
7 Soils: Physical Weathering and Soil
Particle Fragmentation

7.1 Physical Weathering and Soil Mineral
Matter

The previous chapter discussed models for soil depth
alone and didn’t provide any information about how the
soil varied within the profile. In this chapter we talk about
models for predicting the particle size grading down the
soil profile.

In this chapter we discuss processes that change the
soil particles physically with an emphasis on the particle
size distribution. Chemical transformations will be dis-
cussed in Chapter 8. We will not discuss the evolution
of the strength of the rock/soil fragments, though this may
be important in some circumstances when overburden
load is high (e.g. deep inside mine spoil waste dumps).

The focus here is on fragmentation processes where
larger rock and soil particles physically break down into
smaller particles and where the fragmentation process
itself does not change the chemistry of the particles.
However, we make no presumption about the processes
that cause fragmentation. Fragmentation may be caused
by physical, chemical or biological processes, including
the following:

• Physical: cycles of salt crystallisation in cracks may
wedge open existing cracks or pits, as may cycles of
freeze-thaw. Rapid heating and cooling (e.g. wildfire)
may shatter the rocks, or fragment an outer layer of
rocks. Heating and cooling of hydrated minerals or salt
crystals may change their crystal structure with conse-
quent changes in volume.

• Chemical: Chemical weathering may transform min-
erals into a form that has a larger volume, causing
wedging fragmentation. For instance, many hydration
products have a higher volume than the original
untransformed minerals. Chemical weathering along
highly reactive mineral grain boundaries may lead to a
breakdown of the ‘glue’ holding the minerals together
(sometimes called ‘rotting’).

• Biological: Tree roots wedge apart rock fragments,
while the finer root hairs may wedge apart the smaller
particle size fraction. Fungi secrete acids along hypha
channels to release nutrients that may lead to disinte-
gration of minerals (Li et al., 2016).

It is obvious from this list that other processes (e.g.
chemical transformation, microbiology) may occur in
association with the fragmentation that they cause. With
the use of operator splitting (Section 2.2.2) we can math-
ematically model the fragmentation separately from these
other transformations. We will discuss how to model this
coupling in Chapter 11.

7.2 The Evolution of the Soil Surface

We start with models that simulate the evolution of only
the surface of the soil profile. It has been long recognised
that one of the long-term impacts of fluvial and aeolian
erosion is that the fine material on the surface is
winnowed out, leaving behind a layer of coarser material
than protects the surface against further erosion. If this
armour is undisturbed, it is common to see erosion drop to
near zero when all the entrainable material from the
armour is removed and what particles remain covering
the surface cannot be moved by erosion. This mechanism
has been widely studied both experimentally and theoret-
ically for rivers and soil surfaces subjected to aeolian
erosion, but there has been little comparable quantitative
work for hillslopes and their soils when subjected to
fluvial erosion.

Willgoose and Sharmeen (2006) tested a number of
river armouring models, using their ARMOUR1D model,
against rainfall simulator field trials at Ranger mine (Riley
et al., 1991). ARMOUR1D had a discretised particle size
distribution in a surface layer and a semi-infinite layer
underneath, and simulated the runoff on the hillslope
using a saturation-excess hydrology model and observed96
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rainfall. From this runoff time series they used a variety of
published detachment and selective entrainment mechan-
isms to entrain the size fractions into the flow while
recharging the surface layer from the layer below to
maintain a mass balance in the surface layer. In this way
they allowed the surface grading to evolve as a result of
runoff events.

They identified that the Parker and Klingeman (1982)
model best fit the data, and Sharmeen and Willgoose
(2006, 2007) explored the long-term implications of this
model for erosion rates for this site. Fitting the empirical
fluvial transport-limited equation (Equation (4.10))

Qs ¼ KQmSn (7.1)

they found that not only did the erodibility K decline with
time, as expected, but the parameters m, n and m�1

n also
changed significantly with time. The parameter m
declined from 1.8 to a minimum of 1.0, then stabilised
at around 1.2, while n declined from 2.1 to a minimum of
�0.5, then stabilised at around 0.5, both over 100 years.
The parameter trends matched field data from 20-year-old
sites (Evans and Loch, 1996; Willgoose and Riley,
1998a). The changes in m and n resulted from longer
and steeper slopes developing a coarser armour (so
becoming relatively less erodible), and meant that fluvial
erosion model parameters derived for unsorted
sediments in flume studies (as is normally done; e.g. the
initial m ¼ 1:8 and n ¼ 2:1 above resulted from using the
Einstein-Brown sediment transport model on unsorted
sediments) may not be appropriate for equilibrium soils
on hillslopes (Section 4.2.4).

Their results also indicated that it would take about
200 years to stabilise to these equilibrium values, at which
stage about 30mm of cumulative erosion had occurred.
We will return to the question of the rate at which these
soils equilibrate later in the book, but we will note here
that 30mm erosion is quite small relative to elevations of
landforms, providing evidence that the surface erosion
properties of the soil would equilibrate long before the
erosion created any significant landform evolution. The
downside of the Sharmeen approach was the computa-
tions at each time step were very intensive, and the time
resolution required was high (seconds during runoff
events) so that it was not feasible to simulate more than
a few short hillslopes for a few hundred years.

Cohen et al. (2009) using a new, more efficient,
approach, mARM1D (to be described in detail in the next
section), was able to replicate the results of Sharmeen
when only armouring occurred on the surface. In an
extension he included a weathering model that broke
down the armour particles that was calibrated to

laboratory weathering experiments (Wells et al., 2005,
2006, 2007, 2008) and found that the equilibrium time
for the surface was longer than for the no weathering case,
on the order of 500 years.

7.3 The Evolution of the Full Soil Profile

We now turn to models of the grading properties of the
full soil profile, rather than only the surface.

There are a range of analytical particle size distribu-
tion functions that have been used to fit experimental
particle size distributions, but it is difficult to distinguish
them on causal grounds so typically authors have used
the functions that fit their data best. For instance, San-
chidrian et al. (2014) compared 17 particle size distribu-
tion functions against 1,234 data sets and found different
functions fit different parts of the distribution best, but
none did best overall. Accordingly our focus has been on
modelling the particle size distribution explicitly using
physical principles, and that is the basis of the treatment
that follows.

Legros and Pedro (1985) modelled the evolution of the
grading of a soil column by physical and chemical
weathering. They modelled the soil column as one lumped
whole and compared the pedogenesis trajectories with
field data. They modelled the soil as being broken up into
1,000 particle size fractions from 2 μm to 2,000 μm diam-
eter. They ignored size fractions greater than 2mm, and
simulated processes that transformed particles in one size
class into particles in another smaller size class. These
processes included the following:

1. Fragmentation: A particle of a particular size is frag-
mented into a number of smaller particles of the same
total mass as the original particle and

2. Dissolution: Which dissolved material from the surface
of a particle, and when the particle was small enough it
transitioned to the next smaller size class. The dis-
solved material was lost to the system.

Legros and Pedro did not detail their fragmentation and
dissolution processes (e.g. size and number of particles,
rate of processes), but their model exhibited a change of
soil texture over time that they postulated was an analogue
for field sites they presented.

Subsequent work in the field has either explicitly
followed the methodology of Cohen et al. (2009, 2010)
(i.e. mARM and mARM3D) or can be recast into Cohen’s
framework. The remainder of this section draws from
Cohen’s mARM3D model unless otherwise stated. We
will start with a qualitative description of how the model
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is constructed, and only then will we fill in the mathemat-
ical details of how the model is solved.

A soil profile is broken into a series of layers
(Figure 7.1), with a thin layer on the surface that directly
interacts with water flowing over the surface, and a

semi-infinite layer of fractured rock underlying the pro-
file. Each layer has a particle size distribution describing
the mass proportion of each size within the soil grading.
Pedogenic processes are modelled within each layer, and
vertical interactions between the layers are modelled so
that material can be moved between layers. To model a
catchment the catchment is discretised into a spatial grid
of nodes so that the catchment consists of a number of
profiles, one profile for each node. Each layer is fully
mixed vertically. Using the surface elevations of each
node, the surface water drainage pattern is modelled and
surface water flows from node to node. This surface
water erodes and/or deposits sediment at each node
based on the geometry of the surface flow network, the
sediment being transported within the flowing water and
the local transport capacity at that node. This used the
erosion models discussed in Chapter 4. mARM3D
ignores groundwater flows between the nodes (though,
in principle, there is nothing to stop this being mod-
elled), and there was no interaction between the soil
layers at one node with the soil layers at another node.
The main limits on the number of soil layers and the
number of nodes spatially are computer storage and
compute times.

7.3.1 Dynamics of a Single Soil Layer

We will first describe how mARM3D simulates each
layer, and then we will discuss how the layers interact
vertically. We start with the thin surface layer. This layer
is the layer that interacts with the water flowing over the
surface. In the most general case if the sediment transport
capacity of the flow is more than the amount of sediment
being carried by the flow, then the flow will erode material
from the surface, while if the transport capacity is less
than the sediment in the flow, then it will deposit sedi-
ment. If erosion occurs, then there is preferential entrain-
ment of the finest fractions from the surface layer into the
flow. To maintain the mass of the surface layer when there
is erosion, material is transferred from the layer directly
below to exactly balance the material being removed by
erosion. If deposition occurs, then there is preferential
deposition of the coarsest fractions (the coarsest particles
settle out fastest) from the flow into the surface layer. To
maintain the mass balance in the surface layer during
deposition, material from the surface layer is transferred
into the layer directly below to balance that material being
deposited.

For the layers below the surface layer the mass balance
is maintained at every time step. Thus if material is
transferred from the layer to be put into another higher
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FIGURE 7.1: Schematic of the discretisation of the mARM and
SSSPAM soil profile pedogenesis models (after Cohen et al., 2010).
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layer, then material is entrained from the layer below to
balance the mass removed. Likewise if material is trans-
ferred into the layer from the layer above, then material
from that layer is pushed down into the layer below. In the
simplest case, if material is removed from the top layer by
erosion, then material from the next layer below is trans-
ferred up to balance the mass lost to erosion. The next
layer below that then has material transferred upwards to
balance the material lost from the layer above, and this
processes cascades down the profile to the bottom of the
soil profile so that the soil-bedrock interface moves closer
to the surface and the soil thins.

Within each layer weathering can occur and that
weathering changes the grading distribution of that layer.
Each layer weathers independently of the other layers.
Mass conservative (i.e. physical weathering) and non-
mass conservative (i.e. dissolution) weathering can be
modelled, but to date full chemical weathering where
dissolution is followed by precipitation of secondary min-
erals has not been modelled, because mARM does not
have a coupled biogeochemical model to simulate in-
profile geochemistry (Chapter 8). The weathering rate is
typically depth dependent and can also be a function of
particle grading and time. The model does not have a
coupled groundwater model and so cannot model the
effects of the interaction between soil moisture, soil
grading and weathering rates, though a known, specified
soil moisture spatial pattern (and thus a specified spatial
weathering pattern) can be input.

The bottom layer of the soil profile has the grading of
the underlying rock, rock being defined as material that is
100% the coarsest size fraction in the particle size distri-
bution. That layer becomes soil as the weathering function
breaks down the material into smaller size fractions. Any
layers below cannot be soil until a specified proportion of
the rock fraction in the layer above is broken down. Thus
the bedrock-soil interface arises naturally as a result of the
weathering process and is not explicitly modelled by the
soil production function from Chapter 6.

Having outlined the conceptual approach used in
mARM3D the mathematical details follow. The approach
draws heavily from the state-space literature, and some of
the terminology of this literature will be used where
appropriate.

The soil grading at any given time and in any given
layer is represented by a vector called the state vector g :

g ¼

g1
g2
..
.

gm�1

gm

2
666664

3
777775 (7.2)

and the entries in the state vector, gi, are the mass of
sediment in each grading size range i where there are m
size fractions for the grading. Cohen et al. (2010) used the
proportion by mass of the layer in each size range as the
state, but subsequent experience has found that using
the actual mass in the layer in each size range makes it
easier to apply mass conservation principles directly to
the construction of the transition matrices (see below).
The transition from the grading at any given time to the
grading at the next time step is described by a matrix
equation. It describes both how the grading changes with
time and how the grading at one time, t1, is related to the
grading at some time in the future t2:

g t2ð Þ ¼ Rg t1ð Þ (7.3)

where in the state-space literature the matrix R is called
the transition matrix and is typically a function of the size
of the timestep t2 � t1ð Þ: Note that any set of coupled
differential equations can also be expressed with Equation
(7.3). The advantage of the matrix formulation is that we
can explicitly formulate all the processes that change the
grading with the same methodology.

To represent the soil profile, we write one of these
equations for each layer so that we can write Equation
(7.3) for each layer down the profile, where Rj is different
in each layer reflecting how weathering processes change
down the profile. For each layer j we then have

g
j
t2ð Þ ¼ Rjgj t1ð Þ (7.4)

The discussion in the remainder of this section will
consider only what happens in a single layer, so we will
drop the j subscript for the moment.

We simulate each physical process as a multiplicative
change to the state. If we have a single process, let’s call it
A, with a corresponding transition matrix R, then the
evolution of the grading vector over one timestep is (using
subscripts for the timestep)

g
tþ1

¼ Rg
t

(7.5)

which is simply Equation (7.3) where one timestep is
t2 � t1ð Þ: To demonstrate how the method works for more
than one process, consider the case where there are two
independent physical processes, called A and B with cor-
responding transition matrices in Equation (7.5) of R and
S; then the combination of these processes on the soil
grading is

g
tþ1

¼ S Rg
t

� �
¼ SRg

t
(7.6)

where the order of the matrix multiplication implies that
process A acts on the grading first and B operates second
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on the result of process A. This can be generalized to any
number of processes, and is the key to the simplicity and
generality of the approach. This splitting of processes into
independent operations is ‘operator splitting’ (Section
2.2.2), and this splitting considerably simplifies the task
of constructing the matrices for the combined effect of
simultaneous physical processes.

Equations (7.3) to (7.6) follow the traditional presen-
tation of transition matrices. In the discussion that follows
it is more convenient to work with the marginal transition
matrix than the actual transition matrix. In this case

R ¼ Iþ A (7.7)

where I is the identity matrix (where g ¼ Ig) and A is the
marginal transition matrix for process A. The change in
grading over a timestep is proportional to matrix A. The
advantage of formulating the matrices in this form is that
the rate of the process represented by A (e.g. the
weathering rate) can be changed simply by multiplying
the marginal matrix by a scaling factor. For example,
doubling the process rate is achieved by applying Equa-
tion (7.5) twice (the same as doing two timesteps), and if
the timestep is small, then this is the same as multiplying
the marginal transition matrix by 2 so that

process A nominal rateð Þ ¼R¼ IþA
process A twice nominal rateð Þ ¼R2 ¼ IþAð Þ2 ffi Iþ 2A

(7.8)

where the A2 term is dropped since it is small for a
small timestep. In the discussion that follows, the mar-
ginal transition matrix is used unless otherwise noted.
In marginal transitional matrix form, Equation (7.6) is

g
tþ1

¼ SRg
t
¼ Iþ Bð Þ Iþ Að Þg

t
(7.9)

where A and B are the marginal transition matrices
for processes A and B, respectively, and correspond
to the transition matrices R and S in Equation (7.6).
Representing weathering and other processes within a
layer is then a matter of constructing the marginal
transition matrices and repeatedly applying the
equations above.

Before we discuss how soil layers interact, a simple
example will be useful to explain how the details of this
process work. Consider an example where there are only
three grading size ranges (for convenience let’s call them
i ¼ 1, 2, 3, ‘small’, ‘medium’ and ‘large’ grain sizes), and
we will construct a marginal transition matrix for a
weathering process that breaks large particles into
medium particles, medium particles into small particles,
and leaves the small particles unchanged. If at any one
timestep 2% of the mass of the large particles are

weathered into medium sized particles and 1% of the
medium into fine, then the marginal transitional matrix is

A ¼
0 0:01 0
0 �0:01 0:02
0 0 �0:02

2
4

3
5 (7.10)

where the diagonal element says how much the mass
changes in that grading range and the off-diagonal terms
say how much of a different size range is added to it. For
instance, for the medium (i.e. i ¼ 2) size range

g2,tþ1 ¼ 1� 0:01ð Þg2,t þ 0:02g3,t (7.11)

where A2,2 ¼ �0:01 indicates that 1% of the mass in the
medium size range is removed from it and A3,2 ¼ 0:02
indicates that 2% of the mass in the large size range is
added to the medium size range.

Note that for mass conservation each column of the
marginal transition matrix must add to zero. If mass is lost
(e.g. by dissolution of particles), then the column(s) will
sum to less than zero. Also note that none of the diagonal
terms can be less than �1 because otherwise the equation
is transforming more mass in the layer than actually exists
in that layer. In this latter case a smaller timestep is
required so that all the elements of the marginal transition
matrix are smaller.

Finally it should be noted that, within the physical
constraints above, there is considerable flexibility for the
contents of the matrix, and therefore what processes can
be simulated. The entries below the diagonal will nor-
mally all be zero because otherwise the process being
represented by the matrix will be making larger particles
from smaller particles (albeit if you are modelling soil
aggregation or particle cementation this may be entirely
reasonable). In the example in Equation (7.10) particles
changed only to particles in the next size class down,
which may not be the case, for instance, for particles that
fragment into many smaller particles, or for spalling
where there is a single large particle and many smaller
particles resulting from the weathering. We will discuss
these cases later.

While not presented this way the work of Salvador-
Blanes et al. (2007) can be cast into this matrix formula-
tion. Salvador-Blanes modified the approach of Legros
and Pedro (1985) to include the modelling of the break-
down of particles less than 2mm in diameter and used
Legros’s method whereby a particle was transformed into
a particle in the next size class down (he defined that as
2 μm smaller). Both Legros and Salvador-Blanes used
1,000 size fractions for particles less than 2mm, and this
is easily transformed into Equation (7.10) (the A matrix
will be 1,000� 1,000) with only the diagonal terms and
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that entry directly above the diagonal term being nonzero,
and the values being the rates at which one size fraction is
transformed to the next smaller size fraction per timestep.

The recasting of Salvador-Blanes’s approach high-
lights an important but implied aspect of the matrix meth-
odology. The matrix A is not describing how an
individual particle is breaking down, but the aggregate
result of the breakdown of the many particles in a size
fraction. It is not possible to move a single particle to the
next size class smaller and maintain mass conservation
without generating some other smaller particles. How-
ever, the matrix method describes the aggregate of a given
mass of particles, and it is possible to have many particles
transform to the next size class lower without generating
an array of fine particles.

7.3.2 Interactions between Soil Layers

We now describe how one layer within the soil profile
interacts with another layer within the soil profile. Let us
consider two layers j and k. We can construct a matrix
equation that describes how layer j changes layer k in one
timestep:

g
k,tþ1

¼ Lk,jgj,t (7.12)

This equation says how much mass in layer j in each of
the grading size fractions is added to or subtracted from
layer k in one timestep. Equation (7.12) models only how
material is moved between layers and not weathering. We
have used the matrix notation L here to distinguish this
movement between layers from the weathering process
matrices (that transform the particle size distribution
within a single layer). For mass conservation in layer k,
if mass is added to layer k from layer j, then an equal
amount of mass must be removed from layer k and moved
to another layer. The combination of the weathering and
movement can be expressed in matrix form if we con-
struct a grading vector that merges all the grading vectors
for each of the individual layers, and the marginal transi-
tion matrix is constructed from the layer transition matri-
ces and interlayer movement transition matrices so that

g
1

g
2

..

.

g
n

g
∞

2
666666664

3
777777775
tþ1

¼

g
1

g
2

..

.

g
n

g
∞

2
666666664

3
777777775
t

þ

A1,1 L1,2 � � � L1,n L1,∞

L2,1 A2,2 � � � L2,n L2,∞

..

. ..
. . .

. ..
. ..

.

Ln,1 Ln,2 � � � An,n Ln,∞

0½ � 0½ � � � � 0½ � A∞,∞

2
66666664

3
77777775

g
1

g
2

..

.

g
n

g
∞

2
666666664

3
777777775
t

(7.13)

where the state vector is the gradings for all the layers
from the surface armouring layer (subscript 1 indicates the
surface armouring layer), through the profile layers and
including the semi-infinite underlying layer (subscript ∞).
The state vector is thus a vector of length m nþ 1ð Þ and
the matrix is of dimension m nþ 1ð Þð Þ � m nþ 1ð Þð Þ: The
notation 0½ � indicates a matrix that is m� m and where all
matrix entries are zeros. Equation (7.13) shows that all
layers can interact with all other layers both above and
below, including the semi-infinite underlying layer.
Looking at the bottom row of the matrix, the semi-infinite
layer can change through time (as a result of the matrix
A∞,∞), but it cannot be influenced by any of the overlying
layers (since all the entries are 0½ �). Equation (7.13) can be
written in a more compact form

g
═tþ1

¼ Iþ Bð Þg
═t

(7.14)

where the double underbar notation distinguishes the
grading vector for an individual layer (one underbar) from
the vector for the gradings for all the layers (two under-
bars). The latter is sometimes called a supervector in the
modelling literature (because it is a vector of vectors).

The construction of matrix B appears at face value to be
rather daunting simply because of its size. However, Equa-
tion (7.13) is the most general statement of the problem, and
in many cases simplifications are possible. For example,

• If interactions between layers occur only between adja-
cent layers: In this case for layer j, the only matrices
that are nonzero are the matrices Aj,j for the weathering
within that layer, Lj,j�1 and Lj,jþ1 which describe how
the layer above and below, respectively change layer j,
and Lj�1,j and Ljþ1,j which describe how layer j changes
the layer above and below, respectively:

A1,1 L1,2 0½ � � � � 0½ � 0½ � 0½ �
L2,1 A2,2 L2,3 � � � 0½ � 0½ � 0½ �
0½ � L3,2 A3,3 � � � 0½ � 0½ � 0½ �
..
. ..

. ..
. . .

. ..
. ..

. ..
.

0½ � 0½ � 0½ � � � � An�1,n�1 Ln�1,n 0½ �
0½ � 0½ � 0½ � � � � Ln,n�1 An,n Ln,∞

0½ � 0½ � 0½ � � � � 0½ � 0½ � A∞,∞

2
6666666666664

3
7777777777775
(7.15)

• If in addition to interactions only between adjacent
layers, there is no change in the grading over time
within a layer: This might happen when there is only
mixing of the soil (e.g. bioturbation) and no breakdown
of the mineral matter. The matrix in Equation (7.15)
simplifies even further to
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0½ � L1,2 0½ � � � � 0½ � 0½ � 0½ �
L2,1 0½ � L2,3 � � � 0½ � 0½ � 0½ �
0½ � L3,2 0½ � � � � 0½ � 0½ � 0½ �
..
. ..

. ..
. . .

. ..
. ..

. ..
.

0½ � 0½ � 0½ � � � � 0½ � Ln�1,n 0½ �
0½ � 0½ � 0½ � � � � Ln,n�1 0½ � Ln,∞

0½ � 0½ � 0½ � � � � 0½ � 0½ � 0½ �

2
6666666666664

3
7777777777775

(7.16)

• Adjusting the layers in response to erosion at the sur-
face: When material is removed from the surface layer,
then material to balance that lost to erosion must be
removed from the layer below to make sure the mass in
the layer does not change. This cascades down through
all layers in the profile:

� E

d1
A1,1

E

d1
I 0½ � � � � 0½ � 0½ � 0½ �

0½ � � E

d2
I

E

d2
I � � � 0½ � 0½ � 0½ �

0½ � 0½ � � E

d3
I � � � 0½ � 0½ � 0½ �

..

. ..
. ..

. . .
. ..

. ..
. ..

.

0½ � 0½ � 0½ � � � � � E

dn�1
I

E

dn�1
I 0½ �

0½ � 0½ � 0½ � � � � 0½ � � E

dn
I

E

dn
I

0½ � 0½ � 0½ � � � � 0½ � 0½ � 0½ �

2
666666666666666666664

3
777777777777777777775

(7.17)

where E is the erosion in one timestep in depth units, di is
the depth of layer i (which converts sediment mass due to
erosion E into a proportion of the layer mass) and I is a k� k
identity matrix. The matrix A is the armouring transition
matrix for the surface layer and determines the size selectiv-
ity of the sediment entrainment due to erosion. As an aside,
this is the first time that bulk density of the soil appears in the
matrix methodology. Bulk density is the conversion factor
between depth of soil eroded and mass of soil eroded. If soil
erosion is expressed inmass rather than depth units, then the
bulk density conversion is not required.

7.3.3 Constructing the A Matrix for Weathering

We will now discuss how the matrix A is formulated to
model weathering. Unless otherwise stated, the discussion
in this section is for one layer, and we drop the layer
subscript j for clarity of discussion. We will first discuss
mass conservative weathering and then generalise the dis-
cussion to non-mass conservative weathering afterwards.

The basis of the conceptualisation of weathering is that
particles are spread uniformly within each size range
within which they fall (Figure 7.2). Thus some particles
will be at the lower boundary of the size, some in the
middle and some at the top of the size range. We concep-
tualise the fragmentation process as a parent particle
breaking into a number of daughter particles (Figure 7.3).
Figure 7.3 shows that depending on the fragmentation
mechanism there may be a range of different types of
daughter particles created. If we assume that the density
distribution within a single particle size fraction is con-
stant, then mass conservation implies volume conserva-
tion. In this case the total volume of the daughter particles
is the same as the volume of the parent particle.

We now extend our discussion from what happens to a
single particle to what happens to all the particles within a
size class range. Figure 7.4 shows what will happen to the
larger size range when the particles break into two par-
ticles of different diameter, if they all follow the rules for
breaking of a single particle (i.e. all particles break with
exactly the same geometry). In the discussions that follow
we assume that all particles are spherical. Initially we will
consider the case where a parent particle breaks into two
daughter particles. Figure 7.4 shows how the geometry of
a single particle breaking allows us to map the parent
particle size grade to the smaller dimensions of the two
daughter particles’ size grades. Likewise we can map the
largest size from the parent size gradings to the largest
size of the daughter size grading. From the geometry of
breaking of the single particle we know what the

FIGURE 7.2: How soil grading is conceptualised in mARM and
SSSPAM as uniformly distributed within size classes. Data are the
Ranger Mine grading used in Willgoose and Sharmeen (2006) and
Cohen et al. (2009, 2010).
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proportions of the mass of daughter particles should be in
each of the two daughter particle gradings ranges.
Figure 7.4 shows that if we take one parent size fraction,
then the daughter particle’s size distribution will not

typically neatly fit into a single size fraction, but will need
to be interpolated across a number of size fractions. These
proportions will be a function of the diameters of the
daughter particles and of the size grading fractions
adopted by the user in the modelling. Finally, if the
distribution between the lower and upper size of
the parent particles is uniform, then the distribution
of the daughter particles is also uniform between the
lower and upper size grading.

Using these assumptions it is relatively straightfor-
ward, though tedious, to construct a matrix to simulate
weathering. The calculations in Figure 7.4 are done for
each grading range and the results summed.

However, a conceptual simplification is possible.
There is a combination of grading size fractions and
weathering processes that leads to particularly simple
results, and which allow us to derive some analytical
results that provide useful insight into the time variation
of grading under the action of weathering. We will use
this to demonstrate how the weathering matrix works and
derive some simple weathering results. We will then show
that this simple model can be used to derive more com-
plex models.

For this example we will define the fractions in the
grading size distribution such that the lower diameter limit
of each size fraction is 0:5

1=3
� �

times the upper diameter
limit for that same size fraction. If we take the maximum
size limit as 2mm, then this yields the limits for the size
fractions as in Table 7.1. There is no special significance
to the upper and lower limits of 2mm and 0.125mm in the
table; they are simply used to show what this grading
looks like. It is useful to examine this size grading because
this grading fractionation is different from that normally

time
do

dw

d

d = do– 2dw
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dw
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FIGURE 7.3: Schematic of fracturing models for rock particles
(a) breaking of small particles from a rind and (b) body fragmentation
(from Sharmeen and Willgoose, 2006).

FIGURE 7.4: Conceptualisation of how size fractions in the grading are transformed in each time step of mARM (from Cohen et al., 2009).
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used for soils analysis (e.g. phi grading) and thus will be
unfamiliar to readers. The significance of the grading in
this example is that if a spherical particle splits into two
equal volume spherical daughter particles, then for conser-
vation of volume all the particles in one size grading will
fall exactly into the size grading of the next size fraction
smaller. For example, for the grading class 12 in Table 7.1
a particle with the largest diameter of 2mm will split into
two particles of diameter 1.587mm, and a particle with the
smallest diameter of 1.587mm will split into two particles
of diameter 1.260mm. These upper and lower size limits
define the size range for the next smaller Grading Class 11.
This is true for all Grading Class ranges in Table 7.1.

Accordingly, to assemble the weathering matrix with
this grading when a parent particle fractures into two
equally sized daughter particles is straightforward because
the daughter particles only ever fall into the size fraction
below, and this size fraction below can receive only
daughter particles that fracture from the size fraction
directly above. Thus if we say that the proportion of the
particles that fracture for one timestep is α, then the
weathering matrix is

A ¼

0 α 0 � � � 0 0 0
0 �α α � � � 0 0 0
0 0 �α � � � 0 0 0
..
. ..

. ..
. . .

. ..
. ..

. ..
.

0 0 0 � � � �α α 0
0 0 0 � � � 0 �α α
0 0 0 � � � 0 0 �α

2
666666664

3
777777775

(7.18)

The diagonal and off-diagonal α terms mean that α of
the mass in the larger size grading is all added to the next
smaller size grading. The diagonal element for the
smallest fraction is zero because we assume that particles
this size cannot weather any smaller. Equation (7.18) is
mass conservative, so all the columns of the matrix add
to 0.

It is possible to calculate the time variation of the mean
diameter of the particle size distribution purely from the
Iþ A matrix using Equation (7.18). With the exception of
the smallest size grading, the mass gi that is in any given
size fraction i will change after one timestep so that
1� αð Þ remains in size fraction i while α will now be in
the next size fraction smaller i� 1, which in the case of
Equation (7.18) is 0:5

1=3
� �

smaller than the size fraction
above, and from the way the size fractions are defined in
Table 7.1 that is true for all size fractions i. For the
smallest size fraction there is no change. If we consider
the case where all the mass is initially concentrated in the
largest size fractions and there is an insignificant mass in
the smallest fraction (this can be achieved by defining the
smallest size fraction to be very small), then in one time-
step (time changing from t to t þ 1) the mean diameter of
the soil changes from

dmean,tþ1 ¼ 1� αð Þ þ α0:5
1=3

� �
dmean,t

¼ 1� 0:2063αð Þdmean,t (7.19)

which allows us to derive an equation for the evolution of
the mean diameter of the soil T timesteps into the future:

dmean,t¼T ¼ 1� 0:2063αð ÞTdmean,t¼0 (7.20)

which is a semi-log linear relationship between diameter
and time, where the slope on a semi-log plot is �0:2063α.
This can also be expressed as an exponential so that

dmean,t¼T ¼ dmean,t¼0e
ln 1�0:2063αð ÞT (7.21)

Figure 7.5 shows this curve for a number of values of α
and with a starting mean diameter of 3.5mm.

The exact details of Equations (7.19) to (7.21) are a
function of the specific assumptions in Equations (7.18),
but it is straightforward to extend this analysis to any
distribution of daughter products, and the only part of
Equation (7.19) that will change is the number inside the
parentheses; the relationship itself will still be log-log
linear. This is true provided only that (1) the definition
of the size fractions is defined as in Table 7.1 for two
daughter particles, (2) the fracture model is independent
of the diameter of the particle so that the daughter par-
ticles are always the same size relative to the parent
particle and that this fracture model is independent of

TABLE 7.1: Size grading classes for different weathering
mechanisms for two equal particles and three equal particles
fracturing

Size grading class
Upper-lower size limit (mm)

2 daughters 3 daughters

12 2.0–1.587 2.0–1.387
11 1.587–1.260 1.387–0.962
10 1.260–1.000 0.962–0.666
9 1.000–0.794 0.666–0.462
8 0.794–0.630 0.462–0.321
7 0.630–0.500 0.321–0.222
6 0.500–0.397 0.222–0.154
5 0.397–0.315 0.154–0.107
4 0.315–0.250 0.107–0.074
3 0.250–0.198 0.074–0.051
2 0.198–0.158 0.051–0.037
1 0.158–0.125 0.037–0.025
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the diameter of the parent particle and (3) the smallest size
fraction is small enough that only a minor amount of the
mass occurs within the smallest fraction (otherwise the
curves will start to level out as the particles age as seen in
Figure 7.5 on the right-hand side).

The assumption that particles split into two equally
sized particles leading to Equation (7.21) is rather restrict-
ive, but this result can be generalised as follows. Consider
first the case where N equally sized particles are generated
at each time step instead of the two in the example above.
This means that the diameter of the daughter particles is
now N

�1=3 the diameter of the parent particle. In the same
way that we developed a grading range definition for two
daughter particles fracturing in Table 7.1, we can do this
in general for all values of N. In Table 7.1 fracturing for
three equal daughters is shown. Note that the total size
range covered by the 12 size fractions in Table 7.1 is
different, with the three daughters column going down
to 0.025 mm, while the two daughters range goes down to
only 0.125 mm. Thus if you wish to cover a specific total
size range (e.g. for a given soil), the two daughters size
range requires more size fractions. If the proportion of a

given size fraction that breaks down each timestep is α as
before, then Equation (7.18) is still applicable except now
the definition of the size grading ranges is different and
the matrix will be of a different dimension. The equivalent
three daughters result to Equation (7.19) is

dmean,tþ1 ¼ 1� αð Þ þ 0:333
1=3α

� �
dmean,t

¼ 1� 0:3066αð Þdmean,t (7.22)

and Equation (7.20) becomes

dmean,t¼T ¼ 1� 0:3066αð ÞT dmean,t¼0 (7.23)

In general for N daughter particles

dmean,t¼T ¼ 1� 1� N
�1=3

� �
α

� �T
dmean,t¼0 (7.24)

so it is clear that if particles break into a larger number of
smaller particles at each timestep, then the soil will
become finer at a faster rate, and Equation (7.24) defines
what that speedup will be.

In the discussion that follows we further generalise the
fracture geometries considered. To simplify the discussion

FIGURE 7.5: Numerical solution of the time evolution of the mean of the particle size distribution for a range of weathering rates. The
parameter ‘rate’ is rate ¼ 0:2063α in Equation (7.19). The levelling off on the right-hand side of each graph is because at this stage all soil is in
the finest size fraction in the modelled soil grading.
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of geometry we introduce a shorthand for fragmentation
geometry, which indicates how, on average, the volume of
particles will be distributed after a fragmentation event
assuming the size grading definitions in Table 7.1. The
general form is pX-AAA-BBB-CCC-DDD where X is the
number of daughter particles the grading fractions have
been defined for (i.e. X ¼ 2 for the two particle grading in
Table 7.1, X ¼ 3 for the three particle grading), AAA is
the percentage of volume that remains in the parent size
grading fraction after fragmentation, BBB is the propor-
tion in the next size grading smaller, CCC in the next size
down again and so on. In this notation where all of the
particles split into two with two equally sized particles,
then the shorthand is p2-0–100. Some geometry examples
are listed in Table 7.2. Some simple examples of fracture
geometries and their fragmentation notation are also
shown. While all the examples in Table 7.1 have no mass
left in the parent grading after fragmentation (they all have
a leading zero), at the end of this section an important, but
more complex, fragmentation geometry that leads to a
nonzero percentage in the parent grading will be discussed.

Instead of two equally sized daughter particles, let us now
break the particle into three daughters where one daughter is
half the volume of the original and the other two daughters
are a quarter of the volume of the original (i.e. p2-0–50-50).
Mass conservation still applies, but what now happens is that

half the weathered volume goes into the next class down
from the parent, while half the weathered volume goes into
the class 2 classes below the parent so the A matrix is

A ¼

0 α α=2 � � � 0 0 0

0 �α α=2 � � � 0 0 0

0 0 �α � � � 0 0 0

..

. ..
. ..

. . .
. ..

. ..
. ..

.

0 0 0 � � � �α α=2
α=2

0 0 0 � � � 0 �α α=2

0 0 0 � � � 0 0 �α

2
666666666664

3
777777777775

(7.25)

and Equation (7.19) becomes

dmean,tþ1 ¼ 1� αð Þ þ α=20:5
1=3 þ α

�
=20:25

1=3 Þdmean,t

¼ 1� 0:2882αð Þdmean,t (7.26)

As expected this case weathers faster than the two
equal daughters case. In a similar fashion you could
consider that this three daughters case can be extended
where one of the two smaller particles itself breaks into
two, so the daughter particles are 1� 1=2ð Þ volume, 1�
1=4ð Þ volume and 2� 1=8ð Þ volume and so on.
Similarly the three equal daughters particle fracturing

could be extended by having one of the daughters break
into three equal volume smaller particles, so that the
daughters are two particles with 1/3 the parent volume
(i.e. 2/3 of the parent volume) and three particles with 1/9
the parent volume (i.e. 1/3 of the parent volume), yielding
p3-67.7-33.3. In this case Equation (7.25) becomes

A ¼

0 α α
3= � � � 0 0 0

0 �α 2α=3 � � � 0 0 0

0 0 �α � � � 0 0 0

..

. ..
. ..

. . .
. ..

. ..
. ..

.

0 0 0 � � � �α 2α=3
α
3=

0 0 0 � � � 0 �α 2α=3

0 0 0 � � � 0 0 �α

2
666666666664

3
777777777775

(7.27)

and Equation (7.26) becomes

dmean,tþ1 ¼ 1�αð Þþ 2α=30:333
1=3 þ α

�
=30:333

2=3 Þdmean,t

¼ 1�0:3775αð Þdmean,t (7.28)

If two of the three daughters break into three (i.e.
p3-33.3–66.7), then

dmean,tþ1 ¼ 1�αð Þþ α=30:333
1=3 þ 2α=30:333

2=3
� �

dmean,t

¼ 1�0:4484αð Þdmean,t (7.29)

and as for the two daughters cases, both of these cases
weather faster than the case where all the daughters are of

TABLE 7.2: Fragmentation notation examples

Fragmentation
notation

Physical example for daughter particle
geometry

p2-0–100 2 particles of 50% volume of parent.
The split in two geometry of Wells
et al. (2008).

p2-0–50-50 1 particle of 50% volume, and
2 particles of 25% volume of parent.

p2-0–50-0–50 1 particle of 50% volume, 0 particles
of 25% volume and 4 particles of
12.5% volume of parent. Spalling-
like behaviour.

p2-0-0-0–100 0 particles of 50% and 25% volume,
and 8 particles of 12.5% volume of
the parent. Used by Finke (2012) in
the SOILGEN model.

p2-0–50-25-
12.5-12.5

1 particle of 50%, 1 particle of 25%,
1 particle of 12.5% and 2 particles
of 6.25% volume. A scaling
fracturing similar to Whitworth
cracking (Figure 7.3).
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equal sizes, and when more fine particles are generated
(i.e. Equation (7.29) versus (7.28), or Equation (7.28)
versus (7.26)) then the soil weathers faster even when
the rate of breakdown per timestep is unchanged.

It should be clear from these examples that the com-
binations of sizes of daughter particles possible are quite
extensive. The only constraint is a geometry constraint
driven by the grading size definition adopted from
Table 7.1. If the two daughter grading range in Table 7.1
is adopted, then particles must break into particles where
the volumes of the daughters are related to the parent
particle volume by integer powers of 1/2. Likewise for
the three daughter grading range in Table 7.1, then all
the daughters must have volumes that are integer powers
of 1/3. This integer power constraint is so that all the
daughters fall entirely and only into one of the grading
size ranges and do not span two grading size ranges.

This section has shown how to construct the
weathering A matrix using a conceptualisation of the
fracturing of individual parent particles into a range of
daughter particles. Thus everything in this section has
been strongly physically based on fracturing mechanisms
that are, in principle, observable in the laboratory or the
field. This presentation was intentional because it high-
lights the link between fracturing of individual particles
and the rather less tangible mathematics of the A matrix.

We will deviate from this philosophy for a moment to
generalise Equation (7.18), which will then allow us to
provide a general analytical solution to the change in grading
over time. When constructing the A matrix, to ensure mass
conservation we need to ensure only that (1) the summation
of each column should be zero, (2) the diagonal term is
between�1 and 0 and (3) the off-diagonal terms are greater
than or equal to 0. Thus if we can construct a generic column
for matrix A, that is the same for all grading fractions

column i in A ¼

ai,1
..
.

ai,i�2

ai,i�1

ai,i
0
0
..
.

0

2
66666666666664

3
77777777777775

(7.30)

we can then write Equation (7.19) as (using the two
daughter size grading)

dmean,tþ1¼ 1�ai,ið Þþai,i�10:5
1=3

�
þai,i�20:5

2=3 þ ...þai,10:5
i�1ð Þ=3

�
dmean,t (7.31)

and if the values of ai,j are small when j is small (i.e. large
parent particles do not generate many very small daughter
particles), then we can write

dmean,tþ1 ffi admean,t (7.32)

where a is a constant reflecting the structure of A so that
we can write a general equation for how the mean diam-
eter of the soil will change over time

dmean,t¼T ¼ að ÞTdmean,t¼0 (7.33)

which shows that the mean of the soil grading is an
exponential function with time of the initial grading irre-
spective of the structure of A. Note that the restrictions on
the form of A are relatively modest (just that weathering
cannot generate a large mass proportion of small par-
ticles), so this is quite a powerful and general conclusion.
Note also that the use of the two daughter size fraction
definition in Table 7.1 is a convenience rather than a
necessity, as we will see in the next section. The fragmen-
tation notation for this case is p2-(1-ai,i)-ai,i-1- . . . -ai,1.

The discussion above presumes that all particles frac-
ture with exactly the same geometry. This is not essential.
One simple extension is to allow particles to break with
two possible geometries at different rates. The A matrix
for the combined process is then

A ¼ w1A1 þ w2A2 (7.34)

where the subscripts are the weathering rate w and
weathering matrix A for each of the two processes. This
can be generalised to as many processes as required.

Figure 7.6 extends the discussion by examining a
number of fracture geometries, and shows how (1) the
different fracture geometries yield different rates of evo-
lution of the mean grading and (2) all the geometries
evolve as a semi-log of time as in Equation (7.33). The
meaning of the coding used for describing fracture geom-
etry is explained in the figure caption, but is based on the
fracture geometry where particles are 1/2, 1/4, 1/8 and so
on of the volume of the parent particle.

One of the fracture geometries in Figure 7.6 is philo-
sophically different from the ones described above. In all
the fracture geometries above the geometry of the daugh-
ter particles is deterministically fixed as a proportion of
the volume of the parent particle. The aggregated behav-
iour of all the particles is then just the sum of all the
particles in that grading range. However, consider the case
where a single particle breaks into two particles but where
the fracture location in the particle is randomly distributed
within the particle (e.g. a schist where the particle cleaves
along the layering but where the cleavage plane is ran-
domly located within the particle). The probability
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distribution of the volume of daughter particles derived
from particles in a specified particle range is shown in
Figure 7.6a. It is convenient here to define the x axis as the
volume of particles rather than their diameter because the
probability distribution of the daughter particles is then
particularly simple. If a large number of particles fracture,
then the probability distribution function gives the mean
of the volume distribution of the daughter particles, from
which A can be easily derived. In fragmentation notation
it is p2-30.7-34.6-17.3-17.4, if we lump the volume of all

particles more than three grading fractions smaller into the
third grading fraction (i.e. the 17.4). Other than the pro-
portion remaining in the parent grading range, the relativ-
ities between the daughter size fractions are the same as
the scaling model p2-0–50-25-12.5-12.6.

Figure 7.6 shows that those fractions that generate a
greater proportion of volume in smaller size fractions fine
faster, which is consistent with Equation (7.24). Figure 7.7
shows the particle size distribution resulting from using a
number of different fragmentation models. Initially all

(a)
(b)

FIGURE 7.6: (a) The average particle size distribution of the daughter particles resulting from random fragmentation (P2-stoch), dparent is the
diameter of the parent particle, (b) Numerical solution of the time evolution of the mean of the particle size distribution for the same
weathering rate (as used in Figure 7.5) and a range of fragmentation models. The weathering model p2-0–50-50 is the same as ‘rate = 0.03’ in
Figure 7.5.

FIGURE 7.7: These are the same
simulations as in Figure 7.6 (i.e.
same weathering rate, different
fragmentation models) but
showing the particle size
distribution when the d50 of the all
fragmentation models is equal to
0.1mm. Note that Figure 7.6
shows that the age of each of the
distributions will be different since
the different fragmentation models
generate a different rate of change
in the d50 for the same
weathering rate.
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particles were 4.0mm in diameter, and Figure 7.7 shows
the particle size distribution when the fragmentation
models have weathered the particles to a median diameter
0.1mm. Two conclusions of this figure are that (1) differ-
ent fragmentation models yield slightly different particle
size distributions even though the median diameter of the
particle size distribution is the same and (2) while the
different fragmentation models may yield finer particle
size distributions at different rates, they yield particle size
distributions that are only slightly different (e.g. the p2-
0–100 and the p2-stoch random fracture models are indis-
tinguishable in Figure 7.7, but p2-0–100 fines a factor of
two times faster in Figure 7.6).

7.3.4 Transforming the Size Grading
Definition

The definition of the size fractions necessary to derive
Equations (7.18) to (7.29) is rather restrictive, and is not
necessarily consistent with size gradings used in soil
science practice (e.g. sieve sizes). Accordingly, we will
now show how to generalise the definition of diameters
defining the size fractions while still maintaining the
simplicity of the equation and the semi-log relationship
for mean size with time. It is possible to transform the
mass fractions from one size fraction definition to another
size fraction definition. Consider g to be the grading by
one grading class size definition and h to be the desired
mass fraction equivalent to g in another grading class size
definition. For generality let us consider that there are n
size classes in g and m size classes in h. We can transform
g into h with the matrix equation

h ¼ Tg (7.35)

where T is a n � m matrix that distributes the mass in the
n classes in g into the m size classes in h.

We can now transform the weathering (or any other
process for that matter) matrix equation that is originally

g
tþ1

¼ Iþ Að Þg
t

(7.36)

By substituting in the inverse of Equation (7.35) we get
the transition matrix in the new grading

T�1htþ1 ¼ Iþ Að ÞT�1ht

htþ1 ¼ T Iþ Að ÞT�1ht ¼ Iþ Â
� �

ht (7.37)

so that in the new grading definition

Iþ Â ¼ T Iþ Að ÞT�1 ¼ Iþ TAT�1 (7.38)

noting that TT�1 ¼ I:

This shows that we can populate the A matrix using
any size class definition we like and then later transform it
into any other size class definition that is convenient. One
major consequence of this is that the semi-log evolution of
the mean diameter we have derived in the previous section
is not unique to the size class distribution used to derive it,
and that even if the class definition is different (provided
the physics is the same), then the semi-log relationship
with time will still be observed.

7.3.5 Constructing the A Matrix for
Pedoturbation

Pedoturbation is any process that disturbs the horizonation
of soils. Some pedoturbation processes assist in the differ-
entiation of soils into layers, while others mix the soils,
tending to destroy the layers (Hupy and Schaetzl, 2006).
Bioturbation is a pedoturbation process resulting from bio-
logical activity and is a significant process in soil profile
development (Hole, 1981). One of the main impacts of
bioturbation is to physically mix soil from top to bottom
(Heimsath et al., 2002; Ahr et al., 2013), and transport
material from the surface into the profile (Astete et al.,
2015). Soil fauna such as ants and termites bring fine mater-
ial from deep in the soil to the surface (Lobry de Bruyn and
Conacher, 1990), earthworms likewise mix the profile (Van
Hooff, 1983; McKenzie et al., 1993), while tunnelling
animals such as gophers (Huntley and Inouye, 1988; Gabet,
2000) and wombats (Paton et al., 1995; Field andAnderson,
2003) may also transfer material laterally (via their horizon-
tal tunnels) as well as from within the profile to the surface.
Flora such as trees mix the soil through tree throw (Gabet
et al., 2003; Field and Anderson, 2003). In this section we
will consider only vertical transport of material. Horizontal
movement will be discussed in Chapter 9.

Many of these processes leave macropores within the
profile when material is removed from that layer, which
means that the porosity is increased and the bulk density
of the soil layers is reduced. If the mass in each soil layer
in the model is the same and bulk density decreases, then
the layers will dilate (or expand), so that the soil surface
rises. For instance, Wilkinson et al. (2009) provides data
for bioturbation rates that decline with depth roughly
exponentially from the surface, which they attribute pri-
marily to ants and worms. They also measured bulk
density and found increases with depth (1.1 g/cm3 near
to the surface to 1.8 g/cm3 at a depth of 0.8m) mirroring
the decline in the rate of bioturbation and number of
macropores generated. Shull (2001) presents a very simi-
lar matrix model for bioturbation in sea bottom sediments.
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One unusual form of pedoturbation was the soil mixing
resulting from artillery shells in France during World War
I (‘bombturbation’, Hupy and Schaetzl, 2006, 2008), and
these and other warfare sites provide unique field experi-
ments in pedogenesis (Certini et al., 2013).

7.3.5.1 Simple Biological Mixing
A simple model for bioturbation mixes the soil vertically
randomly, and this can be modelled as a vertical diffusive
process. The idea is that microfauna (e.g. earthworms)
mix the soil vertically. This process could be modelled
by a Fickian diffusion-type equation. A simple method,
which asymptotes to Fickian diffusion (i.e. Qs ¼ D ∂C

∂x

where Qs is the rate of vertical transport per unit area
and time, ∂C∂x is the gradient of the property C being mixed
and D is the diffusivity), is to exchange material with the
layers above and below (Williams, 2006):

B ¼

�R1I R2I 0½ � 0½ � 0½ � � � �
R1I �2R2I R3I 0½ � 0½ � � � �
0½ � R2I �2R3I R4I 0½ � � � �
0½ � 0½ � R3I �2R4I . .

. � � �
0½ � 0½ � 0½ � R4I . .

. . .
.

..

. ..
. ..

. ..
. . .

. . .
.

2
6666666666664

3
7777777777775
(7.39)

where Ri is the rate of bioturbation mixing at the depth of
layer i. Equation (7.39) assumes that all layers have the
same thickness. Following Wilkinson et al. (2009) the
bioturbation rate Ri declines with depth approximately
exponentially. The identity matrix Imeans that the mixing
is not size selective. For constant thickness T layers, this
converges to Fickian diffusion asymptotically with time

Ri ¼ D
Δt

T2 (7.40)

If the layers are of different thickness, then the ith column
of tridiagonal elements changes to

2DΔt

Δz1ð Þ2 1þ 1
α

� �

� 2D 1þ αð ÞΔt
Δz1ð Þ2 1þ 1

α

� �
2DαΔt

Δz1ð Þ2 1þ 1
α

� �

2
666666666666664

3
777777777777775

(7.41)

where (see definitions in Figure 7.8) Δz1 is the distance
between the nodes i and i� 1, Δz2 is the distance between

nodes iþ 1 and i, and α ¼ Δz1
�
Δz2 . The relationship in

Equation (7.41) is derived from a central finite difference
approximation to Fickian diffusion. When the thicknesses
of the three layers are the same (i.e. Δz1 ¼ Ti and α ¼ 1)
Equation (7.41) reduces to Equation (7.40).

7.3.5.2 Tree Throw
Tree throw brings to the surface all the soil in the root ball of
the tree leaving behind a large hole in the ground. The soil
falls off the roots over time, and the mixed soil in the root
ball refills the hole in the ground. In addition to the mixing,
there is potentially an impact on the porosity of the soil with
the soil becoming more disordered. Tree throw is an event:
a tree falls, and the consequences happen immediately. It is
not a slow ongoing process, though the cumulative impact
ofmany tree throw events is an ongoing process. Tree throw
can bemodelled as an event if it is assumed that the refilling
of the hole happens quickly relative to the timestep of the
modelling. At a given time a tree falls at a particular location
or it doesn’t. Thus we do not use Equation (7.14) as the
model of what happens from t to t þ 1, but we can use it to
model what happens before and after the tree fall event

g
═after

¼ Iþ Bð Þg
═before

(7.42)

We simply need to know, when a tree fall event
occurs, what the B matrix looks like for a single tree fall
event, and apply Equation (7.42) for that time (and apply
the equation repeatedly if there are many tree fall events at
the same time). The mixing of the soil over the depth of
the root zone is modelled using Equation (7.42) if we
assume that the root ball rips up the top n layers so the
top n layers are mixed together and the nþ 1 and lower
layers are undisturbed. This is an averaging of the grading
of the top n layers so that the B matrix can be expressed as

FIGURE 7.8: Definitions of layer thickness and node discretisation
for Equation (7.41).
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B¼
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(7.43)

where mj is the total mass of layer j. The zero matrices for i
greater and equal to nþ 1 indicate that the tree throw does
not change the grading for layers nþ 1 and deeper. The term

mjPn

k¼1
mk

is included to ensure that the mass in layer j is the

same before and after the tree fall event. This is not critical
but is convenient, because it preserves the thinner armour
layer, which would otherwise become the same thickness as
the underlying layers if the mass were distributed equally.
The�1 in the diagonal term ensures that the grading in that
layer is entirely replaced by the new grading to negate the
effect of the identity matrix in Equation (7.42).

When modelling soil spatially it will often be the case
that a single tree throw event disturbs only a proportion of
the area associated with each computational node. If we
call this proportion α, then the equation for that node is a
modification of Equation (7.42) so that

g
═after

¼ 1� αð ÞIþ αBð Þg
═before

(7.44)

where the 1� αð Þ term is the proportion of the nodal area
that is unchanged by the tree throw event while the α term is
that proportion of the nodal area impacted by tree throw. The
parameter α might change from tree throw event to tree
throw event reflecting the size of the tree (and thus the root
ball) impacted. Likewise the depth of mixing might change
between events to reflect tree throw for different size trees.

When modelling the temporal effect of tree throw (i.e.
over a number of years rather than over a single tree throw
event), there are two main alternative approaches.

The first approach is to model tree throw as occurring
randomly in time and space (i.e. a Poisson random pro-
cess) and modelling every tree throw event using the
equations above. If tree throw has a probability of occur-
ring of p per unit area per timestep, then the probability P
of a tree throw event in a given timestep in a node of area A
is P ¼ pA: The simplest way to simulate this is to cycle
through every node at each timestep and randomly generate

a uniformly distributed random number between 0 and 1
for each node. If the random number is greater than P, then
a tree throw event occurs in that node, while if it is less than
P, a tree throw event does not occur. If the area of a node is
large, and/or the timestep is long, then it is possible for P to
be greater than 1 (which indicates more than one tree throw
event). In this case either one of the timestep or node area
needs to be decreased.

The second approach calculates the average effect of
tree throw over many events and models the mean behav-
iour rather than the effect of individual events. In this case
the mean of the tree throw events in any given node is the
rate of tree throw occurrence per unit time, which is P, so
that the equation for the effect of tree throw per unit time,
by modifying Equation (7.44), becomes

g
═tþ1

¼ 1� αPð ÞIþ αPBð Þg
═t

(7.45)

The advantage of the first method is that you can cap-
ture the stochastic effect (in both space and time) of tree
throw, whereas the second method gives only the average
effects. This stochastic effect may be important in the
understanding of the spatial variability of the soil proper-
ties (e.g. Samonil et al., 2010; Gabet andMudd, 2010). The
average of the first method gives the second method.

Because both thesemethods independently examine each
node, the user can impose spatial variability on tree throw
reflecting that tree throw is spatially clustered around the
edges of forests and in openings within the forest, and that
throw events are clustered in time during high-wind events.
In this case the user can construct a wind event model, where
wind is randomly generated across the domain, and based on
the wind speeds impose a spatial pattern of tree throw occur-
rence (e.g. Espirito-Santo et al., 2014) and study its effect on
the spatial variability of soil development (Finke et al., 2013).

7.3.5.3 Termites and Ants
Termites and ants move fine soil material from the sub-
surface to the surface as part of nest construction (Paton
et al., 1995; Zaitlin and Hayashi, 2012). The surface
expression of these nests is then, over time, eroded (typ-
ically by rainsplash) so that the material moved to the
surface of the nest is then spread as a surface veneer over
the soil surface, over an area that might be larger than that
contained by the nest itself. The underground galleries of
the nests are the material that is moved to the surface and
may be quite extensive laterally (e.g. termite nests may
extend 10’s of metres laterally) and vertically. Neither the
lateral nor vertical density of the galleries is well defined
(and likely to be species, climate and soil specific), nor is
the spatial distribution of nests (all of which determine the
mass of material moved). This also applies to the length of
time before the galleries collapse and the soil above them
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subsides (which determines the rate of change of the por-
osity of the soil in those layers that contain the galleries).

The general principle here is that soil with a given size
grading range (though the evidence for size selectivity for
ants is not definitive, and nest-building behaviour appears to
be strongly species dependent; Lobry de Bruyn and Cona-
cher, 1990, 1994) is removed from each subsurface layer and
deposited on the surface. To ensure that the mass in each
layer does not change, we transfer material down from each
overlying layer into the layer belowuntilwe reach the bottom
of the bioturbed region. First,wewill look at how to calculate
the amount and grading of material transported to the surface
by the ants. So for layer i the material removed is

Δg
i
¼ BφiAgi (7.46)

where Δg
i
is the change in the soil grading vector in this

time step, B is the rate constant determining the total
amount of material transported to the surface (not to be
confused with B the matrix), φi is a normalised function of
depth describing the relative rate at which material is
transported from each layer i (i.e. φi is the depth depend-
ency of ant-turbation) and matrix A is a normalised matrix
describing the size selectivity of the ant-turbation mech-
anism. An example of matrix A is

A ¼

a1,1 0 0 0 0 � � �
0 a2,2 0 0 0 � � �
0 0 a3,3 0 0 � � �
0 0 0 0 0 � � �
0 0 0 0 0 � � �
..
. ..

. ..
. ..

. ..
. . .

.

2
6666664

3
7777775

(7.47)

where the diagonal elements aj,j are the proportion of the
total mass in grading size range j that is transported
upwards by the bioturbation (i.e. aj,j ¼ 0 if nothing is
removed, aj,j ¼ 1 if it is all removed). In this example
a4,4 ¼ 0 because for grading size range 4 it is assumed
that none of that size range is transported upward (e.g.
because it is too coarse). I have shown only the first five
rows and columns of the matrix for brevity.

It also turns out to be convenient to define the total mass
(i.e. across all grading size classes) in layer i,mi, and the total
mass of the change in the soil grading vector for layer i,Δmi,

mi ¼
X
k

gi,k (7.48)

Δmi ¼
X
k

Δgi,k (7.49)

where the subscript i indicates layer i and the subscript k is
the kth grading class in layer i.

For simplicity of explanation let us consider a case
where the ant galleries are excavated in the top four

layers, and the layers below are untouched. Then material
will be excavated from layers 2 through 4 and deposited
into layer 1. To ensure that the mass in each of the layers
is unchanged, we then need to transfer the excess material
in top layer down into layer 2, from layer 2 to layer 3 and
so on. (Figure 7.9). The mass and grading of the material
brought to the surface is

X4
i¼2

BφiAgi (7.50)

The fluxes of soil between the layers are given in
Figure 7.9 and are based on a fully explicit numerical
representation of the process where each of the soil layers
is fully mixed. Importantly in Figure 7.9 the grading of the
material from one layer to the layer below is based on
the grading of the layer prior to the redistribution of the
soil into the layer above. This is the explicit numerical
approximation of the time discretisation. There is no
conceptual reason why the derivation can’t use the
grading in the layer above after the soil has been redistrib-
uted to it; the arithmetic in the equation below is just more
complex.

We can write the equations for the new grading in each
of the four layers. Starting at the surface and working
down the profile,

g
1,new ¼ g

1
þ 0�

X4
i¼2

Δmi

m1 þ
X4
i¼2

Δmi

0
BBBB@

1
CCCCAg

1
þ
X4
i¼2

BφiAgi

g
2,new

¼ g
2
þ

X4
i¼2

Δmi

m1 þ
X4
i¼2

Δmi

0
BBBB@

1
CCCCAg

1
�

X4
i¼3

Δmi

m2 þ
X4
i¼3

Δmi

0
BBBB@

1
CCCCA

g
2
� Bφ2Ag2

g
3,new

¼ g
3
þ

X4
i¼3

Δmi

m2 þ
X4
i¼3

Δmi

0
BBBB@

1
CCCCAg

2
� Δm4

m3 þ Δm4

� �

g
3
� Bφ3Ag3

g
4,new

¼ g
4
þ Δm4

m3 þ Δm4

� �
g
3
� 0� Bφ4Ag4 (7.51)

where the first term on the right-hand side of each equa-
tion is the grading before ant-turbation, the second term is
the soil being transferred down from the layer above, the
third term is the soil being transferred down to the layer
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below and the fourth term is the material moved by the
ants/termites. The zeros in two of the equations are pla-
ceholders so that the third and fourth terms are the same

processes in all four equations. Constructing the transition
matrix from these equations involves filling the matrix
according to Equation (7.51):

FIGURE 7.9: Schematic of how layers interact in ant and termite bioturbation. While the calculations are done using mass, the figure shows the
layer thicknesses: (a) the soil profile before ant bioturbation, including the thin surface armour layer, (b) the movement of material by ants, from the
top three layers into the surface armour layer (those layers above the thick line are subject to ant transport, those below not; the grey region is the
surface armour layer; note that the only layer that changes thickness is the surface armour layer, so the bulk density in the lower layers is reduced), (c)
the redistribution of excess sediment from the surface armour layer (the thickness of the lines and arrows indicate quantities of soil being moved
between layers) and (d) the reinstatement of the armour layer, which is now amix of the original armour layer and the ant transportmaterial. The soil
surface has risen because of the reduction of the bulk density of the layers from which ants removed materials.

B¼
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(7.52)
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where, for brevity, only the first five rows and columns of
the transition matrix are shown.

7.3.5.4 Gophers, Wombats and Prairie Dogs
Burrowing animals also move material from within the
profile to the surface. There are strong similarities
between the ant/termite representation in the previous
section and that for larger burrowing animals. The main
differences are (1) the size and extent of the tunnels, (2)
the size selectivity of the material excavated and (3) that
there tends to be more lateral (either across or up/down
slope) movement of material because tunnels are predom-
inantly horizontal.

In North America pocket gophers are an important
mechanism for laterally moving soil (Gabet, 2000)
impacting on vegetation (Huntly and Inouye, 1988).
Their burrows extend up to 100m laterally though they
do not dig very deep (<1m). It thus seems reasonable
to assume that they would also mix the soil vertically
(Hole, 1981), though there is less quantitative literature
on this possible impact (Gabet et al., 2003).

In a review of bioturbation in North American soils
Zaitlin and Hayashi (2012) concluded that prairie dogs
had a significant vertical mixing effect down to about 2m,
but little impact on hillslope movement because they
prefer to live in flat areas.

For other environments we have less data. Field and
Anderson (2003) provide comparative figures for volumes
of soil bioturbed per hectare for an Australian catchment.
Tree throw was the most significant mechanism, but
bioturbation by wombats was the second most important
and of a comparable magnitude to termites.

In addition to tunnel digging there was also the
impact of surface foraging where the surface soil is
mixed by the digging for roots and leaves. Mitchell
(1985) (in Paton et al., 1995) found that the soil volume
moved during foraging (down to depths of 15 cm) by
wombats was 20–50 times the volume moved per year
by tunnel digging. The depth of disturbance by
wombats by tunnelling (down to 2.4m) was signifi-
cantly higher than tree throw (down to 0.42m), sug-
gesting a greater impact from wombats than tree throw
on vertical mixing of soils.

In the absence of more definitive data it is suggested
that the vertical mixing of the profile from burrowing
animals should be handled with the same approach
as for ants and termites (Equation (7.52)). The one
difference is that there is likely to be less grain size
selectivity for the burrowing animals because of the
animals’ large size. To model the surface foraging
where the surface materials are mixed together, the

approach used in tree throw (Equation (7.43)) seems
appropriate.

7.4 Sediment Deposition

Sediment deposition was discussed in Chapter 4 in the
context of the sediment in the flow and how it impacts on
transport capacity. In this section we discuss what
happens when that sediment is deposited. As discussed
previously there are two aspects to sediment to be
deposited: (1) the amount to be deposited at that point
and (2) the grading that will be deposited at that point.
The grading changes due to selective deposition are dis-
cussed in Chapter 4. Here we simply take the grading
vector that gives us the mass of the deposited material, g

d
,

in each of the size fractions (as derived in Chapter 4), and
the total mass of deposited sediment is md ¼

P
i
gd,i

where the subscript d indicates that the grading vector is
the deposited material.

This problem bears strong mathematical parallels
with the bioturbation by ants, where material was
deposited on the surface by the ants. The difference is
that there is no balancing loss of mass from the layers
underneath. The deposition stage of the process is for
the surface layer

g
after

¼ g
before

þ g
d

(7.53)

This sediment then needs to be distributed down the
profile. Because this sediment is an addition to the profile,
the soil profile will become deeper:

g
═tþ1
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d

(7.54)

where the definitions of mi are the same as that used for
Equation (7.48). The diagonal and off-diagonal terms
repeat all the way to the bottom corner (i.e. bottom
layer) of the matrix because the deposition pushes down
the material in all layers by an amount equal to the mass
of deposition. The second term in the equation in g

d
simply ensures that all the deposited material goes into
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the top layer and nowhere else during that timestep. The
similarity with the erosion equation in Equation (7.17)
should be clear.

The preceding discussion makes no assumptions about
the process driver of deposition. Classically it is sediment
being deposited out of fluvial transport. It could also be
from aeolian transport (Cohen et al., 2015). In this case
(aeolian) deposition and fluvial (erosion) can be occurring
simultaneously. Cohen showed that if the aeolian material
is very fine it can enhance erosion and destroy the armour
that might have formed in the absence of aeolian depos-
ition. No matter what the grading of the aeolian material
is, it changes the characteristics of the armour layer and
potentially changes the fluvial erosion characteristics of
the surface.

7.5 Differentiating between Mineral
Components

The discussion above has been about differentiating the
behaviour of the different fractions within the soil
solely on the basis of size. However, the state-space
matrix approach can be easily extended to include dif-
ferentiation based on some other property of the soil.
The example we will use here is mineral fractions (e.g.
quartz, k-feldspar, biotite etc.), but it will become clear
that the techniques outlined below are suitable for label-
ling any characteristic of the soil (e.g. particle density),
or for explicitly modelling nonmineral fractions (e.g.
particulate organic matter). Finally the terminology of
referring to the g state vector as the grading vector,
while convenient so far, will become a bit misleading
because the state vector will now contain other, add-
itional, information about the soil, so we will adopt
terminology used in the state-space literature and here-
after refer to the grading vector g as the soil state
vector.

In the previous sections the soil state vector g con-
tains the mass of material in each size range without
regard to what the characteristics of that material are
other than its size. Consider the case where we have
three different minerals in the soil that we wish to
distinguish (e.g. perhaps they weather at different rates
and we would like to track the effect of these different
weathering rates on the soil grading as it evolves). Let’s
call these minerals Q, K and B to distinguish them. We
can then extend our definition of g so that it now gives
the mass in each size range for each of the three min-
erals for each layer in the soil profile. The vector will
then be

g ¼

g1,Q
g2,Q
..
.

gm�1,Q
gm,Q

� � � � � � � � �
g1,K
g2,K
..
.

gm�1,K
gm,K

� � � � � � � � �
g1,B
g2,B
..
.

gm�1,B
gm,B

2
666666666666666666666666666666664

3
777777777777777777777777777777775

¼

gQ

� � � � � �
gK

� � � � � �
gB

2
66664

3
77775 (7.55)

so that using m size fractions the vector will be 3m in
dimension. The horizontal dotted lines in the vector of
Equation (7.55) are added simply to highlight the organ-
isation of the vector with the grading of the first mineral
first, the second mineral second and the third mineral last.
Thus the full g vector is split into three parts with the first
third being the gQ grading vector for the Q mineral, gK the
grading vector for the K mineral and gB the grading vector
for the B mineral. This organisation first by mineral and
then by grading will be convenient shortly. The A matrix
will also be correspondingly bigger and will be of dimen-
sion 3m � 3m. While the vector and matrix are larger, the
formulation of the A matrix is no more difficult than it
was for the nonmineral case. For physical weathering
there is no transfer of mass between the mineral fractions,
so each mineral fraction is mass conservative in its own
right, and then for each mineral fraction we can write the
weathering transition matrices

gQ
tþ1

¼ Iþ AQð ÞgQ
t

gK tþ1
¼ Iþ AKð ÞgK t

gB tþ1
¼ Iþ ABð ÞgB t

(7.56)

where the Amatrices are the matrices that would apply for
that mineral if that mineral was 100% of the mass content
of the soil layer. We can then write the matrix equation for
the full soil state vector for a single soil layer

g
tþ1

¼
Iþ AQð Þ 0½ � 0½ �

0½ � Iþ AKð Þ 0½ �
0½ � 0½ � Iþ ABð Þ

2
64

3
75g

t
(7.57)

The zero off-diagonal matrices indicate that none of the
mineral fractions transform into a different mineral
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fraction during weathering. For physical weathering that
is the expected behaviour, but for chemical weathering
this may not be the case. If, for instance, one of the
mineral fractions is a chemical weathering product of
another fraction, then there will be off-diagonal matrices
that parameterise the rate and grading characteristics of
that weathering process. We can show how this would
work in principle by extending our example in Equation
(7.57). Imagine that mineral component Q is a weathering
product of mineral K, then it is possible to write a matrix
equation relating the effect of weather from K to Q on the
grading of both Q (the destination of the chemical
weathering) and K (the source for the chemical
weathering) so that

g
tþ1

¼
Iþ AQð Þ Iþ AQKð Þ 0½ �
Iþ AKQð Þ Iþ AKð Þ 0½ �

0½ � 0½ � Iþ ABð Þ

2
64

3
75g

t
(7.58)

where the transition matrix AQK calculates how much of
mineral K is transformed intomineral Q,what the grading of
the source material K was and how it is transformed into the
grading of the destination mineral Q, while AKQ calculates
the inverse of how K is transformed into chemical
weathering product Q. In general this chemical weathering
transformation will not be mass conservative with respect to
the soil components because the chemical reactions will
typically involve constituents and reactions that have not
been tracked in the matrix equations such as hydration (i.e.
with water), oxidation (i.e. with oxygen) and carbonation
(i.e. with carbon dioxide). All these reactionswill change the
mass of the soil mineral constituents and can be accounted
for with AQ, AK and AB. We will focus on chemical
weathering in detail in the next chapter (Chapter 8).

In a model for the evolution of organic matter within
soils Kirkby (1977) proposed a similar method using
matrices to differentiate the organic fractions (carbohy-
drates, amino acids and lignins) and mathematically
described how they transformed from one fraction to
another. He also proposed a specific structure for the
transition matrices for the different types of soil humus,
organic sourcing from leaf fall, and examined what the
long-term equilibrium organic content of the soil was.

Finally, we note that this section has focussed on the
weathering process and differences in weathering rates,
but this approach can also be taken with erosion and
armouring processes. For instance, it is common for agri-
cultural erosion models to distinguish sediment classes
based on their relative transportability (e.g. CREAMS,
WEPP; Knisel, 1980; Laflen et al., 1991). This transport-
ability is a function of the diameter of the particles and
their specific gravity, so these erosion models are poten-
tially capable of distinguishing erosion rates for high

specific gravity particles (e.g. high in iron) from midrange
specific gravity (e.g. silicates), and low specific gravity
particles (e.g. organic matter and soil aggregates).

7.6 The Evolution of Porosity

The layers in the matrix model described above are defined
based on themass per unit area in the layer. To convert these
masses per unit area to a depth of soil we need to use the
bulk density of the soil in that layer. If the density of
particles doesn’t change, then this is equal to the change
in the porosity. The main drivers of changes in the density
of particles are chemical weathering and the amount of soil
carbon. In general the porosity of the soil will change over
time simply from the change in the grading and the particle-
packing arrangement that is possible with that grading. But
porosity will also change with macropore development and
changing mineral constituency. If either of these latter
properties is being tracked, then these effects can be mod-
elled. For instance, the bioturbation by ants discussed above
involves the removal of fine materials from a layer leaving
behind voids between the large particles, and will accord-
ingly increase the porosity of the layer from which material
is being removed. Note that by defining the soil state vector
by mass, this porosity change does not appear in the matrix
equations, and appears only at the end when a conversion
from mass of soil to depth of soil is required.

For a granular media with two size particles (e.g. a
binary media) a relationship due to Fraser (1935) and
Clarke (1979) based on the percentage of the two sizes
is commonly used. This equation has been used (e.g.
Morin, 2005) and studied by a number of subsequent
researchers (Zhang et al., 2009). For a granular media
made up of a range of particle sizes, a number of empirical
extensions of this model (see a comparison by Tranter
et al., 2007) can be used to estimate the porosity, ϕ,
including (Koltermann and Gorelick, 1995)

ϕ ¼ ϕc � cy1 1� ϕf
� �

þ 1� y1ð Þϕf c < ϕc

ϕc 1� y2ð Þ þ cϕf c � ϕc

(
(7.59)

where

y1 ¼ c
ymin � 1

ϕc

� �
þ 1

y2 ¼ c� 1ð Þ 1� ymin

1� ϕc

� �
þ 1

ymin ¼ 1þ ϕf �
ϕmin

ϕc
ϕmin ¼ ϕc 1� yminð Þ þ ϕcϕf

(7.60)

which is applicable for gradings where there are two dis-
tinctly different size fractions (e.g. sand/clay, gravel/clay)
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where ϕf and ϕc are the porosities of the fine and coarse
fraction, respectively, and c is the volume fraction of
fines. Koltermann and Gorelick showed that this equa-
tion fit data better than the ‘perfect packing’ model
(Clarke, 1979).

The Koltermann and Gorelick model is only for
unstructured granular material and does not account for
soil structure effects and organic matter. Tranter et al.
(2007) compared a number of empirical equations for
the fraction of the soil smaller than 2mm (i.e. sand and
finer) and found the best fit for the bulk density of the
mineral fraction of the soil was

ρb mineralð Þ ¼ 1:35þ 0:0045 ps � 6� 10�6 44:7� psð Þ2
þ 0:06 depth

(7.61)

where ps is the percentage of sand by mass, depth is the
distance below the soil surface in metres and ρb is in units
of g/cm3 or T/m3. To allow for organic matter in the
profile it was found sufficient to adjust for its mass frac-
tion (Stewart et al., 1970)

ρb <2mmð Þ ¼
100

OM
ρb OMð Þ

þ 100� OM
ρb mineralð Þ

(7.62)

where OM is the percentage of organic matter by mass,
and where Tranter used a bulk density of organic matter of
0.224 g/cm3. Finally, Vanwalleghem et al. (2013)
extended this to include the rock fraction (i.e. particles
greater than 2mm) by (Vincent and Chadwick, 1994)

ρb ¼
100

p<2mm

ρb <2mmð Þ
þ 100� p>2mm

ρb >2mmð Þ

(7.63)

Tranter noted that the root mean square errors of
both Equation (7.61), and Equations (7.61) and (7.62)
combined, was about 0.15–0.18 g/cm3, or about
10–15%.

However, we still find issues specifically related to
the soil history and weathering process that are
neglected:

• While the Tranter comparison examined soils with sig-
nificant soil structure, none of the equations in this
section explicitly allow for the effect of soil structure
(as a result of either clay or organic matter content) on
bulk density. Tranter et al. recognised that as a major
limitation, but noted that soil grading alone was prob-
ably not enough to do better.

• The transformation from the native rock in the saprolite,
which is by and large unfragmented, to the fragmented

rock fragments that result from physical weathering will
lead to a decrease in bulk density. This bulk density
increase will be reflected in an increase in the porosity.
Thus if the fragmented rock particles from physical
weathering have a porosity of 0.3 and the saprolite has
a porosity of 0.0, then the bulk density will decrease
by 30%, and the volume of the space consumed by
these rock fragments will increase by 43% after
fragmentation.

• The rock fragments themselves may change in their
density. Chemical weathering may eat away at the
inside of the rock fragments without changing the
exterior geometry of the particles. This will reduce
the bulk density of the soil layer because there is no
change in the volume occupied by the particle con-
sumed. Thus there will be no change in the volume of
the layer even if there is a change in the mass within
that layer. If, however, chemical weathering removes
only the outermost rinds of the particles so that the
particles get smaller and the soil particles can
rearrange themselves to adjust to this change in
sizing, then the only change in bulk density will be
that given by Equation (7.59) (i.e. only reflecting any
change in the grading of the soil). These cases will be
discussed in detail in Chapter 8 when chemical
weathering is discussed.

At one field site Anderson et al. (2002) found the
bulk density of the soil at the base of the soil profile
decreased by more than 50% relative to the parent rock,
and ascribed the cause to be a variety of physical
weathering and bioturbation (e.g. tree throw)
mechanisms. They also performed a chemical mass
balance and concluded that an upper bound on the
dissolution of minerals could account for only a max-
imum of a 5% decrease in bulk density. At this site they
concluded that the effect of chemical weathering on
bulk density is small.

Finally, in an interesting observation Brimhall et al.
(1992) noted the possibility that macropores generated
by biological activity may fill with deposited material in
the long term. They mention tree roots and speculate
that after the decay of the roots the empty macropore
may fill with mineral or organic matter. Likewise ant
and termite galleries might not collapse (and thus might
not return the soil bulk density to near its pre-
bioturbation value) but may fill up with sediment
instead. It is certainly clear that macropores are signifi-
cant preferential pathways for water flow in the soil
(Beven and Germann, 1982, 2013), and it seems rea-
sonable to suggest they would also carry sediment that
could fill the macropore in the long term.
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7.7 Numerical Issues

Most models break the soil into a series of layers as
discussed above. Many of them fix the thickness of, or
mass in, the layers. With the exception of mARM, most
do not do anything special with the uppermost layer. They
simply consider that erosion is a loss of material from the
top layer and don’t model the change in the grading that
results in armouring. MILESD (Vanwalleghem et al.,
2013) uses a different vertical discretisation for the layers,
modelling just three layers, corresponding to soil hori-
zons, and models the evolution of the thickness and
internal characteristics of these layers. This has the advan-
tage of allowing them to specialise the physics and chem-
istry to what happens in each of the horizons, but has the
disadvantage of not allowing them to investigate what in
the physics and chemistry quantitatively drives the devel-
opment of the horizons in the first place. Subsequently,
Temme et al. (2016) implements a series of processes that
have no regard for the layers themselves but only the
depth of the layers below the surface.

The main numerical issue is the coupling of the surface
layer in the physical model with the erosion mechanics.
A key feature of the surface is that if there is a coarse
weathering-resistant component of the soil, then a surface
armour will be formed. This armour consists of thematerial
that cannot be moved by the overland flow, and its exist-
ence reduces the erosion rate. Typical armour layer depths
in the field are of the order of 1–2 times the diameter of the
armour layer, so it is quite thin relative to the depth of the
soil. Thus we have found that you need a thin surface layer
to correctly capture the armouring process. Thicker layers
then underlie this, so that there aren’t an unnecessarily
large number of layers within the profile.

In the existing models of physical weathering some
have defined the layers based on thickness of the layer,
while others have defined them on the basis of mass

within the layer. The mARM model defined the layers
on thickness, but we have subsequently found that this
definition makes formulation of the transition matrices
complex, particularly if the layers are different thickness,
so we advise using mass as the definition of the layer. This
means that you need to have a model for porosity so that
this mass can be converted to soil depth, but this is
implicit in the soil thickness formulations.

A related issue is how to define the size fractions
within the layer. In mARM we defined them on the basis
of the proportion by mass within each size fraction. This is
consistent with how particle size distributions are nor-
mally expressed in the soil science community. However,
subsequent experience has been that formulation using the
mass (rather than proportion) in each size within each
layer is computationally and conceptually easier, and
consistent with the mass per layer formulation.

Defining each layer by mass avoids another issue,
which is whether to define the layer boundaries by (1)
elevations relative to the soil surface (which itself is
changing as a result of the erosion and landform evolu-
tion) or (2) absolute elevations (e.g. above sea level).
Defining the layers with mass avoids the need to define
the elevation of the boundaries in the soil model except
when weathering rates need to be determined relative to
the surface, in which cases all layers are relative to the
evolving soil surface.

If porosity is changing, then the thickness of each layer
will naturally change relative to how much mass is in each
layer. It is then conceivable that the soil surface elevation
will rise if the right combination of changes in porosity
and mass within all the layers occurs. For instance, con-
sider the case of the dilation of a soil due to tree throw, but
where erosion is low. The porosity increase as a result of
the tearing out of the saprolite of the rock will inevitably
lead to a soil thickening and a rise in elevation of the soil
surface.
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