied by (2.2) and (2.3) •

§3. Proof of Theorem 1

We begin by normalizing the holomorphic coordinates in such a way that, if

we write z = (z", zf), z" = (zi,..., 2*), z' = (z*+i,..., z»), / r / = (zr/, ^ + i ) , z* =

(z*+2,..., 2M), then / / = {z ^ CM I / = 0}, Hk+1 = {z € CK | 2* = 0}, and hence

HQ= {/ = C'}, /f?+1 = {** = C*}. The projections 7r£ and TTC now have the form

7f£(z) = (z", O and ^(z) = {Q\zr — CO- Furthermore, we assume that the

Re Zi-axis points in the direction of the outer normal to dQ at 0. Notice that,
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because of the transversality of H and dQ, for any £ € B (0; e') Pi i2 there is

always a £ € 5 ( 0 ; e) Pi 9 0 such that 'Hi = # c We fix such a £. For each / €

I2(Z) PI Hz, I ft> |5 <£**) f| 6(D 0 #c) we introduce a smooth 3-closed («, l)-form

on X := D H Ht+1\E^ by

(3.1) ^ ^ ^

For small enough c0 we have supp(#/) c KCQ(Q. In order to be able to apply

Proposition 2.3 we first provide J£ with a complete Kahler metric and choose a

smooth function cp on X satisfying iddcp > ds2 (which is hypothesis (a) in Pro-

position 2.3). For 0 < 5' < < 1 — ^ + 5 we let

(3.2) ^ = - d' log(- PD(Z", C*)) + 1^ I2 +

where V ^ ( O - - log l o g ^

Then (pi is the potential of a complete Kahler metric ds2 on X. With a smooth

plurisubharmonic function W which will be chosen later, we put

(3.3) <p:= q>!+ ¥.

For a small number j8 > 0 we define

(3.4) rj : = -(-pD)f+8'-d(l ~ jSlog (-pD(zf", C*)))3^//c

and will prove later that, if we replace pD by pDe~Llz]2 with a large positive num-

ber L, then r] will, (after shrinking Z), resp. a) satisfy the conditions (b) and (c) of

Proposition 2.3 uniformly with respect to £ with an explicit estimate J<p(v/) in

terms of the norm | | / | | hwc\HQ\pD\s <*;*). Our key lemma now is:

LEMMA 3.1. Let 0 < p < 1 and m € No. T/ẑ n the positive numbers /3, e,

and sf < £ and £/i£ defining function pr> for D can be chosen such that for any £ €

B(0; e') fl dQ the function

(3.5) )?:= - ( - ^ ) P ( 1 - ^ l o g ( - p z ) ( z w , C*)))3W^/C

t5 strictly plurisubharmonic on X and satisfies

(i)

PD

positive constants Ci, C2 depend on p, m and e, but not on £, and
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d operator with respect to z!"'.

Proof. Since for all small enough 5' (independently of Q one has

i d>"9D ^ 9'" pD (sidd(- d'log (-(

it follows that

> iy Pi

* '^<i- pi
We can now check (i). A computation gives

1 ...

7} V 1—jSlog ( —pj

For sufficiently small j8 > 0 and e' < £r < £ < TT £~e we have

0 < 3i8m / 1 - jS log ( ~ P D ) <p/2 on D, and - VH(. ̂  1, when \ C I < e';

hence

S*. ^ 2fi. ( ^ C * } As* + 2

This proves (i). To obtain (ii) we need to choose the defining function for D suit-

ably. By the arguments of [D-F 3] we can find a constant L > 1 such that, for

£ < 1 the function o—~ ( — PD)1~(1~P)2 is strictly plurisubharmonic on D and

i dda > icz \ a \ dd\ z \2. The numbers L and c3 > 0 do not depend on £. If we use

the notation Up = 1 — jSlog (~PD) and (p = C/|m* (— V^c) we have

where // = >>_^ lies in (0,1). Explicit computation and evaluation at (z'", C,*) now

gives the formula

(3.6)

~" ( a a

^ A g '

https://doi.org/10.1017/S0027763000004037 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000004037


1 5 0 KLAS DIEDERICH AND GREGOR HERBORT

on X. If s is small enough, then U& ̂  1 on D Pi Hi+l for any choice of /J > 0; then

we choose [i < p/6m so small that

n _ 9 ( 3 w l ) ( l j g £ ) i 8 v . _ jtz
/> u ^ p } 2'

Now

7 A a +
 ff

 A F

, 4 .

at (/", C*) e ^- This will imply (because of (3.5) and i dda > - c3odd\z |2):

(3.7) - iW^- > i(l - n)(±c3(ddr I z'" I2
7/ \ ^

on X, where we also have — V# > log log -q~, if | C I < £-

Hence, for e < ^- exp (— exp (8(1 —fi)/fi)) we can estimate on X

fj(c3(dd)'"\ z'"
.„ j 9^(7 A

Since d'"o/o — —r^- dmpo/OD, inequality (ii) now follows a constant C2 > 0 in-

dependent of £. EH

The key lemma applies to the function r] defined by (3.4) . (It has the form fj

with m — 1, and /> = -TT + d' — d. The assumptions on (5 and N, as well as the

choice of 5r make sure that 0 < p < 1). By virtue of Proposition 2.2 we have for

any form u € a w )

(BE') |(M, zv)rfs2,e-J2 ^ 2(1 + 2CI) JM

Estimation of J<p{Vf). Let us now estimate the integral

A *-(d-drv

in terms of \\ fWhwnH^ip^dA^- Here |* \-(ddvv" denotes the length of a form with re-
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spect to the Kahler metric with potential — rj. By computation we obtain

(3.8) t ) / = ± I - /^mk±L- r J

\PD(Z", CO I

[dog i l r i) d"'VHi + ̂  (/', C0l A o)*+i
L 2fc+i LA;+I ; IOD J

where Z l = x'( | z ' - C I /c* \ pD(z", CO I), d" = dz% and a>4+1 = dzx A
dz/c+i. Therefore:

(3.9) v, Y-mm £ 2 xl I f(z", O

[ d o g i . K i ) 2
-(dd)'"v "I" U'.CO -(dd)'"v

By (ii) in Lemma 3.1 we have ~~VH / C2T].

A

In order to estimate the second term in the brackets on the right side of (3.8) we

write

The form within { } has coefficients which are bounded on D Pi H£+l by c*

I Zk+i—^ic+i I with some positive constant c* independent of £. Thus, again by (ii) of

Lemma 3.1

and, on supp(v/), c KC0(Q because of (1.3):

(3 ^Q\ I d"pp(z", C)\-dd)'"y < g

PD{Z\ O

Since

+ 8

id"'VHAdf"VH =

PD

I 2

O D ( ^ , C*) 2

i dzk+i A d
4 I £*+i - G+i I2log2-

we obtain from (3.10) and (ii) of Lemma 3.1 at once
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dffpD(z\ CO 2
~{d~d)wr)

^ C i 2

5̂ - log
?7

on supp(tv), with a universal positive constant c5. Finally (3.9) and (3.10) imply

(3.11) I vf I lah've-' £ c61 f(z", OY I PD(Z"'£*)\d e~"

We shall now choose the plurisubharmonic weight function W in a suitable way,

using the uniform extendability of Q along H^. The goal is to cancel the denomina-

tor in (3.11). For this we need

PROPOSITION 3.2. Let C be as before. Then there exists a smooth function a(£; •)

on B(0; 3e) with the following properties: (a) The surface {<?(C; *) ~ 0} is smooth

and pseudoconvex from the side {<r(C; *) — 0}, (b) With a positive constant Ci {inde-

pendent of C) the estimate

d ( - I z'- CI + PD(Z)) < 5(C; 2) < - I / - C IN+P«U)

is satisfied for any z £ B (0; 2s).

Proo/. The construction of (J from the given extending function p follow from

a simple patching argument. One only has to use the fact that dD\dQ is every-

where strictly pseudoconvex and therefore even extendable of order two. We leave

the details to the reader. •

We now can construct ¥ in the following way:

LEMMA 3.3. There exists a smooth function a in an open neighborhood of D

which is negative on D, such that the function

W(z"') :=jj(-a\og(-o(/", C*)) + AHog | %i"G+i I)

is plurisubharmonic on D C\ H*+1, for any £ € dQ f] B (0; £.') and satisfies

PD(Z", C*)l2a/JV

(3.12) e-w<C[ _ r |2

on supp (Vf), where C[ is a positive constant independent of Z,, and furthermore,

(3.13) e~r > \zk+1 - C*+i \m-a)

mDc\ m+i.

Proof. For large enough A > 0 the function

a(z) : = eMU* ~ |2|2)&(C; z)
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will work (cf. [D-H-O], Lemma 2, part b)) . We have on D D

(3.14)
Zk+i C,*+i I

Thus (3.12), (3.13) follow from part (b) of Proposition 3.2 with z replaced by

The estimation of J<p(Vf) can now be finished as follows: We substitute (3.12)

into (3.11) and replace \ pD(zf\ £*) \d by 2ldl\pD(z", CO I5 (possible because of

(1.3) ). Integration over D Pi H*+1 by means of Fubini's theorem will give us the

desired estimate

(3.15) Mvf) <Wf\\2mDnHQ\pDW)

where c7 is a positive universal constant, independent of C-

The extension operator Since the metric ds2 is complete Kahler, (BE) is satis-

fied for all u € L\n, D(X, e'9, ds2) Pi dom (d9) Pi dom (9*). This follows from

Proposition 5 in [A-V]. We apply our Proposition 2.2 to the space

Y = {v/\fs L2(D n # c I PD \ddXk) 0 6{D f] Hd)

and represent the solution operator S (with q = 0) as

S(vf) — S'(f) dzl A . . . A dzk+i.

Our claim is that

is the desired extension operator. Clearly E$(f) is holomorphic on D Pi

(= X). From the definition of <p and ?P*we get

(3.16) T]\PD\8\ l o g 1 pp

Qk
< e4

a

Furthermore | a\ > \ pD I (because of Proposition 3.2b) . Thus

L lJ"3 5 I S'(f)\W"" <

S'(f)\2e-'dXk+1 < oo.

0, tfs ^+i —• G+i, and so £c(/") i s a holomor-This implies yfri S'if) (4", C*)

phic extension for / to D Pi //c+1 .
Finally, we check the weighted L2 estimte for E^(f), (see the formula before
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(3.16). Namely

\ c o I PD\Z , Q)\/ I Zk+i - C*+i I I l o g I pz?( / , C*)l

,,1+2a/W r \f{Z«,o\2\pD(z'',o\5-% f i — _ f 1 |2(1-a,
{z";(z", Q')eD] Zk+i<=A(z")

|2«D n *..|pj««*) (»>ith A(Z") = {| Zk+1 ~ Ct+l I < Co I /OflCz", C')|}),

by Fubini's theorem, with a universal positive constant c8. Also by (3.2), (3.3),

(3.4), and (3.13) :

\ I
/

2) n #*+1

< ^ 2 f \S'{f)\2e-'pdXk+l<c9Jie(vf)

D n #£+ 1

— Cio

This finishes the proof of Theorem 1. •

Remark. We can state our Theorem 1 in a slightly more general way, namely:

THEOREM 1'. Let the hypotheses concerning Q, H, Hk+i, D, a, d, e, e', and N

be as in Theorem 1. Furthermore fix a number m € No and suppose V is plurisubhar-

monic on Q and satisfies V°rf^< V on D Pi Hk+1 D 7f(~l(D Pi HO,\ C I < e'. Tfom,

a/^r shrinking sr if necessary, there exists a family (EO^eQnB(o;sf) of bounded linear ex-

tension operators

EQ:= L\D n Hi, \pD\8\ log | pD | -3me~vdXk) H 6{D D HO

>L2(D PI Ht+\ I p^ l ' - f I 7r^|-2(1-fl)| log I pD I ~3me-vdAk+1) H 0(D D Htl).

the operator norms of which are bounded uniformly in £.

The proof of this theorem is almost the same as for Theorem 1. Just replace

the weight function <p of (3.3) by

and in (3.4) let

)? = - ( - PD)% + d' - da - log (-pD))3m+3vHc

Then all the arguments will go through as before. Any difficulties which come
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from lack of smoothness of V can be overcome by a standard smoothing argument

similar to that of [O-T].

§ 4. Proofs of Theorems 2 and 3

Proof of Theorem 2. For k < v < n we let ev = min {2Z y=*+i -fr, 1 - e"},

and Eh = 0. Obviously Theorem 2 will be implied by the following statement

E (v) : There exists a bounded linear extension operator

Ev: L\D DH,\pD \!dAk) f)& (Df\H) •

L\D H H\ I pD I5"5" I log I pD l-3<»-»dF) 0 6 (D n Hv).

We proceed by induction (on v). E(k) is trivial. Let us assume E(v) is true

and v < n. We need to construct a bounded linear extension operator
,5-e

EV, v+l: L\D n ^ i ^ i v I log i PD i |-3(y-fc)^y) n e (D n //y) >
L \ D n i /v + 1 , I pD f ~Wl I log I pD \\-3{»+1-k)dAu+1) H 0 (DH Hv+1).

Note that the gain in the L2 estimate of the extension is now £v+i "~ sv which is in

general less than 2/Nv+\. (Indeed, if ev+\ = ev — 1 — e", then we cannot expect

any gain at all). The operator Ev, v+i can now be constructed by pursuing the esti-

mates in the proof of Theorem 1 step by step, setting a = 1, C = 0, m—v — k,

replacing H by Hv, Hk+l by Hv+1, 5 by dv, and using the weight functions

(4.1) <pi = - d'log(-pD

where 5' € (0, £/r/), TIHV+1 is the orthogonal projection onto Hv+1,

VHV= - l o g l o g l / ( d i s t ( - , ^ ) | ^ + 1 ) ,

W= - (ev+1-sv) log ( - ( j | H»+l) + 21og (dist(-, H»)\ H»+l),

a being the function from Lemma 3.3, and

T) = - ( -pz>l# v + 1 ) 5 '+ £ y + 1 - 5 a - i8log {-pD I //v+1))3(^1- / c )y / /v.

(Note that for 0 < 5 < 2/Nk+l, 0 < 5' < e", Lemma 3.1 applies to this r\ !). The

induction step is now complete. Just choose Ev+i = Ev, v+i ° £"y.

Proo/ o/ Theorem 3. The argument is similar to the one above. For v —

A:,..., n we let e'v=ev/2, sv being as in the proof of Theorem 2, and dv —

Ilyijfc dist(*, H1), dk = 1. Inductively (on v) we show the statement

Ef{v) : There exists a bounded linear extension operator
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El: L\D C\H,\pD \8dXk) D6 (D D H) >

L2(D 0 H\ I pD \5-£» I log I pD I \-3{v-k) dU1 dX>)C\ 0(DH H»).

Again Er(k) is trivial. Suppose Er(v) holds, and v < n. If we repeat the proof of

Theorem 1 with a = l / 2 , £ = 0, m = v - k, replacing 5 by d'v : = 5 — e» i / by

# v , i/*+1 by # v + 1 and work with the weight functions

<Pi being as in (4.1),

W = - ( e 'y + i - eD log ( - a\ H»+1) + 2 log (dist(-,

where a is as in Lemma 3.3,

qf = ^ ri+ log rf, + Wf

and

^ = ~(-PD I ̂ +i)«t+ i+*'-«(i - ^ l o g (~pD I ^ + 1 ) ) 3 ( v + 1 - * > ^ ,

we obtain a bounded linear extension operator

E'y, v+l: L
2(D 0 //y, I PD I8'* I log pD I l " 3 ^ - ^ ^ 1 ^ v ) 0 €{D H / / v ) ^

L\D n /fy+i, I pz) l'-£^+i I log i pD I i - 3 ^ 1 -*^ 1 !^ 1 ) n €{D n #v + i) .
As before, the induction step follows with £"v+i = E'v,v+i° Ev.

REFERENCES

[A-V] Andreotti, A.-Vesentini, E., Carleman estimates for the Laplace-Beltrami equa-
tion on complex manifolds, I.H.E.S. Publ., 25 (1965) , 313-362.

[B-D] Bonneau, P.- Diederich, K.,Integral solution operators for the Cauchy-Riemann
equations on pseudoconvex domains, Math. Ann., 286 (1990) , 77—100.

[D-Fl] Diederich, K. -Fornaess, J. E., Pseudoconvex domains with real-analytic bound-
ary, Ann. Math., 107 (1978) , 371-384.

[D-F2] Diederich, K. -Fornaess, J. E., Proper holomorphic maps onto pseudoconvex do-
mains with real-analytic boundary Ann. Math., 110 (1979) , 575-592.

[D-F3] Diederich, K. -Fornaess, J. E., Pseudoconvex Domains: Bounded Strictly Pluri-
subharmonic Exhaustion Functions, Invent. Math., 39 (1977) , 129-141.

[D-H-O] Diederich, K. -Herbort, G. -Ohsawa, T., The Bergman kernel on uniformly ex-
tendable pseudoconvex domains, Math. Ann., 273 (1986) , 471—478.

[D-L] Diederich, K. -Lieb, I., Konvexita't in der komplexen Analysis DMV-Seminar,
Band 2. Birkhauser Basel-Boston-Stuttgart, 1981.

[HI] Hormander, L., L2 estimates and existence for the d operator, Acta Math., 113
(1965) ,89-152.

[H2] , An Introduction to Complex Analysis in Several Variables. 2nd Edition-

https://doi.org/10.1017/S0027763000004037 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000004037


EXTENSION OF HOLOMORPHIC L2-FUNCTIONS 1 5 7

,Van Nostrand Amsterdam-London-New York, 1973.
[N] Nakano, S., Extension of holomophic functions with growth conditions, Publ.

RIMS, Kyoto Univ., 22 (1986) , 2 4 7 - 2 5 8 .
[01] Ohsawa, T., Boundary Behavior of the Bergman Kernel Function Publ. RIMS,

Kyoto Univ., 16 (1984) , 8 9 7 - 9 0 2 .
[02] ., On the extension of L2-holomorphic functions II, Publ. RIMS, Kyoto Univ.

24(1988) , 265-275.
[0-T] Ohsawa, T. -Takegoshi, K., On the extension of L2-holomorphic functions, Math.

Z., 195(1987) , 197-204.
[Y] Yoshioka, T., Cohomologie ft estimations L2 avec poids plurisousharmoniques et

extension des fonctions holomorphes avec controle de la croissance, Osaka J.
Math., 19 (1982) , 7 8 7 - 8 1 3 .

Fachbereich Mathematik
Bergische Universitat-Gesamthochschule Wuppertal
Gau0stra0e2O
D-56 Wuppertal

https://doi.org/10.1017/S0027763000004037 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000004037



